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Foreword

This volume of essays on the theory and applications of multi-dimensional panel
data is a welcome addition to the burgeoning literature on panel data econometrics,
which has been fueled by the growing availability of large data sets. This is the
first volume to deal with higher-dimensional panels in a unified and comprehen-
sive way. Multi-dimensional panel data do not neatly fit the paradigm of a survey
of the same individuals, periodically, over an interval of time: for example, of busi-
ness expectations, plans and realizations, quarterly, for the years, say, 2000–2010,
or monthly total expenditures of a panel of households over a period of time. In con-
trast, we find in this volume five essays reviewing and extending, including many
new results, the extensive literatures on trade or on migration flows between pairs
of nations; on prices of identical products and of close substitutes in a cross-section
of supermarkets of different sizes daily, over a year; on the impact on productivity
of various industries, in different OECD countries, of R&D investments and of in-
vestments in information and communications technology (ICT); on temporal and
spatial variation in house prices, residential mobility and location choice.

The volume begins with ten chapters dealing primarily with methodological is-
sues, including many new results. There are not only chapters on the standard linear
fixed-effects and random-effects models, albeit in a multi-dimensional context, but
also chapters on various estimation and testing issues, which arise because of the
increasing sources of unobserved heterogeneity as the dimensionality of the model
increases. More specifically, for example: potential correlation of some of the re-
gressors with components of unobserved heterogeneity; dynamic and/or nonlinear
relationships; random coefficients; semi-parametric models; discrete response mod-
els; and quantile models. The particular issues associated with spatial data and mod-
els are dealt with in a full chapter.

What exactly are multi-dimensional panel data? In the case of familiar two-
dimensional panels, each observation is typically a vector of values of a dependent
variable and one or more independent variables, and comes with two labels attached,
one is frequently time and the other an individual person, business or nation. When
the panel is multi-dimensional, each observation comes with many labels, for exam-
ple, time, individual employee, firm, and industry. The labels may themselves have
labels, thus allowing an arrangement of observations in a hierarchy. In principle, an
observation could consist of values of multiple endogenous variables and multiple
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exogenous or predetermined variables, labeled with at least time and one other label.
For example, consider a macro-econometric model for each nation in one of several
regions of the world. One could imagine such a collection of models as having been
estimated from a multi-dimensional panel of nations, over various time periods, and
in several regions of the world.

All of the problems and issues which arise for two-dimensional panels also ex-
ist, sometimes in more complicated form, for multi-dimensional panels. Incomplete
panels may be incomplete because not all the vectors of observations contain the
same number of components. Or some labels may be missing all together. Such
issues are dealt with throughout the book.

But perhaps the most important difference between multi-dimensional and two-
dimensional panels is the many dimensions in which asymptotic expansions of the
distribution of estimates may be considered. For the standard case of a cross-section
of individuals observed at discrete points in time, one can consider a sequence of
estimates of a parameter based on successively larger samples of individuals or of
time points. Sometimes, as in the case of fixed-effects panel data models, we con-
sider asymptotics when both the number of time points and the number of indi-
viduals are increasing, but at different rates relative to one another. In the case of
multi-dimensional models, however, there are an embarrassing number of possibil-
ities.

Should we be concerned? In his often cited text on asymptotic statistics, van der
Vaart writes, “In fact, strictly speaking, most asymptotic results that are currently
available are logically useless. This is because most asymptotic results are limit re-
sults, rather than approximations consisting of an approximating formula plus an
accurate error bound. . . . Because it may be theoretically very hard to ascertain that
approximation errors are small, one often takes recourse to simulation studies to
judge the accuracy of a certain approximation.”1 In the case of multi-dimensional
models, comprehensive simulation results are difficult to present and hard to inter-
pret. While some simulations are presented in the book, how to deal informatively
with multi-dimensional data represents an important direction for future research.

Formulation of multi-dimensional panel models presents serious issues. In ad-
dition to those above, because very large panel data sets are now available, non-
parametric and nonlinear models are now feasible, opening up additional difficult
questions of which model to choose.

This book is much more than a comprehensive state-of-the-art introduction to
multi-dimensional panel modeling and estimation. It will be required reading for all
those who wish to go further.

Maryland, April, 2017 Marc Nerlove
Distinguished University Professor, Emeritus

University of Maryland

1 van der Vaart, A. W., Asymptotic Statistics, Cambridge: Cambridge University Press, 1998, p. 3.



Preface

The last couple of decades has seen the use of panel data become a standard in many
areas of economic analysis as large numbers of such data sets have been compiled
and made public. The available model formulations have become more complex,
the estimation and hypothesis testing methods more sophisticated. The interaction
between economics and econometrics has resulted in a huge publication output,
deepening and widening immensely our knowledge and understanding of both.

Traditional panel data sets, by nature, are two-dimensional. Lately, however, as
part of the big data revolution, there has been a rapid emergence of three, four and
even higher dimensional panel data sets. These arose by extending or dividing the
observed individuals (like household and/or firm area data, etc.), by matching dif-
ferent cross sectional data (e.g., matched employer-employee, doctor-patient, etc.
data), by origin destination flow type data (e.g., trade, migration, investment, etc.),
by cross-sectional data grouped according to some discrete variables (e.g., new col-
lege graduates’ job market offerings and wage rates for different occupations, in-
dustries, regions etc.), by multi-dimensional interactive data (e.g., social networking
data with a large number of social groups and group members), and so on.

Oddly, applications have rushed ahead of theory in this field. This book is aimed
at filling this widening gap. The first ten chapters of the volume provide the econo-
metric foundations to deal with these new high-dimensional panel data sets. They
not only synthesize our current knowledge, but mostly present new research results.
Chapters 11-15 provide in-depth insights into some relevant empirical applications
in this area. These chapters are a mixture of surveys and new results, always fo-
cusing on the econometric problems and feasible solutions. They deepen our un-
derstanding on how econometrics can be applied to different kinds of data and eco-
nomics problems.

Higher dimensional panel data sets have some common characteristics. For ex-
ample:

• These data sets are in most cases incomplete and unbalanced, often by design,
with a high percentage of missing or zero observations.
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• The number of observations can be very large in some dimensions, in cases in
the tens of millions, while in other dimensions quite limited.

• Emerging from economic theory, frequently, there is a right hand side index
deficit in the models. For example, often, when the dependent variable is of three
dimensions, the explanatory variables are only of two, etc.

• The number of theoretically available models, possible effect specifications, tak-
ing into account the interaction effects as well, can be dauntingly large.

This book aims at dealing with all the above issues, providing a helping hand to
practitioners, but also pointing to unsolved problems, encouraging further research.
The editor has tried to standardize to some extent the notation and language of the
volume in order to present a coherent book. However, each chapter is able to stand
on its own as a reference in its own area.
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French Embassy in Brasil, e-mail: thebault.jonathan@gmail.com

Tom Wansbeek
University of Groningen, Nettelbosje 2, 9747 AE Groningen, the Netherlands,
e-mail: t.j.wansbeek@rug.nl





Chapter 1
Fixed Effects Models

Laszlo Balazsi, Laszlo Matyas, and Tom Wansbeek

Abstract In recent years the massive emergence of multi-dimensional panels has led
to an increasing demand for more sophisticated model formulations with respect to
the well known two-dimensional ones to address properly the additional heterogene-
ity in the data. This chapter deals with the most relevant three-dimensional fixed ef-
fects model specifications and derives appropriate Least Squares Dummy Variables
and Within estimators for them. The main results of the chapter are also generalized
for unbalanced panels, cross-sectional dependence in the error terms, and higher di-
mensional data. Some thoughts on models with varying slope coefficients are also
presented.

1.1 Introduction

Model formulations in which individual and/or time heterogeneity factors are con-
sidered fixed parameters, rather than random variables (see Chap. 2), are called fixed
effects models. In the basic, most frequently used models, these heterogenous pa-
rameters are in fact splits of the regression constant. They can take different values
in different sub-spaces of the original data space, while the slope parameters remain
the same. This approach can then be extended to a varying coefficients framework,
where heterogeneity is not picked up by the constant term, but rather by the slope
coefficients.

The vast majority of the empirical studies conducted on multi-dimensional pan-
els involve fixed effects models of some form. Chapters 11–15 of this volume visit

Laszlo Balazsi
Central European University.

Laszlo Matyas
Central European University.

Tom Wansbeek
University of Groningen.
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2 Laszlo Balazsi, Laszlo Matyas, and Tom Wansbeek

Table 1.1 Examples of empirical studies for multi-dimensional fixed effects models, as appearing
in the empirical chapters of this volume

Study Topic Indices (i- j-t) Sample
Size

Fixed Effects Balanced

Chapter 11 – Trade

Glick and Rose (2002) Currency Union origin country - desti-
nation country - year

220 000 γi j No

Head et al. (2010) Colonial Trade Linkages 618 000 γi j No
Baier and Bergstrand (2002) Endogeneity of Trade

Flows
1 400 αi + γ j No

Baier and Bergstrand (2009) Trade Agreements 19 000 αi + γ j No
Egger and Pfaffermayr (2011) Path Dependence 57 000 αi + γ j No
Egger et al. (2011) Endogenous Trade Agree-

ments
16 000 αi + γ j No

Matyas (1997) Gravity Model Spec. 1 700 αi + γ j +λt No
Egger (2000) Gravity Model Spec. 2 500 αi + γ j +λt No
Rose and van Wincoop (2001) Currency Union 31 000 αi + γ j +λt No
Magee (2003) Preferential Trade Agree-

ments
90 000 αi + γ j +λt No

Egger (2001) Exports and Outward FDI 1 000 γi j +λt No
Bun and Klaassen (2002) Importance of Dynamics 10 000 γi j +λt No
Cheng and Wall (2005) Trade Integration 3 200 γi j +λt No
Shin and Serlenga (2007) Intra-EU Trade 3 800 γi j +λt No
Martin et al. (2008) Military Conflicts and

Trade
225 000 γi j +λt No

Egger and Pfaffermayr (2003) Gravity Model Spec. 2 000 αi+γ j+λt +
γ∗i j

No

Baldwin and Taglioni (2006) Gravity Model Spec. 2 500 αi + γ j +
λt ;γi j +λt

No

Romalis (2007) NAFTA’s, CUSFTA’s Im-
pact

country - commodity -
year

1 116 000 γi j +λit No

Olivero and Yotov (2012) Trade Agreements origin country - desti-
nation country - year

5 500 αit +α∗jt No

Baltagi et al. (2003) Gravity Model Spec. 10 000 γi j+αit +α∗jt No
Baier and Bergstrand (2007) Trade Agreements 36 000 αit + α∗jt ;

γi j+αit +α∗jt

No

Nuroglu and Kunst (2014) Factors Explaining Trade 150 000 γi j+αit +α∗jt No
Bergstrand et al. (2015) Border Effects 24 000 γi j+αit +α∗jt No

Chapter 12 – Housing and Prices

Fu et al. (2015) Housing Tenure Choices household - prefecture -
type

2 500 000 λt No

Syed et al. (2008) House Prices Indices house - region - quarter 418 000 α jt No
Gayer et al. (2000) Risks from Superfund

Sites
house - city - year 17 000 γ j +λt No

Turnbull and van der Vlist (2015) Uninformed House Buy-
ers

house - block - year 115 000 αi + γ j +λt No

Bayer et al. (2016) Demand for Houses household - neighbour-
hood - time

1 000 000 αi +α∗jt No

Baltagi et al. (2015) Neighbor’s Prices year - ‘arrondissement’
- quartier - block - flat

157 000 αta + γtaq +
λtaqi

No

some of the major fields in which multi-dimensional panels are used.1 Tables 1.1-
1.2 collect the fixed effects specifications relied upon in these empirical chapters.
Just by itself, Matyas’s (1997) seminal paper has a tremendous number of citations,
which can dramatically be expanded by considering other popular fixed effects for-
mulations. A representative selection of such publications, in addition to the ones
in Tables 1.1-1.2, is presented in Table 1.3. While these collections are far from be-
ing comprehensive in terms of topics or even the kind of observations the data sets

1 Further, see Koren and Hornok (2017) for a review on recent advances in trade and comprehensive
three-dimensional data sets.
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may comprise, it gives a decent picture of how fruitfully fixed effects models can be
applied.

Table 1.2 Examples of empirical studies for multi-dimensional fixed effects models, as appearing
in the empirical chapters of this volume, cont.

Study Topic Indices (i- j-t) Sample
Size

Fixed Effects Balanced

Chapter 13 – Migration

Perkins and Neumayer (2014) International Student
Flows

origin country - desti-
nation country - year

85 000 λt No

Belot and Ederveen (2012) Cultural Barriers 2 700 αi + γ j No
Czaika and Hobolth (2016) Asylum and Visa Poli-

cies
9 000 αi + γ j No

Beine and Parsons (2015) Climatic Factors 62 000 αi +α∗jt No
Bertoli and Fernández-Huertas
Moraga (2013)

Multilateral Resistance origin country - quarter
- year

2 700 γ j +αit No

Bertoli et al. (2016) European Crisis origin country - month
- year

2 200 γi j +λt Yes

Echevarria and Gardeazabal (2016) Refugee Migration origin country - desti-
nation country - year

700 000 γi j +λt No

Poot et al. (2016) Intranational Migration origin region - destina-
tion region - year

1 200 γi j +λt No

Eilat and Einav (2004) International Tourism origin country - desti-
nation country - year

5 500 γi j + αi +
γ∗j +λt

No

Abbott and Silles (2016) International Student
Flows

2 200 αi + γ j +λt No

Adserà and Pytliková (2015) Language 95 000 αi + γ j +λt No
Figueiredo et al. (2016) Migration and Re-

gional Trade Agree-
ments

63 000 αit + α∗jt ;
αi + γ j +λt

No

Llull (2016) Understanding Interna-
tional Migration

7 300 αi + γ j + λt ;
αit + γ j; αi +
α∗jt ; γi j +λt

No

Ortega and Peri (2013) Immigration Policies 40 000 αi+γ j+λt +
α∗it + γ∗i j

No

Barthel and Neumayer (2015) Asylum Migration 29 000 γi j+αit +α∗jt No

Chapter 14 – Country-Industry
Productivity

R&D and Productivity country - industry -
time

4 000 αi + γ j + λt ;
γi j+αit +α∗jt

No

Non-Manufacturing
Regulations

4 000 αi + γ j + λt ;
γi j+αit +α∗jt

No

Chapter 15 – Consumer Price
Heterogeneity

Consumer Price Dis-
persion

product - store - whole-
saler - week

37 130 000 γi j +αist No

Gorodnichenko et al. (2014) Price Setting in Online
Markets

good - seller - time 17 700 αi + γ j No

Dubois and Perrone (2015) Price Dispersion product - store - year 445 000 αi + λt ;γ j +
λt

No

Gorodnichenko and Talavera
(2017)

Price Setting in Online
Markets

good - country - time 21 700 γ j +λt No

Biscourp et al. (2013) Retails Regulations product - type - fascia 42 000 αi + γ j +λt No
Borenstein and Rose (1994) US Airline Industry airport - airport - carrier 1 000 γi j(FE) +

λt(RE)
No

Gerardi and Shapiro (2009) Price Dispersion carrier - route - time 27 000 γi j +λt No

A few regularities stand out from Tables 1.1-1.2 and 1.3. First, most models are
not too sophisticated from the point of view of the kind of fixed effects used (column
5); in fact they can usually be traced back to two-dimensional (2D) models by re-
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Table 1.3 Further examples of empirical studies for multi-dimensional fixed effects models,
grouped by model complexity

Study Topic Indices (i- j-t) Sample
Size

Fixed Effects Balanced

Berthelemy (2006) Donor’s Assistance donor country - recipi-
ent country - year

36 000 αi No

Thompson and Pendell (2016) Poultry Trade country pairs - poultry
product - year

2 200 αi Yes

Hirsch (2013) Gender Wage Gap employee - employer -
year

1 200 000 γ j; γi j No

Hur et al. (2010) Trade Agreements origin country - desti-
nation country - year

56 000 γi j No

Smith and Yetman (2007) Multivariate Forecasts forecaster - forecast
horizon - quarter

15 000 γi j; αi + γ j;
αi; γ j

No

Horrace and Schnier (2010) Mobile Product Tech-
nologies

vessel - spatial location
- year

1 500 αit Yes

Parsley and Wei (1999) Border Effect traded goods - cities -
quarter

228 000 αi + γ j Yes

Haller and Cotterill (1996) Share-Price Measures brand - market - quarter 3 500 αi + γ j No
Crozet et al. (2016) Domestic Trade Regu-

lations
origin country - desti-
nation country - firm -
time

115 000 αs +λt ; αst No

Bussiere et al. (2005) Trade Integration origin country - desti-
nation country - year

50 000 γi j +λt No

Bellak et al. (2008) Labour Costs and FDI
Flows

400 αi + γ j +λt No

Fourie and Santana-Gallego (2011) Tourist Flows 91 000 αi + γ j +λt No
Harris et al. (2000) Environmental Regula-

tions
3 800 αi + γ j +λt No

Heyman et al. (2007) Foreign Ownership
Wage Premium

employee - employer -
year

1 600 000 αi + γ j +λt No

Parsley (2003) Exchange Rate Pass
Through

import goods - import-
ing country - year

1 300 αi + γ j +λt No

Melitz and Toubal (2012) Linguistic Factors of
Trade

origin country - desti-
nation country - year

209 000 αit +α∗jt No

Aghion et al. (2008) Indian Trade Liberal-
ization

industry - state - year 18 000 γi j+αit +α∗jt Yes

placing pairs of indices with a single index. Second, as the estimation of models with
a complex fixed effects structure might be problematic on large data sets, more com-
plex models are usually applied on data with moderate sample sizes, spanning from
a few thousands to “only” tens of thousand of observations. More importantly, each
index also tends to be short: a few dozen countries, a handful of product categories,
or annual periods of ten-twenty years, etc. Third, almost all data sets collected are
unbalanced, some closer to a fully complete panel (flow-type data with a few coun-
tries), some more heavily (employer-employee matched data). From these, it seems
clear that studies typically rely on simpler models, not particularly exploiting the
possible interaction effects and the higher-dimensionality of the data, especially as
larger data sets and more complicated models together come at the price of heavy
computational burdens. This chapter provides solutions to most of these issues by
proposing estimation techniques for various “truly” three-dimensional (3D) fixed ef-
fects models, feasible even under unbalanced data sets of extreme sizes. The models
considered are exclusively static. Dynamic models are visited in Chap. 4.

In Sect. 1.2 we introduce the most relevant models in a three-dimensional panel
data setup. Section 1.3 deals with the Least Squares estimation of these models,
while Sect. 1.4 analyses the behaviour of this estimator for incomplete/unbalanced
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data. Section 1.5 studies the properties of the so-called Within estimator. Section
1.6 extends the original models to account for eventual heteroscedasticity and cross-
correlation. Section 1.7 generalizes the models presented to four and higher dimen-
sional data sets, while Sect. 1.8 deals with some varying coefficients specifications.
Sections 1.2, 1.5 and 1.7 rely heavily on Balazsi et al. (2015).

1.2 Models with Different Types of Heterogeneity

In three-dimensional panel data, the dependent variable of a model is observed along
three indices, such as yi jt , i = 1, . . . ,N1, j = 1, . . . ,N2, and t = 1, . . . ,T , and the
observations have the same ordering: index i goes the slowest, then j, and finally t
the fastest,2 such as

(y111, . . . ,y11T , . . . ,y1N21, . . . ,y1N2T , . . . ,yN111, . . . ,yN11T , . . . ,yN1N21, . . . ,yN1N2T )
′ .

We assume in general that the index sets i ∈ {1, . . . ,N1} and j ∈ {1, . . . ,N2} are
(completely or partially) different. When dealing with economic flows, such as
trade, capital, investment (FDI), etc., there is some kind of reciprocity, in such cases
it is assumed that N1 =N2 =N. The main question is how to formalize the individual
and time heterogeneity – in our case, the fixed effects. In standard two-dimensional
panels, there are only two effects, individual and time, so in principle 22 model
specifications are possible (if we also count the model with no fixed effects). The
situation is fundamentally different in three-dimensions. Strikingly, the 6 unique
fixed effects formulations enable a great variety, precisely 26, of possible model
specifications. Of course, only a subset of these are used, or make sense empirically,
so in this chapter we only consider the empirically most meaningful ones.

Throughout the chapter, we follow standard ANOVA notation, that is I and J
denote the identity matrix, and the square matrix of ones respectively, with the size
indicated in the subscript, J̄ denotes the normalized J (each element is divided by
the number in the subscript), and ι denotes the column vector of ones, with size in
the index. Furthermore, an average over an index for a variable is indicated by a bar
on the variable and a dot in the place of that index. When discussing unbalanced
data, a plus sign in the place of an index indicates summation over that index. The
matrix M with a subscript denotes projection orthogonal to the space spanned by the
subscript.

The models can be expressed in the general form

y = Xβ +Dπ + ε (1.1)

with y and X being the vector and matrix of the dependent and explanatory variables
(covariates) respectively of size (N1N2T ×1) and (N1N2T ×K), β being the vector

2 Note that the N1, N2 notation does not mean, by itself, that the data is unbalanced.
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of the slope parameters of size (K×1), π the composite fixed effects parameters, D
the matrix of dummy variables, and finally, ε the vector of the disturbance terms.

The first attempt to properly extend the standard fixed effects panel data model
to a multi-dimensional setup was proposed by Matyas (1997) (see for more, for
example, Baltagi, 2013, Balestra and Krishnakumar, 2008). The specification of
this model is

yi jt = x′i jtβ +αi + γ j +λt + εi jt , (1.2)

where the αi, γ j, and λt parameters are the individual and time-specific fixed ef-
fects (picking up the notation of (1.1), π = (α ′ γ ′ λ ′)′ with α ′ = (α1, . . . ,αN1),
γ ′ = (γ1, . . . ,γN2) and λ ′ = (λ1, . . . ,λT )), and εi jt are the i.i.d. (0, σ2

ε ) idiosyncratic
disturbance terms. We also assume that the xi jt covariates and the disturbance terms
are uncorrelated (this assumption is relaxed in Chap. 3). Equation (1.2) has been the
model applied in several studies in trade, migration, as well as in labour economics
(see e.g., Egger, 2000; Harris et al., 2000; Rose and van Wincoop, 2001; Magee,
2003; Parsley, 2003; Heyman et al., 2007; Bellak et al., 2008; Fourie and Santana-
Gallego, 2011; Ortega and Peri, 2013; Adserà and Pytliková, 2015; Turnbull and
van der Vlist, 2015).

A model has been proposed by Egger and Pfaffermayr (2003), popular in the
trade literature, forecasting and labour economics (see e.g., Glick and Rose, 2002;
Smith and Yetman, 2007; Head et al., 2010; Hur et al., 2010; Hirsch, 2013), which
takes into account bilateral interaction effects. The model specification is

yi jt = x′i jtβ + γi j + εi jt , (1.3)

where the γi j are the bilateral specific fixed effect.
A variant of model (1.3), proposed by Cheng and Wall (2005), used in empiri-

cal studies (see also Egger, 2001; Bun and Klaassen, 2002; Eilat and Einav, 2004;
Bussiere et al., 2005; Romalis, 2007; Shin and Serlenga, 2007; Martin et al., 2008;
Bertoli et al., 2016 or Bertoli and Fernández-Huertas Moraga, 2013; Beine and Par-
sons, 2015) is

yi jt = x′i jtβ + γi j +λt + εi jt . (1.4)

It is worth noting that models (1.3) and (1.4) are in fact straight 2D panel data
models, where the individuals are now the (i j) pairs.

Baltagi et al. (2003), Baldwin and Taglioni (2006) and Baier and Bergstrand
(2007) suggest other forms of fixed effects. A simpler model is

yi jt = x′i jtβ +α jt + εi jt , (1.5)

where we allow the individual effect to vary over time (see e.g., Syed et al., 2008;
Horrace and Schnier, 2010; Crozet et al., 2016). It is reasonable to present the sym-
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metric version of this model (with αit fixed effects); however, as it has exactly the
same properties, we consider the two models together.3

A variation of this model is

yi jt = x′i jtβ +αit +α
∗
jt + εi jt , (1.6)

(Olivero and Yotov, 2012; Baier and Bergstrand, 2007), whereas the model that
encompasses all the above effects is

yi jt = x′i jtβ + γi j +αit +α
∗
jt + εi jt , (1.7)

typically used in explaining trade flows (see e.g., Baltagi et al., 2003; Baier and
Bergstrand, 2007; Aghion et al., 2008; Melitz and Toubal, 2012; Nuroglu and Kunst,
2014; Bergstrand et al., 2015). Each model with its specific D matrix from formula-
tion (1.1) is summarized in Table 1.4.

Table 1.4 Model specific D matrices

Model D

(1.2) ((IN1 ⊗ ιN2T ), (ιN1 ⊗ IN2 ⊗ ιT ), (ιN1N2 ⊗ IT ))
(1.3) (IN1N2 ⊗ ιT )
(1.4) ((IN1N2 ⊗ ιT ), (ιN1N2 ⊗ IT ))
(1.5) (IN1 ⊗ ιN2 ⊗ IT )
(1.6) ((IN1 ⊗ ιN2 ⊗ IT ), (ιN1 ⊗ IN2T ))
(1.7) ((IN1N2 ⊗ ιT ), (IN1 ⊗ ιN2 ⊗ IT ), (ιN1 ⊗ IN2T ))

It is interesting to see that our collection of models is exhaustive, apart from the
permutation of indices. This is summarized in Table (1.5). Out of the five distinct
models two are technically for 2D data (rows two and three), and only the rest are
truly three-dimensional.

Table 1.5 The exhaustive group-
ing of indices

Indices Model

i, j, t (1.2)
(i j) (1.3)/(1.5)
(i j), t (1.4)
(it), ( jt) (1.6)
(i j), (it), ( jt) (1.7)

3 Strictly speaking, models (1.3) and (1.5) are also the same from a mathematical point of view.
Nevertheless, as it is usually the case that i and j are entities and t is time, it makes sense from an
economics point of view to distinguish (i j) from ( jt), but to take (it) and ( jt) under one hat.
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1.3 Least Squares Estimation of the Models

If the matrix (X , D) has full column rank,4 the Ordinary Least Squares (OLS) es-
timation of model (1.1), also called the Least Squares Dummy Variables (LSDV)
estimator (

β̂

π̂

)
=

(
X ′X X ′D
D′X D′D

)−1(X ′y
D′y

)
,

is the Best Linear Unbiased Estimator (BLUE). This joint estimator, however, in
some cases is cumbersome to implement, for example for model (1.3), as one has to
invert a matrix of order (K +N1N2), which can be quite difficult for large N1 and/or
N2. Nevertheless, following the Frisch–Waugh–Lovell theorem, or alternatively, ap-
plying partial inverse methods, the estimators can be expressed as

β̂ = (X ′MDX)−1X ′MDy (1.8)

π̂ = (D′D)−1D′(y−X β̂ ) , (1.9)

where the idempotent and symmetric matrix MD = I−D(D′D)−1D′ is the so-called
Within projector. This follows directly from

D′Dπ̂ +D′X β̂ = D′y (1.10)
X ′Dπ̂ +X ′X β̂ = X ′y . (1.11)

The first equation gives (1.9). Dπ̂ = (I−MD)(y−X β̂ ), a rearrangement, which in
turn can be substituted back to (1.11) gives (1.8)

In the usual panel data context, we call β̂ in (1.8) the optimal Within estimator
(due to its BLUE properties mentioned above). The LSDV estimator for each spe-
cific model is then obtained by filling out the concrete form of D and MD, specific to
that given model. Table 1.6 captures these different projection matrices for all mod-
els discussed. Furthermore, it is important to define the actual degrees of freedom
to work with, so the third column of the table captures this. By using MD, instead of
possibly large matrices, we only have to invert a matrix of size (K×K) to get β̂ .

The estimation of the fixed effects parameters is captured by (1.9) if D has full
column rank. This, however, only holds for models of one fixed effect, that is, for
(1.3) and (1.5). Estimation of β is not affected since it is based on the projection
matrices MD. The estimators for the fixed effects read as

γ̂ =
1
T
(IN1N2 ⊗ ι

′
T )(y−X β̂ )

for model (1.3), and

α̂ =
1

N2
(IN1 ⊗ ι

′
N2
⊗ IT )(y−X β̂ )

4 Since ιN1N2T is spanned by all given specifications for D, there is intercept in X .
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Table 1.6 Different forms of MD after simplification

Model MD Degrees of Freedom

(1.2) I− (IN1 ⊗ J̄N2T )− (J̄N1 ⊗ IN2 ⊗ J̄T )− (J̄N1N2 ⊗ IT )
+2J̄N1N2T

N1N2T −N1−N2−T +1−K

(1.3) I− (IN1N2 ⊗ J̄T ) N1N2(T −1)−K
(1.4) I− (IN1N2 ⊗ J̄T )− (J̄N1N2 ⊗ IT )+ J̄N1N2T (N1N2−1)(T −1)−K
(1.5) I− (IN1 ⊗ J̄N2 ⊗ IT ) N1(N2−1)T −K
(1.6) I− (IN1 ⊗ J̄N2 ⊗ IT )− (J̄N1 ⊗ IN2T )+(J̄N1N2 ⊗ IT ) (N1−1)(N2−1)T −K
(1.7) I− (IN1 ⊗ J̄N2 ⊗ IT )− (J̄N1 ⊗ IN2T )− (IN1N2 ⊗ J̄T )

+(J̄N1N2 ⊗ IT )+(J̄N1 ⊗ IN2 ⊗ J̄T )+(IN1 ⊗ J̄N2T )
− J̄N1N2T

(N1−1)(N2−1)(T −1)−K

for model (1.5). For the other models, the fixed effects are not identified, since the
D matrix of such models has no full column rank. This is intuitive, as for example
for model (1.2) the sum of the αi, the sum of the γ j and the sum of the λt parame-
ters all give the general constant. To make them identified, we have to impose some
restrictions on the fixed effects parameters. The two most widely used are either to
normalize the fixed effects, i.e., to set their average to zero, or to leave out the pa-
rameters belonging to the last (or first) individual or time period. We will follow this
latter approach. Staying with the example of model (1.2), D has a rank deficiency of
2, but for the sake of symmetry, we leave out all three last fixed effects parameters,
αN1 , γN2 , and λT from the model, and add back a general constant term c. That is,
for a given (i jt) observation (i, j, t 6= N1,N2,T ), the intercept is c+αi + γ j +λt , but
for example for i = N1, it is only c+ γ j +λt . Let us denote this modified D dummy
matrix by D∗ to stress that now it contains the restriction. As D∗ has full column
rank, estimator (1.8)-(1.9) works perfectly fine with D∗:

π̂
∗ = (D∗

′
D∗)−1D∗

′
(y−X β̂ ) ,

where now π∗ = (c′, α ′ γ ′ λ ′)′. We may have a better understanding of these es-
timators if we express them separately for each fixed effects parameter. This step,
however, requires the introduction of complex matrix forms, and nontrivial manipu-
lations, but as it turns out, using scalar notation, they can easily be represented. For
model (1.2), this is

ĉ = (ȳN1..+ ȳ.N2.+ ȳ..T −2ȳ...)− (x̄′N1..
+ x̄′.N2.

+ x̄′..T −2x̄′...)β̂
α̂i = (ȳi..− ȳN1..)− (x̄′i..− x̄′N1..

)β̂

γ̂ j = (ȳ. j.− ȳ.N2.)− (x̄′. j.− x̄′.N2.
)β̂

λ̂t = (ȳ..t − ȳ..T )− (x̄′..t − x̄′..T )β̂ .

Notice that as we excluded αN1 from the model, its estimator is indeed α̂N1 =(ȳN1..−
ȳN1..)− (x̄′N1..

− x̄′N1..
)β̂ = 0, similarly for γ̂N2 , and λ̂T . For model (1.4),
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ĉ = (ȳN1N2.+ ȳ..T − ȳ...)− (x̄′N1N2.
+ x̄′..T − x̄′...)β̂

γ̂i j = (ȳi j.− ȳN1N2.)− (x̄′i j.− x̄′N1N2.
)β̂

λ̂t = (ȳ..t − ȳ..T )− (x̄′..t − x̄′..T )β̂ .

For model (1.6), and (1.7), the rank deficiency, however, is not 2 but T , and (N1 +
N2 + T − 1), respectively. This means that the restriction above can not be used.
Instead, let us leave out the αit parameters for i = N1, that is, the last T from model
(1.6). In this way, the estimators for the intercept parameters are

α̂it = (ȳi.t − ȳN1.t)− (x̄′i.t − x̄′N1.t)β̂

α̂∗jt = (ȳ. jt + ȳN1.T − ȳ..t)− (x̄′. jt + x̄′N1.T − x̄′..t)β̂ .

For model (1.7), we leave out γi j for i=N1, αit for t = T , and α∗jt for j =N2, and add
back a general constant c. In this way, exactly N2 +N1 +T −1 intercept parameters
are eliminated, so the dummy matrix D∗, has full rank. The estimators, with this D∗

read in a scalar form

ĉ = (ȳN1N2.+ ȳN1.T + ȳ.N2T − ȳN1..− ȳ.N2.− ȳ..T + ȳ...)
−(x̄′N1N2.

+ x̄′N1.T + x̄′.N2T − x̄′N1..
− x̄′.N2.

− x̄′..T + x̄′...)β̂
γ̄i j = (ȳi j.− ȳN1 j.+ ȳi.T − ȳN1.T − ȳi..+ ȳN1..)

−(x̄′i j.− x̄′N1 j.+ x̄′i.T − x̄′N1.T − x̄′i..+ x̄′N1..
)β̂

ᾱit = (ȳi.t − ȳi.T + ȳ.N2t − ȳ.N2T − ȳ..t + ȳ..T )
−(x̄′i.t − x̄′i.T + x̄′.N2t − x̄′.N2T − x̄′..t + x̄′..T )β̂

ᾱ∗jt = (ȳ. jt − ȳ.N2t + ȳN1 j.− ȳN1N2.− ȳ. j.+ ȳ.N2.)

−(x̄′. jt − x̄′.N2t + x̄′N1 j.− x̄′N1N2.
− x̄′. j.+ x̄′.N2.

)β̂

Now that we have derived appropriate estimators for all models, it is time to
assess their properties. In finite samples, the OLS assumptions imposed guarantee
that all estimators derived above are BLUE, with finite sample variances

Var(β̂ ) = σ
2
ε (X

′MDX)−1

with the appropriate MD, and

Var(π̂∗) = σ
2
ε (D

∗′D∗)−1 +(D∗
′
D∗)−1D∗

′
XV (β̂ )X ′D∗(D∗

′
D∗)−1 .

As σ2
ε is usually unknown, we have to replace σ2

ε by its estimator

σ̂
2
ε =

1
rank(MD)−K ∑

i, j,t

ˆ̃ε2
i jt ,

where
ˆ̃ε2
i jt = (ỹi jt − x̃′i jt β̂ )

2 (1.12)

is the transformed residual square, and (rank(MD)−K) is collected in the last col-
umn of Table 1.6 for all models.
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As multi-dimensional panel data are usually large in one or more directions, it
is important to also have a closer look at the asymptotic properties. Unlike cross-
sectional or time series data, panels can grow in multiple dimensions at the same
time. As a matter of fact, three-way panel data may fall in one of the following
seven asymptotic cases:

• N1→ ∞, N2,T fixed; N2→ ∞, N1,T fixed; T → ∞, N1,N2 fixed
• N1,N2→ ∞, T fixed; N1,T → ∞, N2 fixed; N2,T → ∞, N1 fixed
• N1,N2,T → ∞.

It can be shown that β̂ is consistent in all of the asymptotic cases for all models (if
some weak properties hold). In order to make the models feasible for inference (i.e.,
for testing), we have to normalize the variances according to the asymptotics con-
sidered. When, for example, N1 goes to infinity, and N2 and T are fixed, N1Var(β̂ )
is finite in the limit, as

plim
N1→∞

N1Var(β̂ ) = σ
2
ε plim

N1→∞

(
X ′MDX

N1

)−1

= σ
2
ε Q−1

XMX ,

where QXMX is assumed to be a finite, positive semi-definite matrix, further, using
the central limit theorem,

√
N1(β̂ −β )

d→ N
(
0,σ2

ε Q−1
XMX

)
.

The estimator of a fixed effect is consistent only if at least one of the indexes with
which the fixed effect does not vary is growing. For example, for model (1.2), α̂i is
consistent only if N2 and/or T is going to infinity, and its variance is finite, and in
addition, if it is pre-multiplied by N2, in the case of N2 → ∞, by T , in the case of
T → ∞, and by N2T , when N2,T → ∞.

Testing for parameter values or restrictions is done in the usual way, using stan-
dard t-tests or F-tests. Typically, to test for βk = 0, the t-statistic is given in the usual
form

β̂k/

√
V̂ar(β̂k)

where V̂ar(β̂k) is the k-th diagonal element of V̂ar(β̂ ). The degrees of freedom has
to be adjusted accordingly, for each model, as Table 1.6 shows. In principle, it is
possible, but not typical to also test for the significance of some fixed effects pa-
rameters with the usual t-tests, unless that individual plays some specific role in the
model. Usually we are more concerned with the joint existence of the individual
parameters, in other words, with testing for α1 = α2 = . . .= αN1 . Using model (1.2)
for illustration, the statistic for the F-test (assuming normality) is obtained as in

F =
(R2

U−R2
R)/(N1−1)

(1−R2
U)/(N1N2T −N1−N2−T +1−K)

where R2
U is the R2 of the unrestricted model (that is the full model (1.2)), while R2

R
is the R2 of the restricted model, that is model (1.2) without the αi individual effects.
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The null hypothesis puts (N1−1) restrictions on the parameters, while the degrees
of freedom of the unrestricted model is simply (N1N2T −N1−N2− T + 1−K).
This statistic then has an F-distribution with (N1−1,N1N2T −N1−N2−T +1−K)
degrees of freedom.

1.4 Incomplete Panels

As in the case of the usual 2D panel data sets (see Wansbeek and Kapteyn, 1989 or
Baltagi, 2013, for example), just more frequently, one may be faced with situations
in which the data at hand is unbalanced. In our framework of analysis, this means
that t ∈ Ti j, for all (i j) pairs, where Ti j is a subset of the index set t ∈ {1, . . . ,T}, with
T being chronologically the last time period in which we have any (i j) observations.
Note that two Ti j and Ti′ j′ sets are usually different. A special case of incomplete-
ness, which typically characterizes flow-type data, is the so-called no self-flow. In
such data sets the individual index sets i and j are the same, so N1 = N2 = N holds.
Formally, this means that, for all t, there are no observations when i = j, that is, we
are missing a total NT of data points. We are saving, however, the no self-flow issue
to Sect. 1.5, and consider the general form of incompleteness in this section.

In the case of incomplete data, the models can still be cast as in (1.1), but now
D cannot be represented nicely by kronecker products, as done in Table 1.4. How-
ever, with the incompleteness adjusted dummy matrices, D̃ (which we obtain from
D by leaving out the rows corresponding to missing observations), the LSDV es-
timator of β and the fixed effects can still be worked out, maintaining its BLUE
properties, following (1.8)-(1.9). There is, however, one practical obstacle in the
way. Remember, that to reach β̂ conveniently, we needed the exact form of MD,
which we collected for complete data in Table 1.6. As D̃ has a known form only
if we know exactly which observations are missing, MD̃ = I− D̃(D̃′D̃)−D̃′ cannot
be analytically defined element-wise in general, where “−” stands for any gener-
alized inverse. Instead, we have to invert (D̃′D̃) directly, or use partitioned matrix
inversion. Either way, we cannot usually avoid large computational burdens when
carrying out (1.8)-(1.9) in case of incompleteness (as opposed to no computational
burden when the data is complete).5 Nevertheless, the estimators and the covariance
matrices are obtained in the same way as for complete data (of course, after ad-
justing the matrices to incompleteness), and the properties of the estimators are the
same as in the complete data case. Notice the crucial difference between D̃ and D∗:
while D̃ usually has no full column rank, as we left out some rows from D (which
also in general has no full column rank), D∗ is simply designed to have full column
rank (more precisely, to fix the rank deficiency in D). This is why we have to turn to

5 Actually, the sparsity of (D̃′D̃) can help to reduce the computation. The study of sparse matrices
has grown into a separate field in the past years offering numerous tools to go around (or at least
attenuate) the “curse of dimensionality”. This is a promising research topic, however, beyond the
scope of the text.
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generalized inverses for the former, but it is enough to work with “simple” inverses
for the latter dummy matrices.

Incompleteness is less of an issue in the case of 2D models, where T is usually
small, and N1 is large (so we only have to invert a (T ×T ) matrix (see Wansbeek
and Kapteyn, 1989), but is generally present in the case of 3D data, where typically
along with N1, N2 is also large. In practice, to alleviate the issue with the size of
the individual indexes, the best approach seems to be to turn to iterative solutions
to find the Least Squares estimators. One of the most widely used is based on the
work of Guimaraes and Portugal (2010) and Carneiro et al. (2012). Let us show the
procedure on model (1.2), the rest is a direct analogy. Model (1.2) in matrix form
reads as

y = Xβ + D̃1α + D̃2γ + D̃3λ + ε , (1.13)

where tildes indicate two things. First, the data is possibly incomplete: from the
original D1 = (IN1 ⊗ ιN2T ), D2 = (ιN1 ⊗ IN2 ⊗ ιT ), and D3 = (ιN1T ⊗ IT ), the rows
matching with the missing observations are deleted. Second, to make all model pa-
rameters estimable, we leave out αN1 and γN2 from the model. The normal equations
from (1.13) are then

β̂ = (X ′X)−1X ′(y− D̃1α− D̃2γ− D̃3λ )
α̂ = (D̃′1D̃1)

−1D̃′1(y−Xβ − D̃2γ− D̃3λ )
γ̂ = (D̃′2D̃2)

−1D̃′2(y−Xβ − D̃1α− D̃3λ )

λ̂ = (D̃′3D̃3)
−1D̃′3(y−Xβ − D̃1α− D̃2γ) ,

which suggests the Gauss-Seidel, or as often called, the “zigzag” algorithm. This
means that we alternate between the estimation of β , and the fixed effects parame-
ters, starting from some arbitrary initial values β 0, and (α0,γ0,λ 0). The computa-
tional improvement is clear: (D̃′kD̃k)

−D̃k defines a simple group average (k = 1,2,3)
of the residuals, so the dimensionality issue is no longer a concern. Specifically,
(D̃′1D̃1)

−D̃′1 is translated into an average over ( jt), (D̃′2D̃2)
−D̃′2 an average over (it),

and (D̃′3D̃3)
−D̃′3 an average over (i j). Furthermore, D̃1α , etc. are just the columns

of the current estimates of α , etc. After the sufficient number of steps, the iterative
estimators all converge to the true LSDV.6

1.5 The Within Estimator

1.5.1 The Equivalence of the LSDV and the Within Estimator

As seen, LSDV estimates all parameters of the fixed effects models in one step.
There is, however, another appealing way to approach the estimation problem. The

6 The STATA program command reg2hdfe implements these results and is found in the STATA
Documentation. The code is designed to tackle two fixed effects, however, it can be improved to
treat three, or even more fixed effects at the same time.
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idea is that by using orthogonal projections, the slope parameters (and if needed the
fixed effects) are estimated separately. First, with a projection orthogonal to D, we
transform the model, in fact y and X , in such a way that clears the fixed effects. Then,
we carry out an OLS estimation on the transformed variables ỹ and X̃ . We have to
point out, however, that unlike in the case of 2D models, there are usually multiple
such Within transformations, which eliminate the fixed effects. Nevertheless, only
the Within estimator based on the Within transformation originating from the LSDV
conserves the BLUE properties, and therefore is called the optimal one. To show
this, note that as MD is idempotent, (1.8) is equivalent to performing an OLS on

MDy = MDXβ +MDD︸ ︷︷ ︸
0

π +MDε ,

where MD = I−D(D′D)−D′, as before. In the case of complete data, MD can be
translated into scalar notation, so we can fully avoid the dimensionality issue. Let
us now go through all the models, and present the scalar form of the optimal Within
transformation MDy.

For model (1.2), the optimal transformation is

ỹi jt = yi jt − ȳi..− ȳ. j.− ȳ..t +2ȳ... . (1.14)

As mentioned above, the uniqueness of the Within transformation is not guaranteed:
for example transformation

ỹi jt = yi jt − ȳi j.− ȳ..t + ȳ... (1.15)

also eliminates the fixed effects from model (1.2). For model (1.3), the transforma-
tion is simply

ỹi jt = yi jt − ȳi j. . (1.16)

For model (1.4), the optimal Within transformation is in fact (1.15). Note that model
(1.2) is a special case of model (1.4) (with the restriction γi j = αi + γ j), so while
transformation (1.15) is optimal for (1.4), it is clear why it is not for the former: it
“over-clears” the fixed effects by not using the extra piece of information.

For model (1.5), the transformation is

ỹi jt = yi jt − ȳ. jt , (1.17)

while for models (1.6) and (1.7), they are

ỹi jt = yi jt − ȳ. jt − ȳi.t + ȳ..t , (1.18)

and
ỹi jt = yi jt − ȳi j.− ȳ. jt − ȳi.t + ȳ..t + ȳ. j.+ ȳi..− ȳ... , (1.19)

respectively.
It can be seen that the Within transformation works perfectly in wiping out the

fixed effects. However, frequently in empirical applications, some explanatory vari-
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ables, (i.e., some elements of the vector x′i jt ) do not span the whole (i jt) data space,
that is, they have some kind of “index deficiency”. This means that sometimes one
(or more) of the regressors are perfectly collinear with one of the fixed effects. In
such cases, we can consider the regressor as fixed, as it is wiped out along with
the fixed effects. For example, for model (1.3), if we put an individual’s gender
among the regressors, xi jt ≡ xi holds, and so is eliminated by the Within transfor-
mation (1.14). Clearly, parameters associated with such regressors then cannot be
estimated. This is most visible for model (1.7), as in this case all regressors fixed at
least in one dimension are excluded from the model automatically after the Within
transformation (1.19).

1.5.2 Incomplete Panels and the Within Estimator

We have briefly covered incompleteness in Sect. 1.3 already, but the Within estima-
tors and the underlying transformations, open a new way to deal with it.

1.5.2.1 No Self-flow Data

Let us start with the no self-flow data, and for a short time, assume that the index
sets i and j are the same, and so N1 = N2 = N.

In terms of the models from Sect. 1.2, the scalar transformations introduced there
can no longer be applied. Fortunately, the pattern of the missing observations is
highly structured, allowing for the derivation of optimal transformations that are
still quite simple and maintain the BLUE properties of the Within estimators based
on them. Following the derivations of Balazsi et al. (2015), the transformation for
the models are the following:

ỹi jt = yi jt − N−1
N(N−2)T (yi+++ y+ j+)− 1

N(N−2)T (y j+++ y+i+)

− 1
N(N−1)y++t +

2
N(N−2)T y+++

(1.20)

for model (1.2), and

ỹi jt = yi jt −
1
T

yi j+ (1.21)

for model (1.3). For models (1.4), and (1.5) the no self-flow transformations are

ỹi jt = yi jt −
1
T

yi j+−
1

N(N−1)
y++t +

1
T N(N−1)

y+++ , (1.22)

and
ỹi jt = yi jt −

1
N−1

y+ jt , (1.23)

while for models (1.6), and (1.7), they are
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ỹi jt = yi jt − N−1
N(N−2) (yi+t + y+ jt)− 1

N(N−2) (y+it + y j+t)

+ 1
(N−1)(N−2)y++t ,

(1.24)

and

ỹi jt = yi jt − N−3
N(N−2) (yi+t + y+ jt)+

N−3
N(N−2)T (yi+++ y+ j+)− 1

T yi j+

+ 1
N(N−2) (y+it + y j+t)− 1

N(N−2)T (y+i++ y j++)

+ N2−6N+4
N2(N−1)(N−2) (y++t − y+++) ,

(1.25)

respectively. So overall, the no self-flow data problem can be overcome by using an
appropriate Within transformation. Optimality of the estimators is preserved, as the
transformations are derived from the Frisch–Waugh–Lovell theorem.

1.5.2.2 General Incompleteness

Next we work out suitable Within transformations for any general form of incom-
pleteness. Now we are back in the case when i and j are different index sets. As
the expressions below are all derived from the Frisch–Waugh–Lovell theorem, the
transformations are optimal, and the estimators are BLUE. Remember that t ∈ Ti j,
and let R = ∑i j |Ti j| denote the total number of observations, where |Ti j| is the car-
dinality of the set Ti j (the number of observations in the given set).

For models (1.3) and (1.5), the unbalanced nature of the data does not cause
any problem (since in fact they can be represented as 2D models with one fixed
effect), the Within transformations can be used, and they have exactly the same
properties as in the balanced case. However, for models (1.2), (1.4), (1.6), and (1.7),
we face some problems. As the Within transformations fail to fully eliminate the
fixed effects for these models (somewhat similarly to the no self-flow case), the
resulting Within estimators suffer from (potentially severe) biases. However, the
Wansbeek and Kapteyn (1989) approach can be extended to these four cases.

Let us start with model (1.2). The dummy variable matrix D has to be modified
to reflect the unbalanced nature of the data. Let the Ut and Vt (t = 1 . . .T ) be the
sequence of (IN1⊗ ιN2) and (ιN1⊗ IN2) matrices, respectively, in which the following
adjustments are made: for each (i j) observation, we leave the row (representing
(i j)) in Ut and Vt matrices untouched where t ∈ Ti j, but delete it from the remaining
T −|Ti j| matrices. In this way, we end up with the following dummy variable setup

Da
1 = (U ′1,U

′
2, . . . ,U

′
T )
′ of size (R×N1) ,

Da
2 = (V ′1,V

′
2, . . . ,V

′
T )
′ of size (R×N2) , and

Da
3 = diag{V1 · ιN1 ,V2·, ιN1 . . . ,VT · ιN1} of size (R×T ) .

The complete dummy variable structure is now Da = (Da
1,D

a
2,D

a
3). In this case, let

us note here that, just as in Wansbeek and Kapteyn (1989), index t goes “slowly” and
i j goes “fast”. Using this modified dummy variable structure, the optimal projection
removing the fixed effects can be obtained in three steps:
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M(1)
Da

= IR−Da
1(D

a′
1 Da

1)
−1Da′

1 ,

M(2)
Da

= M(1)
Da
−M(1)

Da
Da

2(D
a′
2 M(1)

Da
Da

2)
−Da′

2 M(1)
Da

,

and finally

MDa = M(3)
Da

= M(2)
Da
−M(2)

Da
Da

3(D
a′
3 M(2)

Da
Da

3)
−Da′

3 M(2)
Da

. (1.26)

It is easy to see that in fact MDaDa = 0 projects out all three dummy matrices. Note
that the first inverse calculation of this repetitive process is always easy, as (Da′

1 Da
1)

is diagonal. It is recommended then to order the fixed effects in such a way that
the largest of the three comes at the beginning. With this in mind, we only have
to calculate two inverses instead of three, (Da′

2 M(1)
Da

Da
2)
−, and (Da′

3 M(2)
Da

Da
3)
−, with

respective sizes (N2×N2) and (T ×T ). This is feasible for reasonable sample sizes.
For model (1.4), the job is essentially the same. Let the Wt (t = 1 . . .T ) be the

sequence of (IN1N2⊗ IN1N2) matrices, where again for each (i j), we remove the rows
corresponding to observation (i j) in those Wt , where t /∈ Ti j. In this way,

Db
1 = (W ′1,W

′
2, . . . ,W

′
T )
′ of size (R×N1N2) ,

Db
2 = Da

3 of size (R×T ) .

The first step in the projection is now

M(1)
Db

= IR−Db
1(D

b′
1 Db

1)
−1Db′

1 ,

so the optimal projection orthogonal to Db = (Db
1,D

b
2) is simply

MDb = M(2)
Db

= M(1)
Db
−M(1)

Db
Db

2(D
b′
2 M(1)

Db
Db

2)
−Db′

2 M(1)
Db

. (1.27)

As (Db′
1 Db

1) is diagonal again, we only have to calculate the inverse of a (T × T )
matrix, Db′

2 M(1)
Db

Db
2, which is easily doable. Further, as discussed above, given that

model (1.2) is nested in (1.4), transformation (1.27) is in fact also valid for model
(1.2).

Let us move on to model (1.6). Now, after the same adjustments as before,

Dc
1 = diag{U1,U2, . . . ,UT} of size (R×N1T ) and

Dc
2 = diag{V1,V2, . . . ,VT} of size (R×N2T ) ,

so the stepwise projection, removing Dc = (Dc
1,D

c
2), is

M(1)
Dc

= IR−Dc
1(D

c′
1 Dc

1)
−1Dc′

1 ,

leading to

MDc = M(2)
Dc

= M(1)
Dc
−M(1)

Dc
Dc

2(D
c′
2 M(1)

Dc
Dc

2)
−Dc′

2 M(1)
Dc

. (1.28)
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Note that for MDc , we have to invert an order min{N1T,N2T} matrix, which can be
computationally difficult.

The last model to deal with is model (1.7). Let Dd = (Dd
1 ,D

d
2 ,D

d
3), where the

adjusted dummy matrices are all defined above:

Dd
1 = Db

1 of size (R×N1N2) ,
Dd

2 = Dc
1 of size (R×N1T ) ,

Dd
3 = Dc

2 of size (R×N2T ) .

Defining the partial projector matrices M(1)
Dd

and M(2)
Dd

as

M(1)
Dd

= IR−Dd
1(D

d′
1 Dd

1)
−1Dd′

1 and

M(2)
Dd

= M(1)
Dd
−M(1)

Dd
Dd′

2 (Dd′
2 M(1)

Dd
Dd

2)
−Dd′

2 M(1)
Dd

,

the appropriate transformation for model (1.7) is now

MDd = M(3)
Dd

= M(2)
Dd
−M(2)

Dd
Dd′

3 (Dd′
3 M(2)

Dd
Dd

3)
−Dd′

3 M(2)
Dd

. (1.29)

It can be easily verified that MDd is idempotent and MDd Dd = 0, so all the fixed
effects are indeed eliminated.7 As model (1.6) is covered by model (1.7), projection
(1.29) also eliminates the fixed effects from that model. Moreover, as all three-way
fixed effects models are in fact nested into model (1.7), it is intuitive that transfor-
mation (1.29) clears the fixed effects in all model formulations. Using (1.7) is not
always advantageous though, as (i) the transformation involves the inversion of po-
tentially large matrices (of order N1T , and N2T ) and (ii) the underlying estimator
is no longer BLUE. In the case of most models studied, we can find suitable un-
balanced transformations at the cost of only inverting (T ×T ) matrices; or in some
cases, we can even derive scalar transformations. It is good to know, however, that
there is a general projection that is universally applicable to all three-way mod-
els in the presence of all kinds of data issues. Table 1.7 collects the orders of the
largest matrices to be inverted for all model specifications considered. In the table,
we assume that N1 >> T and N2 >> T holds, and that N1 and N2 are of similar
magnitudes.

It is worth noting that transformations (1.26), (1.27), (1.28), and (1.29) are all
dealing in a natural way with the no self-flow problem, as only the rows correspond-
ing to the i = j observations need to be deleted from the corresponding dummy
variable matrices.

All transformations detailed above can also be rewritten in a semi-scalar form.
Let us show here how this idea works on transformation (1.29), as all subsequent
transformations can be dealt with in the same way. Let

7 A STATA program code for transformation (1.29) with a user-friendly detailed explanation is
available at http://www.personal.ceu.hu/staff/repec/pdf/stata-program_
document-dofile.pdf. Estimation of model (1.7) is then easily done for any kind of incom-
pleteness.
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Table 1.7 Orders of the largest
matrix to be inverted

Model Order

(1.2) min{N1,N2}
(1.3) K
(1.4) T
(1.5) K
(1.6) min{N1T,N2T}
(1.7) max{N1T,N2T}

φ =C−D̄′y and ω = C̃−(M(2)
Dd

Dd
3)
′y ξ =C−D̄′Dd

3ω ,

where

C =
(

Dd
2

)′
D̄ , D̄ =

(
IR−Dd

1(D
d′
1 Dd

1)
−1Dd′

1

)
Dd

2 , and C̃ = Dd′
3 M(2)

Dd
Dd

3 .

Now the scalar representation of transformation (1.29) is[
MDd y

]
i jt = yi jt − 1

|Ti j | ∑t∈Ti j yi jt +
1
|Ti j |a

′
i jφ −φit

−ω jt +
1
|Ti j | ã

′
i jω +ξit − 1

|Ti j |

(
ab

i j

)′
ξ ,

where ai j and ãi j are the column vectors corresponding to observations (i, j) from
matrices A = Dd′

2 Dd
1 and Ã = Dd′

3 Dd
1 , respectively; φit is the (i, t)-th element of the

(N1T × 1) column vector φ ; ω jt is the ( j, t)-th element of the (N2T × 1) column
vector ω; and finally, ξit is the element corresponding to the (i, t)-th observation
from the (N1T ×1) column vector, ξ . From a computational point of view, the cal-
culation of matrix MDd is by far the most resource requiring as we have to invert
(N1T ×N1T ), and (N2T ×N2T ) size matrices. Simplifications related to this can
dramatically reduce CPU and storage requirements. This topic, however, is well
beyond the scope of this chapter.

1.6 Heteroscedasticity and Cross-correlation

We have assumed so far throughout the chapter that the idiosyncratic disturbance
terms in ε are in fact well-behaved white noises, that is, all heterogeneity is in-
troduced into the model through the fixed effects. Conditioning on the individual
dummy variables is, however, not always enough to address the dependence be-
tween individual units. In the presence of such remaining dependences, the white
noise assumption of the disturbances results in spurious inferences. To handle this,
we introduce a simple form of cross-correlation and heteroscedasticity among the
disturbance terms and see how this influences the estimation methods introduced
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earlier. So far the approach has been to perform directly LSDV on the models, or
alternatively, to transform the models in such a way that the fixed effects drop out,
and then estimate the transformed models with OLS. Now, however, in order to use
all available information in an optimal way, the structure of the disturbances has to
be taken into account for the estimation, promoting Feasible GLS (FGLS) instead of
OLS on the fixed effects model. From the joint FGLS estimator of the parameters,
we can express β̂ by partialling out the fixed effects parameters as a second step.

1.6.1 The New Covariance Matrices and the GLS Estimator

The initial assumptions about the disturbance terms are now replaced by

E(εi jtεkls) =


σ2

i j if i = k, j = l, t = s
ρ1 if i = k, j 6= l,∀t,s
ρ2 if i 6= k, j = l,∀t,s
0 otherwise ,

which allows for a general form of cross-dependence and heteroscedasticity. Then
the variance-covariance matrix of all models introduced in Sect. 1.2 takes the form

E(εε
′) = Ω = (ϒ ⊗ IT )+ρ1(IN1 ⊗ JN2 ⊗ JT )+ρ2(JN1 ⊗ IN2 ⊗ JT ), (1.30)

where

ϒ =


σ2

11−ρ1−ρ2 0 · · · 0
0 σ2

12−ρ1−ρ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

N1N2
−ρ1−ρ2


is an (N1N2×N1N2) diagonal matrix. Invoking the form of the general fixed effects
model (1.1), and collecting X and D in Z and β and π in δ , gives

y = Zδ + ε .

The GLS estimator then reads as

δ̂ =
(
Z′Ω−1Z

)−1
Z′Ω−1y . (1.31)

As much as (1.31) is simple theoretically, it is as forbidding practically: to carry
out the estimation, we have to compute Ω−1 first, to get δ̂ , then (D′Ω−1D)−1, to
express β̂ from the joint estimator. With a decomposition of Ω (exact derivations are
omitted), the largest matrix to be inverted is of order min{N1,N2} when computing
Ω−1, however there is no clear way to reduce the computation of (D′Ω−1D)−1.

The situation is fundamentally different if, along with cross-correlations, ho-
moscedasticity is assumed. In this case, Ω is simplified to
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Ω = (σ2
ε −ρ1−ρ2)IN1N2T +ρ1(IN1 ⊗ JN2 ⊗ JT )+ρ2(JN1 ⊗ IN2 ⊗ JT ) ,

with only three variance components, and its inverse is easily obtained with a de-
composition similar to Wansbeek and Kapteyn (1982),

Ω
−1 = IN1N2T +θ1(IN1 ⊗ J̄N2 ⊗ J̄T )+θ2(J̄N1 ⊗ IN2 ⊗ J̄T )+θ3(J̄N1 ⊗ J̄N2 ⊗ J̄T )

with

θ1 =− N2T ρ1
(N2T−1)ρ1−ρ2+σ2

ε

, θ2 =− N1T ρ2
(N1T−1)ρ2−ρ1+σ2

ε

and

θ3 =
(

N2T ρ1
(N2T−1)ρ1−ρ2+σ2

ε

+ N1T ρ2
(N1T−1)ρ2−ρ1+σ2

ε

− N1T ρ2+N2T ρ1
(N1T−1)ρ2+(N2T−1)ρ1+σ2

ε

)
.

As now we have the exact form of Ω−1, estimation (1.31) can be performed, and the
(BLUE) δ̂ GLS estimators collected. Note that this GLS estimation is equivalent to
a two-step procedure, where we first transform y, X and D according to

ỹi jt = yi jt −
(
1−
√

θ1 +1
)

ȳi..−
(
1−
√

θ2 +1
)

ȳ. j.
+
(
1−
√

θ1 +1−
√

θ2 +1+
√

θ1 +θ2 +θ3 +1
)

ȳ... ,

which is proportional to the scalar representation of Ω−
1
2 y, then perform an OLS on

the transformed model. To obtain an estimator of β , we invoke the Frisch–Waugh–
Lovell theorem again, and premultiply the transformed variables with the projector

M
Ω
− 1

2 D
= I−Ω

− 1
2 D
(
D′Ω−1D

)−
D′Ω−

1
2 ,

which are then estimated with OLS. As it turns out, the two consecutive transfor-
mations, Ω−

1
2 and M

Ω
− 1

2 D
, together are identical to the Within transformation for

all models except for (1.5), with α jt fixed effects. In other words, the GLS equals
the OLS as long as the effects are symmetrical in i and j, as, quite intuitively, the
Within transformation for those models eliminates the cross-correlations from the
disturbance terms along with the fixed effects.

1.6.2 Estimation of the Variance Components and the Cross
Correlations

What now remains to be done is to estimate the variance components in order to
make the GLS feasible. In principle, the job is to find a set of identifying equa-
tions from which the variance components can be expressed. Remember that during
the estimation we have transformed the models and performed an OLS on them.
However, in the case of some models, this significantly limits the number of identi-
fying equations available for the variance components. For some models, this even
means that the variance components are non-estimable without further restrictions
on the structure of the disturbances (for example, ρ1 = ρ2, or an even stronger one,
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ρ1 = ρ2 = 0). This would certainly impede our cause, so let us take another track.
Along with the OLS residuals from the transformed models, we can produce another
type of residual: the one from the LSDV estimation. As we will see, we can esti-
mate all the variance components from the LSDV residuals, and at the same time we
can obtain these residuals without directly estimating the possibly numerous fixed
effects.

As Sect. 1.3 suggests, whenever the D dummy coefficient matrix has no full
column rank, the composite fixed effects parameters, π cannot be identified (and of
course, estimated). However, this is not the case for Dπ , which is given by

Dπ̂ = D(D′D)−D′(y−X β̂ ) = (I−MD)(y−X β̂ ) .

following (1.10). The LSDV residuals are

ε̂ = y−X β̂ −Dπ̂ = (I− (I−MD))(y−X β̂ ) = MD(y−X β̂ ) = ỹ− X̃ β̂ (1.32)

where “∼” denotes the appropriate Within transformation.
With the residuals in hand, the variance components can be expressed from the

same identifying conditions regardless of the model specification:

E
(

ε2
i jt

)
= σ2

i j

E
(

ε̄2
. jt

)
= 1

N2
1

(
∑i σ2

i j +N1(N1−1)ρ2

)
E
(
ε̄2

i.t
)
= 1

N2
2

(
∑ j σ2

i j +N2(N2−1)ρ1

)
.

The last step is to “estimate” the identifying conditions by replacing expectations
with sample means, and the disturbances with the residuals. That is,

σ̂2
i j =

1
T ∑t ε̂2

i jt

ρ̂2 = 1
N1(N1−1)

(
1

N2T ∑ jt (∑i ε̂i jt)
2−∑i σ̂2

i j

)
ρ̂1 = 1

N2(N2−1)

(
1

N1T ∑it
(
∑ j ε̂i jt

)2−∑ j σ̂2
i j

)
.

(1.33)

Equation (1.33) gives consistent estimators of the variance components, as long
as T → ∞, as the number of heteroscedastic variances grows along with N1 and N2.
Inserting these estimated variance components into (1.31) gives the FGLS estimator,
which handles the new and more flexible correlation structure.

When homoscedasticity is assumed along with the cross-correlations, the vari-
ance-components estimators become

σ̂2
ε = 1

N1N2T ∑i jt ε̂2
i jt

ρ̂2 = 1
N1−1

(
1

N1N2T ∑ jt (∑i ε̂i jt)
2− σ̂2

ε

)
ρ̂1 = 1

N2−1

(
1

N1N2T ∑it
(
∑ j ε̂i jt

)2− σ̂2
ε

)
,

(1.34)
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and T -asymptotics is no longer necessary (N1→ ∞ or N2→ ∞ is enough) to make
the estimators consistent.

When the data is incomplete, the derived FGLS estimator for the model with ho-
moscedasticity and cross-correlations is not appropriate as the decomposition of Ω

can no longer be represented with Kronecker products, and so the linear transforma-
tions presented to be employed on the data are incorrect. As the full analysis of such
incomplete estimator would certainly be lengthy, we only provide some guidance on
how to carry out the estimation. First, we leave out those rows from D (as we did in
Sect. 1.5.2) and rows and columns from Ω that correspond to missing observations.
Then we proceed by performing a GLS with the adjusted covariance matrix, but to
get its inverse, we now have to use partial inverse methods, to at least partially avoid
the dimensionality issue. The last step is to estimate the variance components, for
which we only have to adjust (1.33) (or (1.34)) to the incomplete sample sizes.

Remember that the FGLS estimator in the presence of heteroscedasticity is con-
sistent only for long panels (when T →∞). So how should we proceed when the data
is small in the time dimension? Let us consider that disturbances are heteroscedastic
only, and the cross correlations are set to null (ρ1 = ρ2 = 0). This special case can be
estimated in two ways. First, we can transform the model according to the optimal
Within transformation as before, then carry out an FGLS with the heteroscedastic
covariance matrix

Ωh = diag
{

σ
2
11I|T11|, σ

2
12I|T12|, . . . , σ

2
nmI|TN1N2 |

}
,

which is diagonal regardless of the potential data issues. The variance components
are then estimated from

σ̂
2
i j =

1
|Ti j|∑t

ε̂
2
i jt ,

like before, with the ε̂i jt being the LSDV residuals. However, this FGLS, as before,
is still only T consistent. When the data is short in time, it is better to estimate the
transformed model with OLS, which is still an unbiased and consistent estimator of
β in all the asymptotic cases studied before, and use heteroscedasticity robust White
covariance matrix to estimate Var(β̂ ). Then we get

Var(β̂ ) = (X̃ ′X̃)−1X̃ ′Ω̂hX̃(X̃ ′X̃)−1

=
(

∑i jt x̃i jt x̃′i jt

)−1(
∑i jt x̃i jt x̃′−i jt

1
|Ti j | ∑t ε̂2

i jt

)(
∑i jt x̃i jt x̃′i jt

)−1
,

where “∼” indicates that the variables are transformed. Notice again that only the
data X has to be transformed, but conveniently not Ωh, due to the idempotent nature
of the projection matrix. This conjecture can be easily proven, by showing that the
equivalence[

(Z′Z)−1Z′ΩhZ(Z′Z)−1]
1,1 = (X ′MDX)−1X ′MDΩhMDX(X ′MDX)−1 (1.35)

in fact holds with Z = (X ,D). Applying the partitioned inverse formula for block
matrices gives the upper block of the (2×1) block matrix (Z′Z)−1Z′ as
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(Z′Z)−1Z′

]
1 =

(
(X ′MDX)−1,−(X ′MDX)−1X ′D(D′D)−1

)
· (X ,D)′

= (X ′MDX)−1X ′− (X ′MDX)−1X ′D(D′D)−1D′

= (X ′MDX)−1X ′MD ,

which is used directly to construct the right hand side of (1.35).

1.7 Extensions to Higher Dimensions

In four and higher dimensions the number of specific effects, and therefore models,
available is staggering. As a consequence, we have to somehow restrict the model
formulations taken into account. The restriction used in this chapter is to allow for
pairwise interaction effects only. Without attempting to be comprehensive, the most
relevant four dimensional models are introduced in this section. Then, on a kind
of benchmark model, we show intuitively how to estimate them for complete data,
and also in the case of the same data problems brought up in Sects. 1.4 and 1.5.
This is carried out in a way that gives indications on how to proceed beyond four
dimensions.

1.7.1 Different Forms of Heterogeneity

The dependent variable is now observed along four indexes, such as i jst. The gen-
eralization of model (1.4) (and also that of the 2D fixed effects model with both
individual and time effects) is

yi jst = x′i jstβ + γi js +λt + εi jst ,

or alternatively, a more restrictive formulation is

yi jst = x′i jstβ +αi +α
∗
j + γs +λt + εi jst .

As in the case of 3D models, we can benefit from the multi-dimensional nature of
the data, and let the fixed effects be time dependent

yi jst = x′i jstβ +αit + γ jt +δst + εi jst

that is we can also allow all individual heterogeneity to vary over. Finally, let us take
the four-dimensional extension of the all-encompassing model (1.7), with pair-wise
interaction effects:

yi jst = x′i jstβ + γ
0
i js + γ

1
i jt + γ

2
jst + γ

3
ist + εi jst , (1.36)

with i = 1 . . .N1, j = 1 . . .N2, s = 1 . . .N3, and t = 1 . . .T . This is what we consider
from now on as the benchmark model, and show step-by-step how to estimate it.
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1.7.2 Least Squares and the Within Estimators

If we keep maintaining the standard OLS assumptions lined up in Sect. 1.2, the
LSDV estimator of model (1.36), following (1.8)-(1.9), is BLUE. In addition, if we
define the Within projector MD, to get β̂ , the maximum matrix size to be worked
with is still (K×K). For model (1.36), the composite dummy matrix D is

D =
(
(IN1N2N3 ⊗ ιT ), (IN1N2 ⊗ ιN3 ⊗ IT ), (ιN1 ⊗ IN1N3T ), (IN1 ⊗ ιN2 ⊗ IN3T )

)
with size (N1N2N3T × (N1N2N3 + N1N2T + N2N3T + N1N3T )) and column rank
(N1N2N3T − (N1−1)(N2−1)(N3−1)(T −1)), leading to

MD = IN1N2N3T −
(
J̄N1 ⊗ IN2N3T

)
−
(
IN1 ⊗ J̄N2 ⊗ IN3T

)
−
(
IN1N2 ⊗ J̄N3 ⊗ IT

)
−
(
IN1N2N3 ⊗ J̄T

)
+
(
J̄N1N2 ⊗ IN3T

)
+
(
J̄N1 ⊗ IN2 ⊗ J̄N3 ⊗ IT

)
+
(
J̄N1 ⊗ IN2N3 ⊗ J̄T

)
+
(
IN1 ⊗ J̄N2N3 ⊗ IT

)
+
(
IN1 ⊗ J̄N2 ⊗ IN3 ⊗ J̄T

)
+
(
IN1N2 ⊗ J̄N3T

)
−
(
J̄N1N2N3 ⊗ IT

)
−
(
J̄N1N2 ⊗ IN3 ⊗ J̄T

)
−
(
J̄N1 ⊗ IN2 ⊗ J̄N3T

)
−
(
IN1 ⊗ J̄N2N3T

)
+ J̄N1N2N3T .

Just as before, MD defines the optimal Within transformation to be performed on
the data, so we can avoid matrix manipulations. That is, the LSDV estimator of β is
analogous to the optimal Within estimator, which is obtained by first transforming
the data according to

ỹi jst = yi jst − ȳ. jst − ȳi.st − ȳi j.t − ȳi js.+ ȳ..st + ȳ. j.t + ȳ. js.
+ ȳi..t + ȳi.s.+ ȳi j..− ȳ...t − ȳ..s.− ȳ. j..− ȳi...+ ȳ....

(1.37)

(which eliminates (γ0
i js, γ1

i jt , γ2
jst , γ3

ist)), then running an OLS on the transformed
variables ỹi jst , x̃′i jst .

The properties of these estimators are identical to those of the three-way models,
with the only modification that now even more asymptotic cases can be considered.
In general, the estimator of a fixed effects parameter is consistent if an index with
which the effect is fixed goes to infinity. The resulting variances of any of the es-
timators should be normalized with the sample sizes which grow, and further, the
degrees of freedom should be corrected to reflect the column rank deficiency in D.
For example, for model (1.36), the correct degrees of freedom (coming from the
rank of MD) is (N1−1)(N2−1)(N3−1)(T −1)−K.

1.7.3 Incomplete Panels

In theory, the missing data problem is corrected for by leaving out those rows from
D which correspond to missing observations. LSDV estimation should then be done
with the modified D̃, or alternatively, with MD̃ = I− D̃(D̃′D̃)−D̃′. Unfortunately,



26 Laszlo Balazsi, Laszlo Matyas, and Tom Wansbeek

as now MD has no clear structure, the resulting LSDV estimator cannot be reached
at reasonable cost when the data is large. However, the optimal Within estimator
offers a better way to tackle this problem. Just like in Sect. 1.5, we have to come up
with adjusted transformations, that clear out the fixed effects in the case of missing
data. The no self-flow and unbalanced transformations in Sect. 1.5 can be easily
generalized to any higher dimensions. For model (1.36), assuming that N1 =N2 =N,
the no self-flow transformation can be represented in a smart scalar form using group
averages, and reads as

ỹi jst = yi jst − 1
N−1 y+ jst − 1

N−1 yi+st − 1
N3

yi j+t − 1
T yi js++

1
(N−1)2 y++st

+ 1
(N−1)N3

y+ j+t +
1

(N−1)T y+ js++
1

(N−1)Ns
yi++t +

1
(N−1)T yi+s+

+ 1
N3T yi j++− 1

(N−1)2N3
y+++t − 1

(N−1)2T y++s+− 1
(N−1)N3T y+ j++

− 1
(N−1)N3T yi++++

1
(N−1)2N3T y++++− 1

(N−1)N3T y ji++

+ 1
(N−1)T y jis++

1
(N−1)N3

y ji+t − 1
N−1 y jist ,

(1.38)

fully eliminating any computational burden.
General incomplete data can also be handled quite flexibly in the case of four-

dimensional models. Remember that the key (iterative) unbalanced-robust transfor-
mation in Sect. 1.5 was (1.29), which can be generalized simply into a four dimen-
sional setup. Let the dummy variables matrices for the four fixed effects in (1.36) be
denoted by De = (De

1,D
e
2,D

e
3,D

e
4) and let M(k)

De
be the transformation that clears out

the first k fixed effects; namely, M(k)
De
·
(
De

1, . . . ,D
e
k

)
= (0, . . . ,0) for k = 1 . . .4. The

appropriate Within transformation to clear out the first k fixed effects is then

M(k)
De

= M(k−1)
De

−
(

M(k−1)
De

De
k

)[(
M(k−1)

De
De

k

)′(
M(k−1)

De
De

k

)]−(
M(k−1)

De
De

k

)′
,

(1.39)
where the first step in the iteration is

M(1)
De

= I−De
1
(
(De

1)
′De

1
)−1

(De
1)
′ ,

and the iteration should be processed until k = 4. Note that none of this hinges
on the model specification and can be done to any other multi-dimensional fixed
effects model. The drawback, which cannot be addressed at this point, is again the
increasing size of the matrices involved in the calculations. If this is the case, direct
inverse calculations are feasible only up to some point, and further tricks (parallel
computations, iterative inverting methods) should be used. However, this is beyond
the scope of this chapter.
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1.8 Varying Coefficients Models

So far we have assumed that the slope coefficients of the models considered are
constant. This in fact meant that the heterogeneity was captured through the regres-
sion constant only, i.e., via the shifts of this term for different individuals and time
points. One of the most important statistical features of multidimensional data sets,
however, is that heterogeneity is likely to take more complicated forms, which begs
for more complex econometric models. One such approach with a more sophisti-
cated form of heterogeneity is the varying coefficients model, where, along with the
fixed effects, we allow the slope coefficients to also vary.

The most general model we can imagine within this framework is

yi jt = z′i jtδi jt + εi jt (1.40)

where we force some structure on δi jt .8 Note, that this is the general form of any
standard multi-dimensional fixed effects model if we assume that z′i jt = (x′i jt , 1),
and that δi jt = (β ′, π ′i jt)

′, with πi jt being the composite fixed effect parameters.
The benchmark model we are focusing on, however, follows the spirit of Balestra

and Krishnakumar (2008) (pp. 40–43) and Hsiao (2015) (chapter 6), and takes the
form

yi jt = x′i jt(β + γi j +λt)+ εi jt (1.41)

or similarly,
y = X1β +X2γ +X3λ + ε

with
X1 ≡ ∆(ιN1N2T ⊗ IK) (N1N2T ×K)
X2 ≡ ∆(IN1N2 ⊗ ιT ⊗ IK) (N1N2T ×N1N2K)
X3 ≡ ∆(ιN1N2 ⊗ IT ⊗ IK) (N1N2T ×T K)

where

∆ =


x′111

x′112
. . .

x′N1N2T

 (N1N2T ×N1N2T K)

is the diagonally arranged data matrix. Intuitively, this model suggests that the ex-
planatory variables have an effect on y through a common parameter β , but also
through γi j and λt , which varies over individual pairs, and time periods. Note that
X = (X1, X2, X3) has no full column rank; in fact it has a rank deficiency of 2K.
Therefore, for identification 2K restrictions have to be imposed on the model. We
can proceed by simply leaving out for example γN1N2 and λT . A more symmetric
way, suggested by Hsiao (2015), is to normalize the average of the heterogeneous
parameters:

8 In this section, we assume that δi jt is a fixed, unknown coefficient. Random coefficients models,
positing distributional assumptions on δi jt are visited in Chap. 5.
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∑
i j

γi j = 0 ; ∑
t

λt = 0 . (1.42)

Then X̃ =(X1, X̃2, X̃3) has full column rank, where X̃1, X̃2, X̃3 denote X1, X2, X3 after
imposing the proper restrictions. To proceed, the adjusted model can be estimated
with straight Least Squares optimally, to get(

β̂ ′ γ̂ ′ λ̂ ′
)′
=
(
X̃ ′X̃

)−1 X̃y

or alternatively, partialling out γ and λ , and so expressing for β ,

β̂ =
(

X ′1MX̃2X̃3
X1

)−1
X ′1MX̃2X̃3

y

with MX̃2X̃3
being the projector matrix orthogonal to (X̃2, X̃3). The problem is that to

get MX̃2X̃3
, we are faced with inverting (KN1N2×KN1N2) matrices, which becomes

quickly computationally forbidding. One could try to figure out what this projection
(with a set of non-trivial matrices) does to a typical x′i jt , but the algebra soon be-
comes complex. Even if the above estimators can be computed for small samples,
we still have the inconvenience of incorporating the restrictions first. Having said
this, if we are uncertain about what the proper set of restriction would be, or simply
there is scope for experimenting with different restrictions, we would have to redo
the estimation each time.

There is, however, a more general, and useful approach to be used to derive es-
timators for β , and for the heterogeneous parameters as well. For this, we have to
apply the theory of Least Squares of incomplete rank detailed in (Searle, 1971, p. 9).
Searle shows that all least squares estimators are given by

δ̂ =

 γ̂

λ̂

β̂

=
(
X ′X

)−X ′y+Hζ = δ
0 +Hζ , (1.43)

with δ 0 being the generalized solution, X = (X2, X3, X1), H being its null-space (for
which XH = 0 holds), and ζ being an arbitrary vector.9 We want to pick a solution
from the set of the infinitely many solutions, which satisfies some conditions. An
attractive, natural way to do so is to assume that

∑
i j

γ̂i j = 0 ; ∑
t

λ̂t = 0 . (1.44)

This can be represented by
R′δ̂ = 0 ,

when

9 The reason for placing X2 to the front of X is that X ′2X2 is the largest matrix, yet block-diagonal.
As its inverse is the inverses of its blocks, it is easily computed.
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R =

 0 0
ιN1N2 0

0 ιT

⊗ IK .

As
R′δ̂ = R′δ 0 +R′Hζ = 0

holds because of (1.44),
ζ =−(R′H)−1R′δ 0

must also hold. As now we have a ζ vector defined explicitly, estimator (1.43) of
the parameters becomes

δ̂ = (I−H(R′H)−1R′)δ 0 . (1.45)

As we know that

H =

 1 1
−ιN1N2 0

0 −ιT

⊗ IK ,

the only step remaining to be taken is to find generalized solutions for the pa-
rameters. First, we set β = 0, so X1 drops out. This leaves us in (X2,X3) with a
rank deficiency of K, which we handle through a generalized inverse. From the
Frisch–Waugh–Lovell theorem (with a minor adaptation to handle the singularity)
and adding the “estimator” for β we get in the first round, the generalized solutions
read as

δ
0 =

β 0

γ0

λ 0

=

 0
(X ′2X2)

−1X ′2(y−X3λ 0)
(X ′3MX2X3)

−X ′3MX2y

 , (1.46)

with MX2 being the projection orthogonal to X2. Putting (1.46) and the definitions of
R and H into (1.45) gives the unique estimators

β̂ = 1
N1N2 ∑

i j
γ

0
i j +

1
T ∑

t
λ

0
t

γ̂i j = γ0
i j− 1

N1N2 ∑
i j

γ
0
i j (i, j = 1 . . .N1,N2)

λ̂t = λ 0
t − 1

T ∑
t

λ
0
t (t = 1 . . .T )

(1.47)

Fortunately, unbalanced data does not complicate our cause substantially, as the
estimators are formulation-wise equivalent to (1.47). Specifically, after we have
found the general solutions β 0, γ0 and λ 0 (in incomplete data), they can be used
as in (1.47) to derive estimators.

As seen, this section only considered one specific model. Of course, there is
substantial space for experimenting with other possible three-way specifications.
For example, models

yi jt = x′i jt(β +αit +α
∗
jt)+ ε

and
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yi jt = x′i jt(β + γi j +αit +α
∗
jt)+ ε

can also be considered, and can be estimated with the same steps and with slightly
modified identifying restrictions as model (1.41). We must keep track, however, of
the total number of parameters to be estimated. For the last model considered, this
number is (1+N1N2 +N1T +N2T )K which can either be a classic case of over-
specification, or in worse cases, can exceed the number of observations. This is the
main reason why this section focused on simpler models, like (1.41).

Naturally, nothing stops us from generalizing the above models to four, or even
to higher dimensions, but computational requirements frequently limit the practical
use of such formulations. The estimation of model

yi jst = x′i jst(β + γi js +λt)+ εi jst

has the same light computational requirement as model (1.41) (inverting a matrix of
order T ), but, for example, the estimation of

yi jst = x′i jst(β + γ
0
i js + γ

1
i jt + γ

2
jst + γ

3
ist)+ εi jst

involves matrices of order N1N2T , N2N3T , and N1N3T , which is forbidding even for
moderate sample sizes.
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Chapter 2
Random Effects Models

Laszlo Balazsi, Badi H. Baltagi, Laszlo Matyas, and Daria Pus

Abstract This chapter deals with the most relevant multi-dimensional random ef-
fects panel data models, where, unlike in the case of fixed effects, the number of
parameters to be estimated does not increase with the sample size. First, optimal
(F)GLS estimators are presented for the textbook-style complete data case, paying
special attention to asymptotics. Due to the many (semi-)asymptotic cases, special
attention is given to checking under which cases the presented estimators are con-
sistent. Interestingly, some asymptotic cases also carry a “convergence” property,
that is the respective (F)GLS estimator converges to the Within estimator, carrying
over some of its identification issues. The results are extended to incomplete panels
and to higher dimensions as well. Lastly, mixed fixed–random effects models are
visited, and some insights on testing for model specifications are considered.

2.1 Introduction

The disturbances of an econometric model in principle include all the factors influ-
encing the behaviour of the dependent variable that cannot be explicitly specified.
In a statistical sense, this means all the terms about which we do not have enough
information. In this chapter we deal with the cases when the individual and/or time
specific factors, and the possible interaction effects between them, are considered as
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unobserved heterogeneity, and as such are represented by random variables, and are
part of the composite disturbance terms. From a more practical point of view, unlike
the fixed effects approach, as seen in Chap. 1, this random effects approach has the
advantage that the number of parameters to take into account does not increase with
the sample size. It also makes possible the identification of parameters associated
with some time and/or individual invariant variables (see Hornok, 2011).

Historically, multi-dimensional random effects (or error components) models can
be traced back to the variance component analysis literature (see Rao and Kleffe,
1980, or the seminal results of Laird and Ware, 1982 or Leeuw and Kreft, 1986) and
are related to the multi-level models well known in statistics (see, for example, Scott
et al., 2013; Luke, 2004; Goldstein, 1995; Bryk and Raudenbush, 1992). Here, how-
ever, we assume fixed slope parameters for the regressors (rather than a composition
of fixed and random elements), and zero means for the random components.

This chapter follows in spirit the analysis of the two-way panels by Baltagi et al.
(2008), that is, in Sect. 2.2 we introduce the most frequently used models in a three-
dimensional (3D) panel data setup, Sect. 2.3 deals with the Feasible GLS estimation
of these models, while Sect. 2.4 analyses the behaviour of this estimator for in-
complete/unbalanced data. Section 2.5 generalizes the models presented to four and
higher dimensional data sets, and extends the random effects approach toward a
mixed effects framework. Finally, Sect. 2.6 deals with some testing issues, and Sect.
2.7 concludes.

2.2 Different Model Specifications

In this section, we present the most relevant three-dimensional model formulations,
paying special attention to the different interaction effects. The models we encounter
have empirical relevance, and mirror some fixed effects model formulations known
from the literature (see Chap. 1 and also, for example, Baltagi et al., 2003; Egger
and Pfaffermayr, 2003; Baldwin and Taglioni, 2006; Baier and Bergstrand, 2007).
Table 2.1 collects the empirical applications of the random effects models which the
empirical chapters of this volume rely upon, along with some selected applications
from the literature. It is clear from Table 2.1 that three-dimensional applications
are scarce, and that the models used are mostly less sophisticated (some are only 3D
representations of 2D models). It is thus clear that the empirical literature can benefit
from taking the econometrics of “true” three-dimensional models into account.

The general form of these random effects (or error components) models can be
cast as

y = Xβ +u , (2.1)

where y and X are respectively the vector and matrix of observations of the depen-
dent and explanatory variables, β is the vector of unknown (slope) parameters, and
we want to exploit the structure embedded in the random disturbance terms u. As is
well known from the Gauss–Markov theorem, the Generalized Least Squares (GLS)
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Table 2.1 Examples of empirical studies for multi-dimensional random effects models

Study Topic Indices (i- j-t) Sample
Size

Random Ef-
fects

Balanced

Chapter 11 – Trade

Glick and Rose (2002) Currency Union origin country - desti-
nation country - year

220 000 µi j No

Shin and Serlenga (2007) Intra-EU Trade 3 800 µi j +λt No
Nuroglu and Kunst (2014) Factors Explaining

Trade
150 000 µi j+υit +ζ jt No

Chapter 12 – Housing and Prices

Jun (2016) Rational and Ethnic
Compositions

neighborhood - area -
time

35 000 ζ j No

Baltagi et al. (2014) English House Prices county - district - time 8 300 υi +µi j No
Baltagi et al. (2015) Neighbor’s Prices year - arrondissement -

quartier - block - flat
157 000 υta + ζtaq +

λtaqi

No

Chapter 15 – Consumer Price
Heterogeneity

Moen et al. (2014) Retail Price Dispersion product - store - month 2 775 000 αi + γ j No
Borenstein and Rose (1994) US Airline Industry airport - airport - carrier 1 000 γi j(FE) +

λt(RE)
No

Further Examples

Verropoulou and Joshi (2009) Mother’s Employment
and Child Development

outcome - child - fam-
ily

1 700 υit Yes

Svensson and Hagquist (2010) Adolescent Alcohol
Use

individual - municipal-
ity - year

15 000 ζ j No

Elshandidy and Hussainey (2013) Risk Disclosure Incen-
tives

firm - sector - year 1 200 ζ j +λt No

Chit et al. (2010) Exchange Rate Volatil-
ity

exporting country - im-
porting country - quar-
ter

8 500 µi j +λt No

Bussiere et al. (2005) Trade Integration origin country - desti-
nation country - year

50 000 µi j +λt No

Fairbrother (2013) Comparative Surveys respondent - country -
year

350 000 ζ j +ζ jt No

estimator is BLUE for β . To make it operational, in principle, we have to perform
three steps. First, using the specific structure of u, we have to derive the variance-
covariance matrix of model (2.1), E(uu′) = Ω , then, preferably using spectral de-
composition, we have to derive its inverse. This is important, as multi-dimensional
data often tend to be very large, leading to some Ω -s of extreme order. And finally,
we need to estimate the unknown variance components of Ω to arrive at the well
known Feasible GLS (FGLS) formulation.

2.2.1 Various Heterogeneity Formulations

The most general model formulation in a three-dimensional setup encompassing all
pairwise random effects is

yi jt = x′i jtβ +µi j +υit +ζ jt + εi jt , (2.2)
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where i = 1 . . .N1, j = 1 . . .N2, and t = 1 . . .T . Note that yi jt , x′i jt , and ui jt = µi j +
vit +ζ jt +εi jt are elements of the (N1N2T ×1), (N1N2T ×K), and (N1N2T ×1) size
vectors and matrix y, X , and u respectively, of the general formulation (2.1), and β

is the (K× 1) vector of parameters. We assume the random effects to be pairwise
uncorrelated, E(µi j) = 0, E(υit) = 0, E(ζ jt) = 0, and further,

E(µi jµi′ j′) =

{
σ2

µ i = i′ and j = j′

0 otherwise

E(υitυi′t ′) =

{
σ2

υ i = i′ and t = t ′

0 otherwise

E(ζ jtζ j′t ′) =

{
σ2

ζ
j = j′ and t = t ′

0 otherwise.

(2.3)

The covariance matrix of such error components structure is simply

Ω = E(uu′) = σ
2
µ(IN1N2 ⊗ JT )+σ

2
υ(IN1 ⊗ JN2 ⊗ IT )+σ

2
ζ
(JN1 ⊗ IN2T )+σ

2
ε IN1N2T ,

(2.4)
where IN1 and JN1 are the identity, and the square matrix of ones respectively, with
the size in the index.
All other relevant model specifications are obtained by applying some restrictions
on the random effects structure, that is all covariance structures are nested into that
of model (2.2). The model which only uses individual-time-varying effects reads as

yi jt = x′i jtβ +υit +ζ jt + εi jt , (2.5)

together with the appropriate assumptions listed for model (2.2). Now

Ω = σ
2
υ(IN1 ⊗ JN2 ⊗ IT )+σ

2
ζ
(JN1 ⊗ IN2 ⊗ IT )+σ

2
ε IN1N2T . (2.6)

A further restriction on the above model is

yi jt = x′i jtβ +ζ jt + εi jt , (2.7)

which in fact is a generalization of the approach used in multi-level modelling, see
for example, Ebbes et al. (2004) or Hubler (2006).1 The covariance matrix now is

Ω = σ
2
ζ
(JN1 ⊗ IN2T )+σ

2
ε IN1N2T . (2.8)

Alternative restrictions of model (2.2) is to leave in the pair-wise random effects,
and restrict the individual-time-varying terms. Specifically, model

yi jt = x′i jtβ +µi j +λt + εi jt (2.9)

1 The symmetric counterpart of model (2.7), with υit random effects could also be listed here,
however, as it has the exact same properties as model (2.7), we take the two models together.
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incorporates both time and individual-pair random effects. We assume, as before,
that E(λt) = 0, and that

E(λtλ
′
t ) =

{
σ2

λ
t = t ′

0 otherwise.

Now
Ω = σ

2
µ(IN1N2 ⊗ JT )+σ

2
λ
(JN1N2 ⊗ IT )+σ

2
ε IN1N2T . (2.10)

A restriction of the above model when we assume, that µi j = υi +ζ j is2

yi jt = x′i jtβ +υi +ζ j +λt + εi jt , (2.11)

with the usual assumptions E(υi) = E(ζ j) = E(λt) = 0, and

E(υiυi′) =

{
σ2

υ i = i′

0 otherwise

E(ζ jζ j′) =

{
σ2

ζ
j = j′

0 otherwise

E(λtλt ′) =

{
σ2

λ
t = t ′

0 otherwise.

(2.12)

Its covariance structure is

Ω = σ
2
υ(IN1 ⊗ JN2T )+σ

2
ζ
(JN1 ⊗ IN2 ⊗ JT )+σ

2
λ
(JN1N2 ⊗ IT )+σ

2
ε IN1N2T . (2.13)

Lastly, the simplest model is

yi jt = x′i jtβ +µi j + εi jt (2.14)

with
Ω = σ

2
µ(IN1N2 ⊗ JT )+σ

2
ε IN1N2T . (2.15)

Note that model (2.14) can in fact be considered as a straight panel data model,
where the individuals are now the (i j) pairs (so essentially it does not take into
account the three-dimensional nature of the data).

2.2.2 Spectral Decomposition of the Covariance Matrices

To estimate the above models, the inverse of Ω is needed, a matrix of size (N1N2T×
N1N2T ). For even moderately large samples, this is not practically feasible without
further elaboration. The common practice is to use the spectral decomposition of

2 This model has in fact been introduced in Matyas (1998), and before that, in Ghosh (1976).
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Ω , which in turn gives the inverse as a function of fairly standard matrices (see
Wansbeek and Kapteyn, 1982). We derive the algebra for model (2.2), Ω−1 for all
other models can de derived likewise, so we only present the final results. First,
consider a simple rewriting of the identity matrix

IN1 = QN1 + J̄N1 , where QN1 = IN1 − J̄N1 ,

with J̄N1 =
1

N1
JN1 . Now Ω becomes

Ω = T σ2
µ((QN1 + J̄N1)⊗ (QN2 + J̄N2)⊗ J̄T )

+N2σ2
υ((QN1 + J̄N1)⊗ J̄N2 ⊗ (QT + J̄T ))

+N1σ2
ζ
(J̄N1 ⊗ (QN2 + J̄N2)⊗QT )

+σ2
ε ((QN1 + J̄N1)⊗ (QN2 + J̄N2)⊗ (QT + J̄T )) .

If we unfold the brackets, the terms we get are in fact the between-group variations
of each possible group in three-dimensional data. For example, the building block

Bi j. = (QN1 ⊗QN2 ⊗ J̄T )

captures the variation between i and j. All other B matrices are defined in a similar
manner: the indices in the subscript indicate the variation with respect to which it is
captured. The two extremes, Bi jt and B... are thus

Bi jt = (QN1 ⊗QN2 ⊗QT ) and B... = (J̄N1 ⊗ J̄N2 ⊗ J̄T ) .

Note that the covariance matrix of all three-way error components models can be
represented by these B building blocks. For model (2.2), this means

Ω = σ2
ε Bi jt +(σ2

ε +T σ2
µ)Bi j.+(σ2

ε +N2σ2
υ)Bi.t +(σ2

ε +N1σ2
ζ
)B. jt

+(σ2
ε +T σ2

µ +N2σ2
υ)Bi..+(σ2

ε +T σ2
µ +N1σ2

ζ
)B. j.

+(σ2
ε +N2σ2

υ +N1σ2
ζ
)B..t +(σ2

ε +T σ2
µ +N2σ2

υ +N1σ2
ζ
)B... .

(2.16)

Also note that all B matrices are idempotent and mutually orthogonal by construc-
tion (as QN1 J̄N1 = 0, likewise with N2 and T ), so

Ω−1 = 1
σ2

ε

Bi jt +
1

σ2
ε +T σ2

µ

Bi j.+
1

σ2
ε +N2σ2

υ

Bi.t +
1

σ2
ε +N1σ2

ζ

B. jt

+ 1
σ2

ε +T σ2
µ+N2σ2

υ

Bi..+
1

σ2
ε +T σ2

µ+N1σ2
ζ

B. j.

+ 1
σ2

ε +N2σ2
υ+N1σ2

ζ

B..t +
1

σ2
ε +T σ2

µ+N2σ2
υ+N1σ2

ζ

B... .

This means that we can get the inverse of a covariance matrix at virtually no compu-
tational cost, as a function of some standard B matrices. After some simplification,
we get
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σ2
ε Ω−1 = IN1N2T − (1−θ1)(J̄N1 ⊗ IN2T )− (1−θ2)(IN1 ⊗ J̄N2 ⊗ IT )

−(1−θ3)(IN1N2 ⊗ J̄T )+(1−θ1−θ2 +θ4)(J̄N1N2 ⊗ IT )
+(1−θ1−θ3 +θ5)(J̄N1 ⊗ IN2 ⊗ J̄T )
+(1−θ2−θ3 +θ6)(IN1 ⊗ J̄N2T )
−(1−θ1−θ2−θ3 +θ4 +θ5 +θ6−θ7)J̄N1N2T ,

(2.17)

with
θ1 =

σ2
ε

σ2
ε +N1σ2

ζ

, θ2 =
σ2

ε

σ2
ε +N2σ2

υ

, θ3 =
σ2

ε

σ2
ε +T σ2

µ

θ4 =
σ2

ε

σ2
ε +N2σ2

υ+N1σ2
ζ

, θ5 =
σ2

ε

σ2
ε +T σ2

µ+N1σ2
ζ

,

θ6 =
σ2

ε

σ2
ε +T σ2

µ+N2σ2
υ

, and θ7 =
σ2

ε

σ2
ε +T σ2

µ+N2σ2
υ+N1σ2

ζ

.

A nice aspect of this is that we can fully get rid of the matrix notations, following
Fuller and Battese (1973), as σ2

ε Ω−1/2y can be written up in a scalar form as well.
This transformation can be represented with its typical element

ỹi jt = yi jt − (1−
√

θ1)ȳ. jt − (1−
√

θ2)ȳi.t − (1−
√

θ3)ȳi j.
+(1−

√
θ1−
√

θ2 +
√

θ4)ȳ..t
+(1−

√
θ1−
√

θ3 +
√

θ5)ȳ. j.+(1−
√

θ2−
√

θ3 +
√

θ6)ȳi..

−(1−
√

θ1−
√

θ 2−
√

θ 3 +
√

θ 4 +
√

θ 5 +
√

θ 6−
√

θ 7)ȳ... ,

where, following the standard ANOVA notation, a bar over the variable means that
the mean of the variable was taken with respect to the missing indices. By using the
OLS on these transformed variables, we get back the GLS estimator.

For other models, the job is essentially the same. For model (2.5),

σ2
ε Ω−1 = IN1N2T − (IN1 ⊗ J̄N2 ⊗ IT )− (J̄N1 ⊗ IN2T )+(J̄N1N2 ⊗ IT )

+
σ2

ε

N1σ2
ζ
+σ2

ε

((J̄N1 ⊗ IN2T )− (J̄N1N2 ⊗ IT ))

+
σ2

ε

N2σ2
υ+σ2

ε

((IN1 ⊗ J̄N2 ⊗ IT ))− (J̄N1N2 ⊗ IT ))

+
σ2

ε

N2σ2
υ+N1σ2

ζ
+σ2

ε

(J̄N1N2 ⊗ IT ) ,

and so σ2
ε Ω−1/2y in a scalar form, with a typical ỹi jt element, is

ỹi jt = yi jt − (1−
√

θ 8)ȳi.t − (1−
√

θ 9)ȳ. jt +(1−
√

θ 8−
√

θ 9 +
√

θ 10)ȳ..t ,

with

θ8 =
σ2

ε

N2σ2
υ +σ2

ε

, θ9 =
σ2

ε

N1σ2
ζ
+σ2

ε

, θ10 =
σ2

ε

N2σ2
υ +N1σ2

ζ
+σ2

ε

.

For model (2.7), the inverse of the covariance matrix is even simpler,

σ
2
ε Ω
−1 = IN1N2T − (J̄N1 ⊗ IN2T )+

σ2
ε

σ2
ε +N1σ2

ζ

(J̄N1 ⊗ IN2T ) ,
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so σ2
ε Ω−1/2y defines the scalar transformation

ỹi jt = yi jt − (1−
√

θ 11)ȳ. jt , with θ11 =
σ2

ε

σ2
ε +N1σ2

ζ

.

For model (2.9), it is

σ2
ε Ω−1 = IN1N2T − (IN1N2 ⊗ J̄T )− (J̄N1N2 ⊗ IT )+ J̄N1N2T

+
σ2

ε

σ2
ε +T σ2

µ

((IN1N2 ⊗ J̄T )− J̄N1N2T )

+
σ2

ε

σ2
ε +N1N2σ2

λ

((J̄N1N2 ⊗ IT )− J̄N1N2T )+
σ2

ε

σ2
ε +T σ2

µ+N1N2σ2
λ

J̄N1N2T ,

so σ2
ε Ω−1/2y in a scalar form is

ỹi jt = yi jt − (1−
√

θ 12)ȳi j.− (1−
√

θ 13)ȳ..t +(1−
√

θ 12−
√

θ 13 +
√

θ 14)ȳ... ,

with

θ12 =
σ2

ε

σ2
ε +T σ2

µ

, θ13 =
σ2

ε

σ2
ε +N1N2σ2

λ

, θ14 =
σ2

ε

σ2
ε +T σ2

µ +N1N2σ2
λ

.

The spectral decomposition of model (2.11), which was in fact proposed by Baltagi
(1987), is

σ2
ε Ω−1 = IN1N2T − (J̄N1N2 ⊗ IT )− (J̄N1 ⊗ IN2 ⊗ J̄T )− (IN1 ⊗ J̄N2T )

+2J̄N1N2T +
σ2

ε

N2T σ2
υ+σ2

ε

((IN1 ⊗ J̄N2T )− J̄N1N2T )

+
σ2

ε

N1T σ2
ζ
+σ2

ε

((J̄N1 ⊗ IN2 ⊗ J̄T )− J̄N1N2T )

+
σ2

ε

N1N2σ2
λ
+σ2

ε

((J̄N1N2 ⊗ IT )− J̄N1N2T )

+
σ2

ε

N2T σ2
υ+N1T σ2

ζ
+N1N2σ2

λ
+σ2

ε

J̄N1N2T .

With the covariance matrix in hand, σ2
ε Ω−1/2y translates into

ỹi jt = yi jt − (1−
√

θ 15)ȳi..− (1−
√

θ 16)ȳ. j.− (1−
√

θ 17)ȳ..t
+(2−

√
θ 15−

√
θ 16−

√
θ 17 +

√
θ 18)ȳ... ,

where

θ15 =
σ2

ε

N2T σ2
υ+σ2

ε

, θ16 =
σ2

ε

N1T σ2
ζ
+σ2

ε

, θ17 =
σ2

ε

N1N2σ2
λ
+σ2

ε

, and

θ18 =
σ2

ε

N2T σ2
υ+N1T σ2

ζ
+N1N2σ2

λ
+σ2

ε

.

For model (2.14), the inversion gives
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σ
2
ε Ω
−1 = IN1N2T − (IN1N2 ⊗ J̄T )+

σ2
ε

T σ2
µ +σ2

ε

(IN1N2 ⊗ J̄T ) ,

and so σ2
ε Ω−1/2y can be written up in a scalar form, represented by a typical element

ỹi jt = yi jt − (1−
√

θ 19)ȳi j. , with θ19 =
σ2

ε

T σ2
µ +σ2

ε

.

Table 2.2 summarizes the key elements in each model’s inverse covariance matrix
in the finite case.

Table 2.2 Structure of the Ω−1 matrices

Model (2.2) (2.5) (2.7) (2.9) (2.11) (2.14)

IN1N2T +a + + + + +
(IN1N2 ⊗ J̄T ) + + +
(IN1 ⊗ J̄N2 ⊗ IT ) + +
(J̄N1 ⊗ IN2T ) + + +
(IN1 ⊗ J̄N2T ) + +
(J̄N1 ⊗ IN2 ⊗ J̄T ) + +
(J̄N1N2 ⊗ IT ) + + + +
J̄N1N2T + + +

a A “+” sign in a column says which building element is part of
the given model’s Ω−1.

When the “+” signs in the column of a given model A overlap with that of another
model B means that model B is nested in this model A. It can be seen, for example,
that all models are in fact nested in (2.2), or that model (2.14) is nested in model
(2.9).

When the number of observations grows in one or more dimensions, it may be
interesting to find the limits of the θk weights. It is easy to see that if all N1, N2, and
T → ∞, all θk, (k = 1, . . . ,19) are in fact going to zero. That is, if the data grows in
all directions, the GLS estimator (and in turn the FGLS) is identical to the Within
estimator. Hence, for example, for model (2.2), in the limit, σ2

ε Ω−1 is simply given
by

lim
N1,N2,T→∞

σ
2
ε Ω
−1 = IN1N2T − (J̄N1 ⊗ IN2T )− (IN1 ⊗ J̄N2 ⊗ IT )

−(IN1N2 ⊗ J̄T )+(J̄N1N2 ⊗ IT )+(J̄N1 ⊗ IN2 ⊗ J̄T )
+(IN1 ⊗ J̄N2T )− J̄N1N2T ,

which is the covariance matrix of the Within estimator. Table 2.3 collects the asymp-
totic conditions when the models’ (F)GLS estimator is converging to a Within esti-
mator.
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Table 2.3 Asymptotic conditions when the model’s FGLS converges to a
Within estimator

Model Condition

(2.2) N1→ ∞, N2→ ∞, T → ∞

(2.5) N1→ ∞, N2→ ∞

(2.7) N1→ ∞

(2.9) (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.11) (N1→ ∞, N2→ ∞) or (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.14) T → ∞

2.3 FGLS Estimation

To make the FGLS estimator operational, we need estimators for the variance com-
ponents. Let us start again with model (2.2), while for the other models, the job is
essentially the same. Using the assumptions that the error components are pairwise
uncorrelated,

E(u2
i jt) = E

(
(µi j +υit +ζ jt + εi jt)

2
)

= E(µ2
i j)+E(υ2

it)+E(ζ 2
jt)+E(ε2

i jt) = σ2
µ +σ2

υ +σ2
ζ
+σ2

ε .

By introducing different Within transformations and so projecting the error compo-
nents into different subspaces of the original three-dimensional space, we can derive
further identifying equations. The appropriate Within transformation for model (2.2)
(see for details Balazsi et al., 2015) is

ũi jt = ui jt − ū. jt − ūi.t − ūi j.+ ū..t + ū. j.+ ūi..− ū... . (2.18)

Note that this transformation corresponds to the projection matrix

M = IN1N2T − (IN1N2 ⊗ J̄T )− (IN1 ⊗ J̄N2 ⊗ IT )− (J̄N1 ⊗ IN2T )
+(IN1 ⊗ J̄N2T )+(J̄N1 ⊗ IN2 ⊗ J̄T )+(J̄N1N2 ⊗ IT )− J̄N1N2T ,

and u has to be pre-multiplied with it. Transforming ui jt according to this wipes out
µi j, υit , ζ jt , and gives, with i = 1 . . .N1, and j = 1 . . .N2,

E(ũ2
i jt) = E(ε̃2

i jt) = E((εi jt − ε̄. jt − ε̄i.t − ε̄i j.+ ε̄..t + ε̄. j.+ ε̄i..− ε̄...)
2)

= (N1−1)(N2−1)(T−1)
N1N2T σ2

ε ,

where (N1−1)(N2−1)(T−1)
N1N2T is the rank/order ratio of M, likewise for all other subse-

quent transformations. Further, transforming ui jt according to

ũa
i jt = ui jt − ū. jt − ūi.t + ū..t ,or with the underlying matrix

Ma = IN1N2T − (J̄N1 ⊗ IN2T )− (IN1 ⊗ J̄N2 ⊗ IT )+(J̄N1N2 ⊗ IT )
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eliminates υit +ζ jt , and gives

E((ũa
i jt)

2) = E((µ̃a
i j + ε̃a

i jt)
2) = E((µ̃a

i j)
2)+E((ε̃a

i jt)
2)

= (N1−1)(N2−1)
N1N2

(σ2
µ +σ2

ε ) .

Transformation according to

ũb
i jt = ui jt − ūi j.− ū. jt + ū. j. , or

Mb = IN1N2T − (IN1N2 ⊗ J̄T )− (J̄N1 ⊗ IN2T )+(J̄N1 ⊗ IN2 ⊗ J̄T )

eliminates µi j +ζ jt , and gives

E((ũb
i jt)

2) = E((υ̃b
it + ε̃

b
i jt)

2) = E((υ̃b
it)

2)+E((ε̃b
i jt)

2) =
(N1−1)(T −1)

N1T
(σ2

υ +σ
2
ε ) .

Finally, using

ũc
i jt = ui jt − ūi j.− ūi.t + ūi.. , or

Mc = IN1N2T − (IN1N2 ⊗ J̄T )− (IN1 ⊗ J̄N2 ⊗ IT )+(IN1 ⊗ J̄N2T )

wipes µi j and υit out, and gives

E((ũc
i jt)

2) = E((ζ̃ c
jt + ε̃c

i jt)
2) = E((ζ̃ c

jt)
2)+E((ε̃c

i jt)
2)

= (N2−1)(T−1)
N2T (σ2

ζ
+σ2

ε ) .

Putting the four identifying equations together gives a solvable system of four equa-
tions. Let ûi jt be the residual from the OLS estimation of y = Xβ + u. With this
notation, the estimators for the variance components are

σ̂2
ε = 1

(N1−1)(N2−1)(T−1) ∑i jt ˜̂u2
i jt

σ̂2
µ = 1

(N1−1)(N2−1)T ∑i jt ( ˜̂ua
i jt)

2− σ̂2
ε

σ̂2
υ = 1

(N1−1)N2(T−1) ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε

σ̂2
ζ
= 1

N1(N2−1)(T−1) ∑i jt ( ˜̂uc
i jt)

2− σ̂2
ε ,

where, obviously, ˜̂ui jt , ˜̂ua
i jt , ˜̂ub

i jt , and ˜̂uc
i jt are the transformed residuals according to

M, Ma, Mb, and Mc respectively.
Note, however, that the variance components in model (2.2) can only be con-

sistently estimated if the data grows in at least two dimensions, that is, any two of
N1→ ∞, N2→ ∞, and T → ∞ has to hold. This is because σ2

µ (the variance of µi j)
cannot be estimated consistently, when only T → ∞, σ2

υ , or when only N1 → ∞,
and so on. Table 2.4 collects the conditions needed for consistency of the estimators
of the variance components for all models considered. So what if, for example, the
data is such that N1 is large, but N2 and T are small (like in the case, for example,
of an employee-firm data with an extensive number of workers, but with few hiring
firms observed annually)? This would mean that σ2

µ and σ2
υ are estimated consis-



46 Laszlo Balazsi, Badi H. Baltagi, Laszlo Matyas, and Daria Pus

tently, but σ2
ζ

is not. In such cases, it makes more sense to assume ζ jt to be fixed
instead of random (while still assuming the randomness of µi j and υit ), arriving at
the so-called “mixed effects models”, something explored in Sect. 2.5.

Prucha (1984) showed that although in a two-way error components model the
consistent estimation of all variance components is a sufficient condition for the
GLS and FGLS estimators to be asymptotically equivalent, this is not necessary in
all instances. In some cases it is sufficient to have consistent estimation of the vari-
ance of the idiosyncratic disturbance terms, but not the other variance components.
Generalizing his results to the models we consider, it turns out that Prucha’s results
hold exactly in the cases cited in Table 2.4. Then, only the variance of σ2

ε need to
be estimated consistently for this equivalence to hold.

We can estimate the variance components of the other models in a similar way.
As the algebra is essentially the same, we only present here the main results. For
model (2.5),

E(ũ2
i jt) = (N1−1)(N2−1)

N1N2
σ2

ε , E((ũa
i jt)

2) = N1−1
N1

(σ2
υ +σ2

ε ) and
E((ũb

i jt)
2) = N2−1

N2
(σ2

ζ
+σ2

ε ) ,

now with ũi jt = ui jt − ū. jt − ūi.t + ū..t , and ũa
i jt = ui jt − ū. jt , and ũb

i jt = ui jt − ūi.t ,
which correspond to the projection matrices

M = IN1N2T − (J̄N1 ⊗ IN2T )− (IN1 ⊗ J̄N2 ⊗ IT )+(J̄N1N2 ⊗ IT )
Ma = IN1N2T − (J̄N1 ⊗ IN2T )
Mb = IN1N2T − (IN1 ⊗ J̄N2 ⊗ IT )

respectively. The estimators for the variance components then are

σ̂2
ε = 1

(N1−1)(N2−1)T ∑i jt ˜̂u2
i jt , σ̂2

υ = 1
(N1−1)N2T ∑i jt ( ˜̂ua

i jt)
2− σ̂2

ε , and
σ̂2

ζ
= 1

N1(N2−1)T ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε ,

where again ˜̂ui jt , ˜̂ua
i jt and ˜̂ub

i jt are obtained by transforming the residual ûi jt according
to M, Ma, and Mb respectively. For model (2.7), as

E(u2
i jt) = σ

2
ζ
+σ

2
ε , and E(ũ2

i jt) =
N1−1

N1
σ

2
ε ,

with now ũi jt = ui jt − ū. jt (or with M = IN1N2T − (J̄N1 ⊗ IN2T )), the appropriate esti-
mators are simply

σ̂
2
ε =

1
(N1−1)N2T ∑

i jt

˜̂u2
i jt , and σ̂

2
ζ
=

1
N1N2T ∑

i jt
û2

i jt − σ̂
2
ε .

For model (2.9),
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E(ũ2
i jt) = (N1N2−1)(T−1)

N1N2T σ2
ε , E((ũa

i jt)
2) = N1N2−1

N1N2
(σ2

µ +σ2
ε ) , and

E((ũb
i jt)

2) = T−1
T (σ2

λ
+σ2

ε ) ,

with ũi jt = ui jt − ū..t − ūi j.+ ū..., and ũa
i jt = ui jt − ū..t , and ũb

i jt = ui jt − ūi j., which
correspond to

M = IN1N2T − (J̄N1N2 ⊗ IT )− (IN1N2 ⊗ J̄T )+ J̄N1N2T
Ma = IN1N2T − (J̄N1N2 ⊗ IT )
Mb = IN1N2T − (IN1N2 ⊗ J̄T )

respectively. The estimators for the variance components are

σ̂2
ε = 1

(N1N2−1)(T−1) ∑i jt ˜̂u2
i jt , σ̂2

µ = 1
(N1N2−1)T ∑i jt ( ˜̂ua

i jt)
2− σ̂2

ε , and
σ̂2

λ
= 1

N1N2(T−1) ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε .

For model (2.11), as

E(ũ2
i jt) = (N1N2−1)T−(N1−1)−(N2−1)

N1N2T σ2
ε

E((ũa
i jt)

2) = (N1N2−1)T−(N2−1)
N1N2T (σ2

υ +σ2
ε )

E((ũb
i jt)

2) = (N1N2−1)T−(N1−1)
N1N2T (σ2

ζ
+σ2

ε )

E((ũc
i jt)

2) = N1N2T−N1−N2+1
N1N2T (σ2

µ +σ2
ε )

with ũi jt = ui jt− ū..t− ū. j.− ūi..+2ū..., ũa
i jt = ui jt− ū..t− ū. j.+ ū..., ũb

i jt = ui jt− ū..t−
ūi.. + ū..., and ũc

i jt = ui jt − ūi..− ū. j. + ū..., which all correspond to the projection
matrices

M = IN1N2T − (J̄N1N2 ⊗ IT )− (J̄N1 ⊗ IN2 ⊗ J̄T )− (IN1 ⊗ J̄N2T )+2J̄N1N2T
Ma = IN1N2T − (J̄N1N2 ⊗ IT )− (J̄N1 ⊗ IN2 ⊗ J̄T )+ J̄N1N2T
Mb = IN1N2T − (J̄N1N2 ⊗ IT )− (IN1 ⊗ J̄N2T )+ J̄N1N2T
Mc = IN1N2T − (J̄N1 ⊗ IN2 ⊗ J̄T )− (IN1 ⊗ J̄N2T )+ J̄N1N2T

respectively. The estimators for the variance components are

σ̂2
ε = 1

(N1N2−1)T−(N1−1)−(N2−1) ∑i jt ˜̂u2
i jt

σ̂2
υ = 1

(N1N2−1)T−(N2−1) ∑i jt ( ˜̂ua
i jt)

2− σ̂2
ε

σ̂2
ζ
= 1

(N1N2−1)T−(N1−1) ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε

σ̂2
λ
= 1

N1N2T−N1−N2+1 ∑i jt ( ˜̂uc
i jt)

2− σ̂2
ε .

Lastly, for model (2.14) we get

E(u2
i jt) = σ

2
µ +σ

2
ε , and E(ũ2

i jt) =
T −1

T
σ

2
ε ,

with ũi jt = ui jt − ūi j. (which is the same as a general element of Mu with M =
IN1N2T − (IN1N2 ⊗ J̄T )). With this, the estimators are
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σ̂
2
ε =

1
N1N2(T −1) ∑

i jt

˜̂u2
i jt , and σ̂

2
µ =

1
N1N2T ∑

i jt
û2

i jt − σ̂
2
ε .

Standard errors are computed accordingly using Var(β̂FGLS) = (X ′Ω̂−1X)−1. In the
limiting cases, the usual normalization factors are needed to obtain finite variances.
When, for example, N1 and T are growing,

√
N1T (β̂FGLS−β ) has a normal distri-

bution with zero mean, and Q−1
XΩX variance, where Q−1

XΩX = plimN1,T→∞
X ′Ω̂−1X

N1T is
assumed to be a finite, positive definite matrix. This holds model-wide.

We have no such luck, however, with the OLS estimator. The issue is best illus-
trated with model (2.14). It can be shown, just as with the usual 2D panel models,
Var(β̂OLS) = (X ′X)−1X ′Ω̂X(X ′X)−1 (with Ω̂ being model-specific, but let us as-
sume for now that it corresponds to (2.15)).

Table 2.4 Conditions for the consistency of the variance components estimation

Model Consistency requirements

(2.2) (N1→ ∞, N2→ ∞) or (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.5) (T → ∞) or (N1→ ∞, N2→ ∞)
(2.7) (N2→ ∞) or (T → ∞)
(2.9) (N1→ ∞, T → ∞) or (N2→ ∞, T → ∞)
(2.11) (N1→ ∞, N2→ ∞, T → ∞)
(2.14) (N1→ ∞) or (N2→ ∞)

In the asymptotic case, when N1,N2 → ∞,
√

N1N2(β̂OLS−β ) has a normal dis-
tribution with finite variance, but this variance grows without bound (at rate O(T ))
once T →∞. That is, an extra 1/

√
T normalization factor has to be added to regain a

normal distribution with bounded variance. Table 2.5 collects normalization factors
needed for a finite Var(β̂OLS) for the different models considered. As it is uncom-
mon to normalize with 1, or with an expression like

√
N1N2√

A
, some insights into the

normalizations are given in Appendix 1.

Table 2.5 Normalization factors for the finiteness of β̂OLS

Model (2.2) (2.5) (2.7) (2.9) (2.11) (2.14)

N1→ ∞ 1 1 1 1 1
√

N1
N2→ ∞ 1 1

√
N2 1 1

√
N2

T → ∞ 1
√

T
√

T 1 1 1
N1,N2→ ∞

√
N1N2√

A

a √
N1N2√

A

√
N2 1 1

√
N1N2

N1,T → ∞

√
N1T√

A

√
T

√
T

√
N1T√

A
1

√
N1

N2,T → ∞

√
N2T√

A

√
T

√
N2T

√
N2T√

A
1

√
N2

N1,N2,T → ∞

√
N1N2T√

A

√
N1N2√

A

√
T
√

N2T
√

N1N2T√
A

√
N1N2T√
A1A2

b √
N1N2

a A is the sample size which grows with the highest rate, (N1, N2, or T ).
b A1,A2 are the two sample sizes which grow at the highest rates.
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Another interesting aspect is revealed by comparing Tables 2.3 and 2.4, that is
the consistency requirements for the estimation of the variance components (Table
2.4) and the asymptotic results, when the FGLS converges to the Within estimator
(Table 2.3).

Table 2.6 Asymptotic results when the OLS should be used

Model (2.2) (2.5) (2.7) (2.9) (2.11) (2.14)

N1→ ∞ +a −
N2→ ∞ − −
T → ∞ − − +
N1,N2→ ∞ − + + + −
N1,T → ∞ − − + + + +
N2,T → ∞ − − − + + +
N1,N2,T → ∞ + + + + + +

a A “−” sign indicates that the model is estimated consistently
with FGLS, a “+” sign indicates that OLS should be used as
some parameters are not identified, and a box is left blank
if the model cannot be estimated consistently (under the
respective asymptotics).

As can be seen in Table 2.6, for all models the FGLS is consistent if all N1,N2,T
go to infinity, but in these cases the (F)GLS estimator converges to the Within one.
This is problematic, as some previously estimable parameters suddenly become
unidentified. In such cases, we have to rely on the OLS estimates, rather than the
FGLS. This is generally the case whenever a “+” sign is found in Table 2.6, most
significant for models (2.9) and (2.11). For them, the FGLS is only consistent when
it is in fact the Within estimator, leading to likely severe identification issues. The
best case scenarios are indicated with a “−” sign, where the respective asymptotics
are enough for the consistency of the FGLS, but do not yet cause identification
problems. Lastly, blank spaces are left in the table if, under the given asymptotic,
the FGLS is not consistent. In such cases, we can again rely on the consistency of
the OLS, but its standard errors are inconsistent, just as with the FGLS.

2.4 Unbalanced Data

2.4.1 Structure of the Covariance Matrices

Our analysis has so far concentrated on balanced panels. We know, however, that
real life data sets usually have some kind of incompleteness embedded. This may be
more visible in the case of higher dimensional panels, where the number of missing
observations can be substantial. As known from the analysis of the standard two-way
error components models, in this case the estimators of the variance components,
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and in turn, those of the slope parameters are inconsistent, and further, the spectral
decomposition of Ω is inapplicable. Next, we present the covariance matrices of
the different models in an incomplete data framework, we show a feasible way to
invert them, and then propose a method to estimate the variance components in this
general setup.

In our modelling framework, just like in Chap. 1, incompleteness means that for
any (i j) pair of individuals, t ∈ Ti j, where Ti j index-set is a subset of the general
{1, . . . ,T} index-set of the time periods spanned by the data. Further, let |Ti j| de-
note the cardinality of Ti j, i.e., the number of its elements. Note that for complete
(balanced) data, Ti j = {1, . . . ,T}, and |Ti j|= T for all (i j). We also assume that for
each t there is at least one (i j) pair, for each i, there is at least one ( jt) pair, and for
each j, there is at least one (it) pair observed. This assumption is almost natural,
as it simply requires individuals or time periods with no underlying observation to
be dropped from the data set. As the structure of the data is quite complex now, we
need to introduce a few new notations and definitions along the way. Formally, let us
call nit , n jt , ni, n j, and nt the total number of observations for a given (it), ( jt) pair,
and for given individuals i, j, and time t, respectively. Further, let us call ñi j, ñit , ñ jt
the total number of (i j), (it), and ( jt) pairs present in the data. Remember that in the
balanced case, ñi j = N1N2, ñit = N1T , and ñ jt = N2T . It would make sense to define
similarly ñi, ñ j, and ñt , however, we can assume, without the loss of generality, that
there are still N1 i, N2 j, individuals, and T total time periods in the data (of course,
there are “holes” in it).

For the all-encompassing model (2.2), ui jt can be stacked into vector u. Remem-
ber that in the complete case it is

u = (IN1 ⊗ IN2 ⊗ ιT )µ +(IN1 ⊗ ιN2 ⊗ IT )υ +(ιN1 ⊗ IN2 ⊗ IT )ζ + IN1N2T ε

= D1µ +D2υ +D3ζ + ε ,

with µ , υ , ζ , ε being the stacked vectors of µi j, υit , ζ jt , and εi jt , of respective
lengths N1N2, N1T , N2T , N1N2T , and ι is the column of ones with the size in the
index. The covariance matrix can then be represented by

E(uu′) = Ω = D1D′1σ
2
µ +D2D′2σ

2
υ +D3D′3σ

2
ζ
+ Iσ

2
ε ,

which is identical to (2.4). However, in the case of missing data, we have to modify
the underlying Dk dummy matrices to reflect the unbalanced nature of the data. For
every (i j) pair, let Vi j denote the size (|Ti j|×T ) matrix, which we obtain from the
(T ×T ) identity matrix by deleting rows corresponding to missing observations.3

With this, the incomplete Dk dummies are

3 If, for example, t = 1,4,10 are missing for some (i j), we delete rows 1, 4, and 10 from IT to get
Vi j .
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D1 = diag{V11ιT ,V12ιT , . . . ,VN1N2 ιT} of size (∑i j |Ti j|× ñi j) ,

D2 = diag
{
(V ′11,V

′
12, . . . ,V

′
1N2

)′, . . . ,(V ′N11,V
′
N12, . . . ,V

′
N1N2

)′
}

of size (∑i j |Ti j|× ñit)

D3 =
(

diag{V ′11,V
′
12, . . . ,V

′
1N2
}′, . . . ,diag{V ′N11,V

′
N12, . . . ,V

′
N1N2
}′
)′

of size (∑i j |Ti j|× ñ jt) .

These then can be used to construct the covariance matrix as

Ω = E(uu′) = I∑i j |Ti j |σ
2
ε +D1D′1σ

2
µ +D2D′2σ

2
υ +D3D′3σ

2
ζ

of size
(
∑i j |Ti j|×∑i j |Ti j|

)
. If the data is complete, the above covariance structure

in fact gives back (2.4). The job is the same for other models. For models (2.5) and
(2.7),

u = D2υ +D3ζ + ε

and
u = D3ζ + ε

respectively, with the incompleteness adjusted D2 and D3 defined above, giving in
turn

Ω = I∑i j |Ti j |σ
2
ε +D2D′2σ

2
υ +D3D′3σ

2
ζ

for model (2.5), and
Ω = I∑i j |Ti j |σ

2
ε +D3D′3σ

2
ζ

for model (2.7). Again, if the panel were in fact complete, we would get back (2.6)
and (2.8). The incomplete data covariance matrix of model (2.9) is

Ω = I∑i j |Ti j |σ
2
ε +D1D′1σ

2
µ +D4D′4σ

2
λ
,

with
D4 = (V ′11,V

′
12, . . . ,V

′
N1N2

)′ of size (∑
i j
|Ti j|×T ) .

The covariance matrix for model (2.11) is

Ω = I∑i j |Ti j |σ
2
ε +D5D′5σ

2
υ +D6D′6σ

2
ζ
+D4D′4σ

2
λ
,

where

D5 = diag
{
(V ′11ιT ,V ′12ιT , . . . ,V ′1N2

ιT )
′, . . . ,(V ′N11ιT ,V ′N12ιT , . . . ,V ′N1N2

ιT )
′
}

D6 =
(

diag{V ′11ιT ,V ′12ιT , . . . ,V ′1N2
ιT}′, . . .×

× . . . ,diag{V ′N11ιT ,V ′N12ιT , . . . ,V ′N1N2
ιT}′

)′
.

of sizes (∑i j |Ti j|×N1), and (∑i j |Ti j|×N2). Lastly, for model (2.14) we simply get

Ω = I∑i j |Ti j |σ
2
ε +D1D′1σ

2
µ .
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An important practical difficulty is that the spectral decompositions of the covari-
ance matrices introduced in Sect. 2.3 are no longer valid, so the inversion of Ω for
very large data sets can be forbidding. To go around this problem, let us construct
the quasi-spectral decomposition of the incomplete data covariance matrices, which
is simply done by leaving out the missing rows from the appropriate B. Specifi-
cally, let us call B∗ the incompleteness-adjusted versions of any B, which we get
by removing the rows corresponding to the missing observations. For example, the
spectral decomposition (2.16) for the all-encompassing model reads as

Ω ∗ = σ2
ε B∗i jt +(σ2

ε +T σ2
µ)B

∗
i j.+(σ2

ε +N2σ2
υ)B

∗
i.t +(σ2

ε +N1σ2
ζ
)B∗. jt

+(σ2
ε +T σ2

µ +N2σ2
υ)B

∗
i..+(σ2

ε +T σ2
µ +N1σ2

ζ
)B∗. j.

+(σ2
ε +N2σ2

υ +N1σ2
ζ
)B∗..t +(σ2

ε +T σ2
µ +N2σ2

υ +N1σ2
ζ
)B∗... ,

where now all B∗ have a number of rows equal to ∑i j |Ti j|. Of course, this is not
a correct spectral decomposition of Ω , but helps to define the following conjec-
ture.4 Namely, when the number of missing observations relative to the total num-
ber of observations is small, the inverse of Ω based on it’s quasi-spectral decom-
position, Ω ∗−1, approximates arbitrarily well Ω−1. More precisely, if [N1N2T −
∑i ∑ j |Ti j|]/[N1N2T ]→ 0, then (Ω−1−Ω ∗−1)→ 0. This means that in large data
sets, when the number of missing observations is small relative to the total number
of observations, Ω ∗−1 can safely be used in the GLS estimator instead of Ω−1. Let
us give an example. Multi-dimensional panel data are often used to deal with trade
(gravity) models. In these cases, however, when country i trades with country j,
there are no (ii) (or ( j j)) observations, there is no self-trade. Then the total number
of observations is N2T −NT with NT being the number of missing observations
due to no self-trade. Given that [N2T − (N2T −NT )]/N2T → 0 as the sample size
increases, the quasi-spectral decomposition can be used in large data.

2.4.2 The Inverse of the Covariance Matrices

The solution proposed above, however, has two potential drawbacks. First, the in-
verse, though reached at a very low cost, may not be accurate enough, and second,
when the “holes” in the data are substantial, this method cannot be used. These rea-
sons spur us to derive the analytically correct inverse of the covariance matrices at
the lowest possible cost. To do so, we have to reach back to the comprehensive in-
complete data analysis carried out by Baltagi and Chang (1994), and later Baltagi
et al. (2002) for one and two-way error components models, Baltagi et al. (2001)
for nested three-way models, and also, we have to generalize the results of Wans-
beek and Kapteyn (1989) (in a slightly different manner though than seen in Davis,
2002). This leads us, for model (2.2), to

4 This can be demonstrated to be valid by simulation.
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σ
2
ε Ω
−1 = Pb−PbD3(Rc)−1D′3Pb (2.19)

where Pb and Rc are obtained in steps:

Rc = D′3PbD3 +
σ2

ε

σ2
ζ

I , Pb = Pa−PaD2(Rb)−1D′2Pa ,

Rb = D′2PaD2 +
σ2

ε

σ2
υ

I , Pa = I−D1(Ra)−1D′1 , and

Ra = D′1D1 +
σ2

ε

σ2
µ

I ,

where D1, D2, D3 are the incompleteness-adjusted dummy variable matrices, and
are used to construct the P and R matrices sequentially: first, construct Ra to get
Pa, and then construct Rb to get Pb. Proof of (2.19) can be found in Appendix 2.
Note that to get the inverse, we have to invert min{N1T ; N2T ; N1N2} matrices. The
quasi-scalar form of (2.19) (which corresponds to the incomplete data version of
transformation (2.17)) is

yi jt −

(
1−

√
σ2

ε

|Ti j|σ2
µ +σ2

ε

)
1
|Ti j|∑t

yi jt −ω
a
i jt −ω

b
i jt ,

with
ω

a
i jt = χ

a
i jt ·ψa , and ω

b
i jt = χ

b
i jt ·ψb ,

where χa
i jt is the row corresponding to observation (i jt) from PaD2, ψa is the col-

umn vector (Rb)−1D′2Pay, ωb
i jt is the row from matrix PbD3 corresponding to obser-

vation (i jt), and finally, ψb is the column vector (Rc)−1D′3Pby.
For the other models, the job is essentially the same, only the number of steps

in obtaining the inverse is smaller (as the number of different random effects de-
creases). For model (2.5), it is with appropriately redefining P and R,

σ
2
ε Ω
−1 = Pa−PaD3(Rb)−1D′3Pa , (2.20)

where now

Rb = D′3PaD3 +
σ2

ε

σ2
ζ

I , Pa = I−D2(Ra)−1D′2 and Ra = D′2D2 +
σ2

ε

σ2
υ

I ,

with the largest matrix to be inverted now of size min{N1T ; N2T}. For model (2.7),
it is even simpler,

σ
2
ε Ω
−1 = I−D3(Ra)−1D′3 with Ra = D′3D3 +

σ2
ε

σ2
ζ

I , (2.21)

defining the scalar transformation
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ỹi jt = yi jt −

(
1−
√

σ2
ε

n jtσ
2
ζ
+σ2

ε

)
1

n jt
∑

i
yi jt ,

with n jt being the number of observations for a given ( jt) pair. For model (2.9), the
inverse is

σ
2
ε Ω
−1 = Pa−PaD4(Rb)−1D′4Pa (2.22)

where

Rb = D′4PaD4 +
σ2

ε

σ2
λ

I , Pa = I−D1(Ra)−1D′1 and Ra = D′1D1 +
σ2

ε

σ2
µ

I .

and we have to invert a min{N1N2; T} sized matrix. For model (2.11), the inverse is
again the result of a three-step procedure:

σ
2
ε Ω
−1 = Pb−PbD4(Rc)−1D′4Pb , (2.23)

where

Rc = D′4PbD4 +
σ2

ε

σ2
λ

I , Pb = Pa−PaD6(Rb)−1D′6Pa ,

Rb = D′6PaD6 +
σ2

ε

σ2
ζ

I , Pa = I−D5(Ra)−1D′5 , and Ra = D′5D5 +
σ2

ε

σ2
υ

I ,

(with inverting a matrix of size min{N1; N2; T}) and finally, the inverse of the sim-
plest model is

σ
2
ε Ω
−1 = I−D1(Ra)−1D′1 with Ra = D′1D1 +

σ2
ε

σ2
µ

I , (2.24)

defining the scalar transformation

ỹi jt = yi jt −

(
1−

√
σ2

ε

|Ti j|σ2
µ +σ2

ε

)
1
|Ti j|∑t

yi jt

on a typical yi jt variable.

2.4.3 Estimation of the Variance Components

Let us proceed to the estimation of the variance components. The estimators used for
complete data are no longer applicable here, as for example, transformation (2.18)
does not eliminate µi j, υit , and ζ jt from the composite disturbance term ui jt = µi j +
υit +ζ jt +εi jt when the data is incomplete. This problem can be tackled in two ways.
We can derive an incompleteness-robust alternative to (2.18), i.e., a transformation
which clears the non-idiosyncratic random effects from ui jt in the case of incomplete
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data (see Chap. 1). The problem is that most of these transformations involve the
manipulation of large matrices resulting in a heavy computational burden. To avoid
this, we propose simple linear transformations, which on the one hand, are robust
to incomplete data, and on the other hand, identify the variance components. Let us
see how this works for model (2.2). As before

E(u2
i jt) = σ

2
µ +σ

2
υ +σ

2
ζ
+σ

2
ε , (2.25)

but now let us define

ũa
i jt = ui jt − 1

|Ti j | ∑t ui jt , ũb
i jt = ui jt − 1

nit
∑ j ui jt , and

ũc
i jt = ui jt − 1

n jt
∑i ui jt .

It can be seen that

E((ũa
i jt)

2) =
|Ti j |−1
|Ti j | (σ

2
υ +σ2

ζ
+σ2

ε ) , E((ũb
i jt)

2) = nit−1
nit

(σ2
µ +σ2

ζ
+σ2

ε ) ,

and E((ũc
i jt)

2) =
n jt−1

n jt
(σ2

µ +σ2
υ +σ2

ε ) .
(2.26)

Combining (2.25) with (2.26) identifies all four variance components. The appro-
priate estimators are then

σ̂2
µ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñi j
∑i j

1
|Ti j |−1 ∑t ( ˜̂ua

i jt)
2

σ̂2
υ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñit
∑it

1
nit−1 ∑ j ( ˜̂ub

i jt)
2

σ̂2
ζ
= 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñ jt
∑ jt

1
n jt−1 ∑i ( ˜̂uc

i jt)
2

σ̂2
ε = 1

∑i j |Ti j | ∑i jt û2
i jt − σ̂2

µ − σ̂2
υ − σ̂2

ζ
,

(2.27)

where ûi jt are the OLS residuals, and ˜̂uk
i jt are its transformations (k = a,b,c), where

ñi j, ñit , and ñ jt denote the total number of observations for the (i j), (it), and ( jt)
pairs respectively in the data.

The estimation strategy of the variance components is exactly the same for all the
other models. Let us keep for now the definitions of ũb

i jt , and ũc
i jt . For model (2.5),

with ui jt = υit +ζ jt + εi jt , the estimators read as

σ̂2
υ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñit
∑it

1
nit−1 ∑ j ( ˜̂ub

i jt)
2

σ̂2
ζ
= 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñ jt
∑ jt

1
n jt−1 ∑i ( ˜̂uc

i jt)
2

σ̂2
ε = 1

∑i j |Ti j | ∑i jt û2
i jt − σ̂2

υ − σ̂2
ζ
,

(2.28)

whereas for model (2.7), with ui jt = ζ jt + εi jt , they are

σ̂2
ζ
= 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñ jt
∑ jt

1
n jt−1 ∑i ( ˜̂uc

i jt)
2

σ̂2
ε = 1

∑i j |Ti j | ∑i jt û2
i jt − σ̂2

ζ
,

(2.29)
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Note that the latter two estimators can be obtained from (2.27) by assuming σ̂2
µ = 0

for model (2.5), and σ̂2
µ = σ̂2

υ = 0 for model (2.7).
For model (2.9), let us redefine the ũk

i jt -s as

ũa
i jt = ui jt −

1
|Ti j|∑t

ui jt , and ũb
i jt = ui jt −

1
nt

∑
i j

ui jt ,

with nt being the number of individual pairs at time t. With ui jt = µi j +λt + εi jt ,

E((ũa
i jt)

2) =
|Ti j |−1
|Ti j | (σ2

λ
+σ2

ε ) , E((ũb
i jt)

2) = nt−1
nt

(σ2
µ +σ2

ε ) ,

and E(u2
i jt) = σ2

µ +σ2
λ
+σ2

ε .

From this set of identifying equations, the estimators are simply

σ̂2
µ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñi j
∑i j

1
|Ti j |−1 ∑t ( ˜̂ua

i jt)
2

σ̂2
λ
= 1

∑i j |Ti j | ∑i jt û2
i jt − 1

T ∑t
1

nt−1 ∑i j ( ˜̂ub
i jt)

2

σ̂2
ε = 1

∑i j |Ti j | ∑i jt û2
i jt − σ̂2

µ − σ̂2
λ
.

(2.30)

For model (2.14), with ui jt = µi j + εi jt , keeping the definition of ũa
i jt , we get

σ̂2
µ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñi j
∑i j

1
|Ti j |−1 ∑t ( ˜̂ua

i jt)
2

σ̂2
ε = 1

∑i j |Ti j | ∑i jt û2
i jt − σ̂2

µ .
(2.31)

Finally, for model (2.11), as now ui jt = υi +ζ j +λt + εi jt , using

ũa
i jt = ui jt −

1
ni

∑
jt

ui jt , ũb
i jt = ui jt −

1
n j

∑
it

ui jt , ũc
i jt = ui jt −

1
nt

∑
i j

ui jt ,

with ni and n j being the number of observation-pairs for individual i, and j, respec-
tively, the identifying equations are

E((ũa
i jt)

2) = ni−1
ni

(σ2
ζ
+σ2

λ
+σ2

ε ) , E((ũb
i jt)

2) =
n j−1

n j
(σ2

υ +σ2
λ
+σ2

ε ) ,

E((ũc
i jt)

2) = nt−1
nt

(σ2
υ +σ2

ζ
+σ2

ε ) , and E(u2
i jt) = σ2

υ +σ2
ζ
+σ2

λ
+σ2

ε ,

in turn leading to

σ̂2
υ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñi
∑i j

1
ni−1 ∑ jt ( ˜̂ua

i jt)
2

σ̂2
υ = 1

∑i j |Ti j | ∑i jt û2
i jt − 1

ñ j
∑it

1
n j−1 ∑it ( ˜̂ub

i jt)
2

σ̂2
ζ
= 1

∑i j |Ti j | ∑i jt û2
i jt − 1

T ∑ jt
1

nt−1 ∑i j ( ˜̂uc
i jt)

2

σ̂2
ε = 1

∑i j |Ti j | ∑i jt û2
i jt − σ̂2

υ − σ̂2
ζ
− σ̂2

λ
.

(2.32)
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2.5 Extensions

So far we have seen how to formulate and estimate three-way error components
models. However, it is more and more typical to have data sets which require an even
higher dimensional approach. As the number of feasible model formulations grows
exponentially along with the dimensions, there is no point in attempting to collect all
of them. Rather we will take the 4D representation of the all-encompassing model
(2.2), and show how the extension to higher dimensions can be carried out.

2.5.1 4D and Beyond

The baseline 4D model we use reads, with i = 1 . . .N1, j = 1 . . .N2, s = 1 . . .N3, and
t = 1 . . .T , as

yi jst = x′i jstβ +µi js +υist +ζ jst +λi jt + εi jst = x′i jstβ +ui jst , (2.33)

where we keep assuming that u (and its components individually) have zero mean,
the components are pairwise uncorrelated, and further,

E(µi jsµi′ j′s′) =

{
σ2

µ i = i′ and j = j′ and s = s′

0 otherwise

E(υistυi′s′t ′) =

{
σ2

υ i = i′ and s = s′ and t = t ′

0 otherwise

E(ζ jstζ j′s′t ′) =

{
σ2

ζ
j = j′ and s = s′ and t = t ′

0 otherwise

E(λi jtζi′ j′t ′) =

{
σ2

λ
i = i′ and j = j′ and t = t ′

0 otherwise.

The covariance matrix of such error components formulation is

Ω = E(uu′) = σ2
µ(IN1N2N3 ⊗ JT )+σ2

υ(IN1 ⊗ JN2 ⊗ IN3T )

+σ2
ζ
(JN1 ⊗ IN2N3T )+σ2

λ
(IN1N2 ⊗ JN3 ⊗ IT )+σ2

ε IN1N2N3T .
(2.34)

Its inverse can be simply calculated following the method developed in Sect. 2.3,
and the estimation of the variance components can also be derived as in Sect. 2.4
(see for details Appendix 3).

The estimation procedure is not too difficult in the incomplete case either, at least
theoretically. Taking care of the unbalanced nature of the data in four dimensional
panels has nevertheless a growing importance, as the likelihood of having missing
and/or incomplete data increases dramatically in higher dimensions. Conveniently,
we keep assuming that our data is such that for each (i js) individual, t ∈ Ti js, where
Ti js is a subset of the index-set {1, . . . ,T}, that is, we have |Ti js| identical observa-
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tions for each (i js) pair. First, let us write up the covariance matrix of (2.33) as

Ω = E(uu′) = σ
2
ε I +σ

2
µ D1D′1 +σ

2
υ D2D′2 +σ

2
ζ

D3D′3 +σ
2
λ

D4D′4 , (2.35)

where, in the complete case,

D1 = (IN1N2N3 ⊗ ιT ) , D2 = (IN1 ⊗ ιN2 ⊗ IN3T ) , D3 = (ιN1 ⊗ IN2N3T ) ,
D4 = (IN1N2 ⊗ ιN3 ⊗ IT ) ,

all being (N1N2N3T ×N1N2N3), (N1N2N3T ×N1N3T ), (N1N2N3T ×N2N3T ), and
(N1N2N3T ×N1N2T ) sized matrices respectively, but now we delete from each Dk
the rows corresponding to the missing observations to reflect the unbalanced nature
of the data. The inverse of such covariance formulation can be reached in steps, that
is, one has to derive

Ω
−1

σ
2
ε = Pc−PcD4(Rd)−1D′4Pc , (2.36)

where Pc and Rd are obtained in the following steps:

Rd = D′4PcD4 +
σ2

ε

σ2
λ

, Pc = Pb−PbD3(Rc)−1D′3Pb ,

Rc = D′3PbD3 +
σ2

ε

σ2
ζ

, Pb = Pa−PaD2(Rb)−1D′2Pa ,

Rb = D′2PaD2 +
σ2

ε

σ2
υ

, Pa = I−D1(Ra)−1D′1 , and Ra = D′1D1 +
σ2

ε

σ2
µ

.

Even though the calculation above alleviates some of the “dimensionality curse”,5

to perform the inverse we still have to manipulate potentially large matrices. The last
step in finishing the FGLS estimation of the incomplete 4D models is to estimate
the variance components. Fortunately, this is not too difficult, notwithstanding the
size of the formulas. The results are presented in Appendix 3.

2.5.2 Mixed FE-RE Models

As briefly noted earlier, when one of the indices is small, it makes more sense to
treat the effects depending on that index as fixed. As an illustration, consider an
employee i–employer j–time t-type data set, where we usually have a very large set
of i, but relatively low j and t. All this means, that the all-encompassing model (2.2)
can now be rewritten as

yi jt = x′i jtβ +α jt +µi j +υit + εi jt , (2.37)

or, similarly,

5 The higher the dimension of the panel, the larger the size of the matrices we have to work with.
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y = Xβ +D1α +D2µ +D3υ + ε = Xβ +D1α +u ,

with D1 = (ιN1⊗IN2T ), D2 = (IN1N2⊗ιT ), and D3 = (IN1⊗ιN2⊗IT ). We assume that
α jt enters the model as a fixed effect and through dummy variables, and that ui jt =
µi j+υit +εi jt remains the random component. To estimate such model specification,
keeping an eye on optimality, we have to follow a two-step procedure. First, to
get rid of the fixed effects, we define a projection orthogonal to α jt . Then, on this
transformed model, we perform FGLS. The resulting estimator is analytically not
too complicated, and although as seen in Chap. 1, restricted x jt regressors cannot be
estimated from (2.37), β̂Mixed is identified and consistent for the rest of the variables.
This is a substantial improvement over the FGLS estimation of model (2.2), when
N2 and T are both small, as in such cases, as shown in Sect. 2.4, the inconsistency
of the variance components estimators carries over to the model parameters. The
projection needed to eliminate α jt is

MD1 = I−D1(D′1D1)
−1D′1 or in a scalar form, ỹi jt = yi jt − ȳ. jt . (2.38)

Note that the resulting transformed (2.37),

ỹi jt = x̃i jtβ + ũi jt , (2.39)

is now a simple error components model with a slightly less trivial random effects
structure embedded in ũi jt . In fact,

Ω = E(ũũ′)
= E(MD1uu′MD1) = MD1D2D′2MD1σ2

µ +MD1D3D′3MD1σ2
υ +MD1σ2

ε

= ((IN1 − J̄N1)⊗ IN2 ⊗ J̄T )T σ2
µ +((IN1 − J̄N1)⊗ J̄N2 ⊗ IT )N2σ2

υ

+((IN1 − J̄N1)⊗ IN2T )σ
2
ε ,

while its inverse can be derived using the trick introduced in Sect. 2.3 (using the
substitution IN1 = QN1 + J̄N1 ), giving

Ω−1σ2
ε = [IN1N2T − (J̄N1 ⊗ IN2T )]
−(1−θ1) [(IN1 ⊗ J̄N2 ⊗ IT )− (J̄N1N2 ⊗ IT )]
−(1−θ2) [(IN1N2 ⊗ J̄T )− (J̄N1 ⊗ IN2 ⊗ J̄T )]
+(1−θ1−θ2 +θ3) [(IN1 ⊗ J̄N2T )− J̄N1N2T ]

with

θ1 =
σ2

ε

N2σ2
υ +σ2

ε

, θ2 =
σ2

ε

T σ2
µ +σ2

ε

, and θ3 =
σ2

ε

N2σ2
υ +T σ2

µ +σ2
ε

.

After all, the mixed effects estimation of (2.37) is identical to the FGLS estima-
tion of (2.39). The only step remaining is to estimate the variance components. In
particular,
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σ̂2
ε = 1

(N1−1)(N2−1)(T−1) ∑i jt ( ˜̂ua
i jt)

2

σ̂2
µ = 1

(N1−1)(N2−1)T ∑i jt ( ˜̂ub
i jt)

2− σ̂2
ε

σ̂2
υ = 1

(N1−1)N2(T−1) ∑i jt ( ˜̂uc
i jt)

2− σ̂2
ε ,

(2.40)

where ûi jt is the OLS residual, and now

ũa
i jt = ui jt − ū. jt − ūi.t − ūi j.+ ū..t + ū. j.+ ūi..− ū... ,

ũb
i jt = ui jt − ū. jt − ūi.t + ū..t , and ũc

i jt = ui jt − ū. jt − ūi j.+ ū. j. .
(2.41)

The next question is to what extent the above algorithm has to be modified for
unbalanced data. First, transformation (2.38) is also successful in eliminating α jt
from model (2.37) in this case. Second, the resulting transformed covariance matrix
now cannot be represented by kronecker products; instead, to invert it, we have to
rely on tricks derived in Sect. 2.4. The estimation of the variance components is
done by first adjusting the transformations ũa

i jt , ũb
i jt in (2.41) to incomplete data, that

is, using their semi-scalar representatives (1.29), (1.28), and for ũc
i jt

ũc = M(2)u = M(1)u−M(1)D̃3(D̃′3M(1)D̃3)
−D̃′3M(1)u ,

where u contains the stacked disturbances (with elements ui jt ), ũc is its transformed
counterpart, M(1) = I − D̃1(D̃′1D̃1)

−D̃′1, and D̃1 and D̃3 are obtained from D1 =
(IN1N2⊗ ιT ) and D3 = (ιN1⊗ IN2T ) by leaving out the rows corresponding to missing
observations. Finally, we have to set the proper sample sizes in (2.40).

2.6 Testing

In this section, we show for the all-encompassing model (2.2) how to test for the
different components of the unobserved heterogeneity. More specifically, we test
the nullity of the variance of some random components against the alternative that
the given variance is positive. We have to be careful, however, regarding what we
assume about the rest of the variances. Testing H0 : σ2

µ = 0 against HA : σ2
µ > 0

implicitly assumes that σ2
υ = σ2

ζ
= 0, and so on. In what follows, we collect some

null, and alternative hypotheses, and present the mechanism to test them:

Ha
0 : σ2

µ = 0 | σ2
υ > 0 , σ2

ζ
> 0; Ha

A : σ2
µ > 0 | σ2

υ > 0 , σ2
ζ
> 0

Hb
0 : σ2

µ = 0 | σ2
υ = 0 , σ2

ζ
> 0; Hb

A : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
> 0

Hc
0 : σ2

µ = 0 | σ2
υ = 0 , σ2

ζ
= 0; Hc

A : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
= 0

Hd
0 : σ2

µ = 0 | σ2
υ > 0 , σ2

ζ
> 0; Hd

A : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
> 0

He
0 : σ2

µ = 0 | σ2
υ > 0 , σ2

ζ
= 0; He

A : σ2
µ > 0 | σ2

υ = 0 , σ2
ζ
= 0 .

To test these hypotheses, we will invoke the ANOVA F-test, and adjust it to our
purposes. In its general form, as derived in Baltagi et al. (1992),
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F =
y′MZ1D(D′MZ1D)−D′MZ1y/(p− r)

y′MZ2y/(N1N2T − k̃− p+ r)
, (2.42)

where both M1 and M2 are orthogonal projectors, and the degrees of freedom is
calculated from p, r, and k̃. Table 2.7 captures each specific matrix and constant for
all hypotheses listed above.

Table 2.7 Specific functional forms of the ANOVA F-test

Hypothesis Z1 D Z2 p r k̃

Ha (X , D2, D3) (IN1N2 ⊗ JT ) (X , D1, D2, D3) N1N2 1 N1(T −1)+N2(T −1)+T + k
Hb (X , D3) (IN1N2 ⊗ JT ) (X , D1, D3) N1N2 1 N2(T −1)+ k
Hc X (IN1N2 ⊗ JT ) (X , D1) N1N2 1 k
Hd (X , D3) (IN1N2 ⊗ JT , IN1 ⊗ JN2 ⊗ IT ) (X , D1, D2, D3) N1N2 +N1T 2 k
He X (IN1N2 ⊗ JT , IN1 ⊗ JN2 ⊗ IT ) (X , D1, D2) N1N2 +N1T 2 k

Note: As defined, MZ = I − Z(Z′Z)−Z′, D1 = (IN1N2 ⊗ ιT ), D2 = (IN1 ⊗ ιN2 ⊗ IT ), and
D3 = (ιN1 ⊗ IN2T ).

Although (2.42) suffices theoretically, let us not forget that in order to perform the
test, we have to invert (D′MZ1D), a matrix as large as the data. Instead, to avoid this
computational burden, we can elaborate on (2.42), and find out what the respective
projection matrices do to the data:

F =
F1/(p− r)

F2/(N1N2T − k̃− p+ r)
,

where

F1 = ( ˜̃y− ˜̃X(X ′X)−1X ′y)′(I +X(X̃ ′X̃)X ′)( ˜̃y− ˜̃X(X ′X)−1X ′y)
= ( ˜̃y− ˜̃X β̂OLS)

′(I +X(X̃ ′X̃)X ′)( ˜̃y− ˜̃X β̂OLS) ,

and

F2 = (ỹ− X̃(X̃ ′X̃)−1X̃ ỹ)′(ỹ− X̃(X̃ ′X̃)−1X̃ ỹ) = (ỹ− X̃ β̂w)
′(ỹ− X̃ β̂w) ,

with the “∼”-s on the top denoting different transformations (see below). For Ha
0

and Ha
A, for example, these are

ỹi jt = yi jt − ȳ. jt − ȳi.t − ȳi j.+ ȳ..t + ȳ. j.+ ȳi..− ȳ... (2.43)

(which is the optimal Within transformation of model (2.2)), and

˜̃yi jt = yi jt − ȳ. jt − ȳi.t + ȳ..t . (2.44)

To get an insight into the specific formula, note that we actually compare two mod-
els, the one where the sources of all variations are cleared (the denominator of
(2.42)) with the one where all variation is cleared, except for the one coming from
µi j (the numerator of (2.42)). This is because both under the null and the alternative
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we assume, that σ2
υ > 0 and σ2

ζ
> 0, that is, they are irrelevant from our point of

view, we can eliminate both υit and ζ jt with an orthogonal projection. Further, un-
der the alternative, σ2

µ > 0 also holds, so we eliminate µi j as well, but save it under
the null. The numerator and the denominator of (2.42) are then compared, and if this
is sufficiently close to 1, we cannot reject the nullity of σ2

µ .
Not much changes when the underlying data is incomplete. In principle, the or-

thogonal projections MZ1 and MZ2 now cannot be represented as linear transforma-
tions on the data, only in semi-scalar form, with the inclusion of some matrix oper-
ations listed in Sect. 1.5.2. For example, (2.43) corresponds to (1.28), while (2.44)
corresponds to (1.28) in the case of incomplete data. Once we have the incomplete-
robust ỹ, ˜̃y (similarly for X) variables, the F statistic is obtained as in (2.42), with
the properly computed degrees of freedom.

2.7 Conclusion

For large data sets, when observations can be considered as samples from an under-
lying population, random effects specifications seem to be suited to deal with multi-
dimensional data sets. FGLS estimators for three-way error components models are
almost as easily obtained as for the traditional 2D panel models, however the result-
ing asymptotic requirements for their consistency are more peculiar. In fact, now
the data may grow in three directions, and only some of the asymptotic cases are
sufficient for consistency. Interestingly, for some error components specifications,
consistency implies the convergence of the FGLS estimator to the Within one. This
is most important, as under the Within estimation, the parameters of some fixed re-
gressors are unidentified, which is in fact carried over to the FGLS estimation of
those parameters as well. To solve this, we have shown that a simple OLS may be
sufficient to get the full set of parameter estimates (of course, bearing the price of
inefficiency), wherever this identification problem persists. The main results of the
chapter are extended to treat incomplete data and towards higher dimensions as well.
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Appendix 1

Example for normalizing with 1: Model (2.14), T → ∞

plimT→∞Var(β̂OLS) = plimT→∞(X
′X)−1X ′ΩX(X ′X)−1

= plimT→∞

(
X ′X

T

)−1
X ′ΩX

T 2

(
X ′X

T

)−1
.

We assume that plimT→∞X ′X/T = QXX is a finite, positive definite matrix, and
further, we use that Ω = σ2

ε IN1N2T +σ2
µ(IN1N2 ⊗ JT ). With this,

plimT→∞Var(β̂OLS) = Q−1
XX ·plimT→∞

σ2
ε X ′X +σ2

µ X ′(IN1N2 ⊗ JT )X
T 2 ·Q−1

XX ,

where we know that plimT→∞

σ2
ε X ′X
T 2 = 0, and we assume that

plimT→∞

σ2
µ X ′(IN1N2 ⊗ JT )X

T 2 = QXBX

is a finite, positive definite matrix. Then the variance is finite, and takes the form

plimT→∞Var(β̂OLS) = Q−1
XX ·QXBX ·Q−1

XX .

Note that we can arrive at the same result by first normalizing with the usual
√

T
term, and then adjusting it with 1/

√
T to arrive at a non-zero but bounded variance:

plimT→∞Var(
√

T β̂OLS) = plimT→∞T (X ′X)−1X ′ΩX(X ′X)−1

= plimT→∞

(
X ′X

T

)−1
X ′ΩX

T

(
X ′X

T

)−1
,

which grows at O(T ) because of X ′ΩX
T . We have to correct for it with the 1/

√
T

factor, leading to the overall normalization factor
√

T/
√

T = 1. The reasoning is
similar for all other cases and other models.
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Example for normalizing with
√

N1N2/A: Model (2.2), N1,N2→ ∞

Using the standard
√

N1N2 normalization factor gives

plimN1,N2→∞Var(
√

N1N2β̂OLS) = plimN1,N2→∞N1N2 · (X ′X)−1X ′ΩX(X ′X)−1

= plimN1,N2→∞

(
X ′X

N1N2

)−1
X ′ΩX
N1N2

(
X ′X

N1N2

)−1

= Q−1
XX ·plimN1,N2→∞

X ′ΩX
N1N2

·Q−1
XX ,

where we assumed that plimN1,N2→∞X ′X/N1N2 = QXX , is a positive definite, finite
matrix. Further, we use that

Ω = σ
2
ε IN1N2T +σµ(IN1N2 ⊗ JT )+σ

2
υ(IN1 ⊗ JN2 ⊗ IT )+σ

2
ζ
(JN1 ⊗ IN2T ) .

Observe that

plimN1,N2→∞
X ′ΩX
N1N2

= plimN1,N2→∞

σ2
ε X ′X

N1N2
+plimN1,N2→∞

σµ X ′(IN1N2⊗JT )X
N1N2

+plimN1,N2→∞

σ2
υ X ′(IN1⊗JN2⊗IT )X

N1N2
+plimN1,N2→∞

σ2
ζ

X ′(JN1⊗IN2T )X
N1N2

(2.45)
is an expression where the first two terms are finite, but the third grows with O(N2)
(because of JN2 ), and the last with O(N1) (because of JN1 ), which in turn yields un-
bounded variance of β̂OLS. To obtain a finite variance, we have to normalize the vari-
ance additionally with either 1/

√
N1 or 1/

√
N2, depending on which grows faster.

Let us assume, without loss of generality, that N1 grows at a higher rate (A = N1). In
this way, the effective normalization factor is

√
N1N2√

A
=
√

N1N2√
N1

=
√

N2, under which
the first three plim terms in (2.45) are zero, but the fourth is finite:

plimN1,N2→∞

σ2
ζ

X ′(JN1 ⊗ IN2T )X

N2
1 N2

= QXBX ,

with some QXBX finite, positive definite matrix. The same reasoning holds for other
models and other asymptotics as well.

Appendix 2: Proof of formula (2.19)

Let us make the proof only for model (2.2) (so formula (2.19)), the rest is just direct
application of the derivation below. The outline of the proof is based on Wansbeek
and Kapteyn (1989).

First, note that using the Woodbury matrix identity,
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(Pa)−1 =

(
I−D1(D′1D1 + I σ2

ε

σ2
µ

)−1D1

)−1

= I +D1

(
D′1D1 + I σ2

ε

σ2
µ

−D′1D1

)−1

D′1

= I +
σ2

µ

σ2
ε

D1D′1

Second, using that

D′2PaD2 = D′2D2−D′2D1(Ra)−1D′1D2 = Rb− σ2
ε

σ2
υ

I

gives

Rb−D′2PaD2 =
σ2

ε

σ2
υ

I .

Using the Woodbury matrix identity for the second time,

(Pb)−1 =
(
Pa−PaD2(Rb)−1D′2Pa

)−1

= (Pa)−1 +(Pa)−1PaD2
(
Rb−D′2Pa(Pa)−1PaD2

)−1 D′2Pa(Pa)−1

= (Pa)−1 +D2
(
Rb−D′2PaD2

)−1 D′2 = (Pa)−1 +D2

(
σ2

ε

σ2
υ

I
)−1

D′2

= I +
σ2

µ

σ2
ε

D1D′1 +
σ2

υ

σ2
ε

D2D′2 .

Now we are almost there, we only have to repeat the last step one more time. That
is,

D′3PbD3 = D′3D3−D′3D2(Rb)−1D′2D3 = Rc− σ2
ε

σ2
ζ

I gives Rc−D′3PbD3 =
σ2

ε

σ2
ζ

I .

again, and so(
Ω−1σ2

ε

)−1
=
(
Pb−PbD3(Rc)−1D′3Pb

)−1

= (Pb)−1 +(Pb)−1PbD3
(
Rc−D′3Pb(Pb)−1PbD3

)−1 D′3Pb(Pb)−1

= (Pb)−1 +D3
(
Rc−D′3PbD3

)−1 D′3 = (Pb)−1 +D3

(
σ2

ε

σ2
ζ

I
)−1

D′3

= I +
σ2

µ

σ2
ε

D1D′1 +
σ2

υ

σ2
ε

D2D′2 +
σ2

ζ

σ2
ε

D3D′3 = Ωσ−2
ε .

Appendix 3: Inverse of (2.34), and the estimation of the variance
components
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σ2
ε Ω−1 = IN1N2N3T − (1−θ20)(JN1 ⊗ IN2N3T )− (1−θ21)(IN1 ⊗ JN2 ⊗ IN3T )

−(1−θ22)(IN1N2 ⊗ JN3 ⊗ IT )− (1−θ23)(IN1N2N3 ⊗ JT )
+(1−θ24)(JN1N2 ⊗ IN3T )+(1−θ25)(JN1 ⊗ IN2 ⊗ JN3 ⊗ IT )
+(1−θ26)(JN1 ⊗ IN2N3 ⊗ JT )+(1−θ27)(IN1 ⊗ JN2N3 ⊗ IT )
+(1−θ28)(IN1 ⊗ JN2 ⊗ IN3 ⊗ JT )+(1−θ29)(IN1N2 ⊗ JN3T )
−(1−θ30)(JN1N2N3 ⊗ IT )− (1−θ31)(JN1N2 ⊗ IN3 ⊗ JT )
−(1−θ32)(JN1 ⊗ IN2 ⊗ JN3T )− (1−θ33)(IN1 ⊗ JN2N3T )
+(1−θ34)JN1N2N3T

with

θ20 =
σ2

ε

σ2
ε +N1σζ

θ21 =
σ2

ε

σ2
ε +N2συ

θ22 =
σ2

ε

σ2
ε +N3σλ

θ23 =
σ2

ε

σ2
ε +T σµ

θ24 = θ20 +θ21− σ2
ε

σ2
ε +N1σ2

ζ
+N2σ2

υ

θ25 = θ20 +θ22− σ2
ε

σ2
ε +N1σ2

ζ
+N3σ2

λ

θ26 = θ20 +θ23− σ2
ε

σ2
ε +N1σ2

ζ
+T σ2

µ

θ27 = θ21 +θ22− σ2
ε

σ2
ε +N2σ2

υ+N3σ2
λ

θ28 = θ21 +θ23− σ2
ε

σ2
ε +N2σ2

υ+T σ2
µ

θ29 = θ22 +θ23− σ2
ε

σ2
ε +N3σ2

λ
+T σ2

µ

θ30 = θ24 +θ25 +θ27−θ20−θ21−θ22 +
σ2

ε

σ2
ε +N1σ2

ζ
+N2σ2

υ+N3σ2
λ

θ31 = θ24 +θ26 +θ28−θ20−θ21−θ23 +
σ2

ε

σ2
ε +N1σ2

ζ
+N2σ2

υ+T σ2
µ

θ32 = θ25 +θ26 +θ29−θ20−θ22−θ23 +
σ2

ε

σ2
ε +N1σ2

ζ
+N3σ2

λ
+T σ2

µ

θ33 = θ27 +θ28 +θ29−θ21−θ22−θ23 +
σ2

ε

σ2
ε +N2σ2

υ+N3σ2
λ
+T σ2

µ

θ34 = θ20 +θ21 +θ22 +θ23−θ24−θ25−θ26−θ27−θ28−θ29

+θ30 +θ31 +θ32 +θ33− σ2
ε

σ2
ε +N1σ2

ζ
+N2σ2

υ+N3σ2
λ
+T σ2

µ

.

The estimation of the variance components in the case of complete data is as follows:

σ̂2
ε = 1

(N1−1)(N2−1)(N3−1)(T−1) ∑i jst ˜̂u2
i jst

σ̂2
µ = 1

(N1−1)(N2−1)(N3−1)T ∑i jst ( ˜̂ua
i jst)

2− σ̂2
ε

σ̂2
υ = 1

(N1−1)N2(N3−1)(T−1) ∑i jst ( ˜̂ub
i jst)

2− σ̂2
ε

σ̂2
ζ
= 1

N1(N2−1)(N3−1)(T−1) ∑i jst ( ˜̂uc
i jst)

2− σ̂2
ε

σ̂2
λ
= 1

(N1−1)(N2−1)N3(T−1) ∑i jst ( ˜̂ud
i jst)

2− σ̂2
ε ,

where, as before, ûi jst is the OLS residual, and

ũi jst = ui jst − ūi js.− ūi j.t − ūi.st − ū. jst + ūi j..+ ūi.s.+ ū. js.
+ūi..t + ū. j.t + ū..st − ūi...− ū. j..− ū..s.− ū...t + ū....

ũa
i jst = ui jst − ūi j.t − ūi.st − ū. jst + ūi..t + ū. j.t + ū..st − ū...t

ũb
i jst = ui jst − ūi js.− ūi j.t − ū. jst + ūi j..+ ū. js.+ ū. j.t − ū. j..

ũc
i jst = ui jst − ūi js.− ūi j.t − ūi.st + ūi j..+ ūi.s.+ ūi..t − ūi...

ũd
i jst = ui jst − ūi js.− ūi.st − ū. jst + ūi.s.+ ū. js.+ ū..st − ū..s. .
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Estimation of the variance components in the case of incomplete data yields

σ̂2
µ = 1

∑i js |Ti js| ∑i jst û2
i jst − 1

ñi js
∑i js

1
|Ti js|−1 ∑t ( ˜̂ua

i jst)
2

σ̂2
υ = 1

∑i js |Ti js| ∑i jst û2
i jst − 1

ñist
∑ist

1
nist−1 ∑ j ( ˜̂ub

i jst)
2

σ̂2
ζ
= 1

∑i js |Ti js| ∑i jst û2
i jst − 1

ñ jst
∑ jt

1
n jst−1 ∑i ( ˜̂uc

i jst)
2

σ̂2
λ
= 1

∑i js |Ti js| ∑i jst û2
i jst − 1

ñi jt
∑i jt

1
ni jt−1 ∑s ( ˜̂ud

i jst)
2

σ̂2
ε = 1

∑i js |Ti js| ∑i jst û2
i jst − σ̂2

µ − σ̂2
υ − σ̂2

ζ
− σ̂2

λ
,

(2.46)

where ûi jst are the OLS residuals, and ˜̂uk
i jst are its transformations (k = a,b,c,d)

according to

ũa
i jst = ui jst − 1

|Ti js| ∑t ui jst , ũb
i jst = ui jst − 1

nist
∑ j ui jst ,

ũc
i jst = ui jst − 1

n jst
∑i ui jst , ũd

i jst = ui jst − 1
ni jt

∑s ui jst .

Further, |Ti js|, nist , n jst , and ni jt denote the total number of observations for a given
(i js), (ist), ( jst), and (i jt) pair respectively, and finally, ñi js, ñist , ñ jst , and ñi jt are
the total number of unique (i js), (ist), ( jst), and (i jt) observations in the data.
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Abstract This chapter examines various estimation and testing issues concerning
models with endogenous regressors. The complexity of these issues increases as the
number of potential unobserved heterogeneities increases with the dimension of the
data. The chapter examines the properties of least squares type estimators, including
the Within estimator, under different specifications of the error components and dif-
ferent correlation assumptions with the regressors. The latter induces different types
of endogeneity not studied previously. In terms of estimation, the chapter includes
an extension to the well-known Hausman-Taylor estimator for models with multi-
ple dimensions. It also proposes a set of valid orthogonality conditions for purposes
of implementing Generalised Method of Moments (GMM) estimators under these
different specifications and endogeneity assumptions. The theoretical results in this
chapter identify consistent and efficient estimators for different specifications. These
results allow an extension of the Hausman specification test to detect endogeneity in
multi-dimensional panel data models. Other issues, such as mixed effects models,
self-flow, incomplete data and higher dimensional models, will also be discussed.
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3.1 Introduction

For the ease of exposition, this chapter focuses on three dimensional panel data
models. Extensions to the higher dimension will be discussed in some detail at the
end of the chapter. Following Model (2.10) of Chap. 2,

yi jt = x′i jtβ +πi jt + εi jt = x′i jtβ +ui jt , (3.1)

with i = 1 . . .N1, j = 1 . . .N2 and t = 1 . . .T , where yi jt and x′i jt are the dependent
variables and the (1×K) vector of regressors,1 respectively. πi jt is the unobserved
heterogeneity which can correspond to any of the random effects formulations in
(2.2), (2.5), (2.7), (2.9), (2.11), and (2.14) in Chap. 2, while εi jt is the idiosyncratic
shock with ui jt = πi jt +εi jt . Model (3.1) can also be presented using matrix notation,

y = X β + π + ε

(N1N2T ×1) (N1N2T × k) (k×1) (N1N2T ×1) (N1N2T ×1) , (3.2)

where π is the vector of all unobserved heterogeneous effects. The index t will
uniquely define the time period; indexes i and j will typically define the units of
observations, measured over time. In some instances, i and j may represent different
roles of the same economic unit. For example, in a model of trade flows, i may
represent the export nation with j denoting the import nation, e.g. export flows from
the Netherlands to Hungary. In other instances they may be nested; for example,
individual i in family unit j; or finally, no direct relationship: earnings of individual
i in region j.

As usual, when the unobserved effects are correlated with the regressors, stan-
dard ordinary least squares (OLS) and generalised least squares (GLS) estimators
are biased and inconsistent.2 An alternative approach is to seek an appropriate trans-
formation to eliminate the unobserved heterogeneity. As is shown in Sect. 1.5 of
Chap. 1, with an MD (N1N2T ×N1N2T ) projection matrix such that MDπ = 0, equa-
tion (3.2) can be transformed and yields

MDy = MDXβ +MDε . (3.3)

The absence of π means that the parameter vector β can be estimated consistently,
if not efficiently, by OLS or GLS, in equation (3.3). This is the basis of Within and
Between estimators, as well as other variants that combine these two estimators for

1 Note that xi jt denotes the usual vector of covariates, defined by xi jt in Chaps. 1 and 2. As we
form various partitions on this vector in the subsequent sections, we need to distinguish between
regressors based on their fixedness. For example, xi jt denotes the partition of xi jt , whose elements
vary over all three indexes. Likewise, xi j denotes the partition of xi jt whose elements vary over
indexes i and j but not t.
2 In such cases E(X ′u) 6= 0 and E(X ′Ω−1u) 6= 0, with Ω = E(uu′), and so both OLS and GLS
estimators are biased. Similarly, depending on the source of endogeneity, plimN1→∞ X ′u/N1 6= 0
and plimN1→∞ X ′Ω−1u/N1 6= 0 circumvent the consistency of the OLS and GLS estimators (in this
case endogeneity enters the model through i).
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the “two-way” fixed effects specifications. While these estimators are generally con-
sistent under various assumptions, they have two major shortcomings. First, these
estimators eliminate all time-invariant and individual-invariant variables from the
model. This includes the unobserved heterogeneity, π , as well as some of the ex-
planatory variables in xi jt . As a result, parameters associated with the time-invariant
or individual-invariant variables cannot be estimated using these estimators. This
may potentially be a very important issue, especially when one wishes to evaluate
the impact of certain policies. The conventional approach of including dummy vari-
ables to represent policies in the model will no longer be effective as these variables
are likely to be eliminated by the transformations. Second, these estimators elimi-
nate unobserved heterogeneities by computing the deviation of each variable from
different means, such as group means (averages over time) and overall means (av-
erage over time and individual). This approach often leads to information loss and
this is reflected by the fact that these estimators, while consistent, are generally not
efficient.

From a practical perspective, the efficiency issue is generally a lesser concern.
This is partially due to the fact that most multidimensional datasets have an over-
whelmingly large number of observations over most, if not all, indexes. Thus, the
ease of computation of these estimators often outweighs the efficiency benefit from
the more computationally complicated, but more efficient, estimators. The identifia-
bility of parameters associated with time-invariant and individual-invariant variables
is often the more serious issue. For example, standard Gravity models of trade, such
as those considered in Harris et al. (2002) and Bun and Klaassen (2007), employ
distance, the GDP of the export and the import countries as key regressors. Distance
is clearly time-invariant; GDP of the exporting country is invariant with respect to
all import countries; and likewise, the GDP of the importing country is invariant
with respect to all export countries, thus they are both individual-invariant. Under
the assumption that ui jt = µi j + υit + ζ jt , the standard Within-type approach will
eliminate all t-invariant, j-invariant and i-invariant explanatory variables, and thus
it is impossible to estimate their effects.

Therefore, the aim of this chapter is to examine the appropriate methods by which
to estimate the parameters in a linear multi-dimensional panel data model under dif-
ferent assumptions of endogeneity, where the unobserved heterogeneity terms are
treated as random, not fixed (as in Chap. 2), for the reasons outlined above. We
first revisit the seminal results of Hausman and Taylor (1981) (hereafter HT) in
Sect. 3.2 and extend their approach to multi-dimensional panel data models. The re-
sults indicate that the HT approach can be applied to any three-dimensional model in
principle but the transformations required to generate the set of internal instruments
are not trivial. In addition, the order conditions to ensure parameter identification
are sometimes too restrictive to be practical. As a viable alternative, this chapter
also presents a non-linear GMM approach in Sect. 3.3. This approach allows a more
flexible correlation structure between the regressors and the unobserved heterogene-
ity, but requires slightly stronger assumptions on the correlation structures between
the unobserved heterogeneities. Sect. 3.4 briefly discusses estimation issues with
mixed effects models, that is, models with both fixed and random effects. In order
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to assess the validity of the proposed instruments as well as the estimators, Sect. 3.5
constructs various parameter tests, while Sect. 3.6 extends the results intuitively to
incomplete data and to higher-dimensional models.

Throughout the chapter, we adopt the standard ANOVA notation similarly to
the rest of the book. Specifically, IN and ιN denote the (N ×N) identity matrix
and the (N× 1) vector of ones, respectively. The subscript may be omitted if the
dimension is clear from the context. JN = ιNι ′N , J̄N = JN/N and QN = IN− J̄N , so that
QNy yields the “de-meaned” version of y. MA projects A into its null-space, namely,
MA = I−A(A′A)−1A′, while PA projects A into its column space, specifically, PA =
I−MA = A(A′A)−1A′, and finally, x̄. jt denotes the average of x over the index i while
the definition extends naturally to other quantities such as x̄i.t , x̄i j., x̄..t and x̄....

3.2 The Hausman-Taylor-like Instrument Variable Estimator

Clearly the parameters in model (3.1)-(3.2) cannot be identified in their current form
without making some further assumptions regarding πi jt . Consider firstly model
(2.11) in Chap. 2,

yi jt = x′i jtβ +υi +ζ j +λt + εi jt , (3.4)

which is clearly a special case of model (3.1) with πi jt = υi + ζ j +λt and this will
serve as our starting point. Indeed, this specification spawned much of the subse-
quent research in the empirical literature, see for example, Ghosh (1976) and Matyas
(1997).

3.2.1 A Simple Approach

Note that when πi jt = υi + ζ j +λt , it is possible to rewrite this as a standard two-
dimensional panel data model by grouping all the individual indexes. Specifically,
let ξi j = υi+ζ j then πst = ξs+λt with each s corresponding to each (i j) pair. Thus,
Model (3.4) can be rewritten as

yst = x′stβ +ξs +λt + εst , (3.5)

which is a standard two-dimensional panel data model with two-way error com-
ponents. Wyhowski (1994) proposed consistent estimators for β in equation (3.5).
While this provides a simple approach to estimating the parameter for a multidi-
mensional panel data model, it does not utilise the additional information provided
by such data. From a practical viewpoint, the number of instruments is also limited
under such an approach. This has practical implications as the relatively small num-
ber of instruments may potentially violate the order condition which is necessary for
the approach proposed in Wyhowski (1994). In the event that the order condition is
not satisfied under this simple approach, we need to derive a larger instrument set
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by utilising the additional dimension(s) available and the specification of the error
components. We focus on this issue in the next subsection.

3.2.2 Sources of Endogeneity

In addition to the specification as stated in equation (3.4), we consider the ran-
dom effects in πi jt to be well-behaved, that is assumption (2.12) holds, and that all
have zero means, finite variances and are pairwise uncorrelated. However, we do
not impose any correlation restriction between the regressors and the unobserved
heterogeneity. Therefore, the following results hold under a wide range of corre-
lation structures between the regressors and the unobserved heterogeneity terms.
For ease of exposition, we divide the explanatory variables according to their index
properties as follows:

x′i jt = (x̄′i jt , x′i, x′j, x′t) .

Note that x̄′i jt = (x′i jt ,x
′
it ,x
′
jt ,x
′
i j), that is, it includes all regressors that vary over at

least two indices. This particular partition highlights the fact that any parameters
associated with variables that vary over more than one index can be identified and
estimated from Within-type estimation. Variables such as x′i, x′j, or x′t are eliminated
by the Within transformations, therefore their associated parameters cannot be iden-
tified with the Within estimators.

Without loss in generality, we partition each group of variables as follows

x̄′i jt = (x′1i jt , x′2i jt , x′3i jt , x′4i jt , x′5i jt , x′6i jt , x′7i jt , x′8i jt)

x′i = (x′1i, x′2i)
x′j = (x′1 j, x′2 j)

x′t = (x′1t , x′2t) ,

where each partition is assumed to have a different correlation structure with the
unobserved heterogeneities. These are summarised in Table 3.1 and the subsequent
analysis does not explicitly impose any further assumptions on the correlations be-
tween the regressors and the unobserved heterogeneities. Multicollinearity does not
generally violate the feasibility and consistency of the estimators with the exception
of perfect collinearity, a case which will be excluded from the rank condition.

Following Hausman and Taylor (1981) and Wyhowski (1994), the basic idea is to
construct a set of internal instruments by using the group means of variables in the
partition x̄i jt . The approach can be outlined as follows. First, the parameters associ-
ated with x̄i jt are estimated by the usual Within-estimator, which is consistent. Sec-
ond, the group means of x̄i jt are used to construct instruments for the endogenous
partitions in x′i, x′j and x′t . The following subsections discuss various implementa-
tions of this general idea.
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Table 3.1 Sources of endogeneity on the
level of partitions of the regressors for model
(3.4)

Correlated with Partition

None x′1i jt x′1i x′1 j x′1t
υi x′2i jt x′2i
ζ j x′3i jt x′2 j
λt x′4i jt x′2t
υi, ζ j x′5i jt
υi, λt x′6i jt
ζ j, λt x′7i jt
υi, ζ j, λt x′8i jt

3.2.3 The Hausman-Taylor Estimator

Using matrix notation for the partitions of the regressors, we define X (1) as the
stacked matrix version of x̄′i jt , namely

X (1) =
(

X (1)
1 , X (1)

2 , X (1)
3 , X (1)

4 , X (1)
5 , X (1)

6 , X (1)
7 , X (1)

8

)
,

with respective columns k(1)l , l = 1 . . .8. Similarly, we define X (2), X (3), X (4) for x′i,

x′j and x′t , respectively. The number of columns in each partition X (m)
l is k(m)

l with

the associated parameter vector being β
(m)
l .

Consider the following transformation on X (1)

H1 =
(
I− (J̄N1 ⊗ J̄N2 ⊗ J̄T )− (QN1 ⊗ J̄N2 ⊗ J̄T )

−(J̄N1 ⊗QN2 ⊗ J̄T )− (J̄N1 ⊗ J̄N2 ⊗QT )
)
X (1) ,

which can be used as an instrument for X (1) in order to obtain a consistent estimate
of β

(1)
l for l = 1, . . . ,8. It is clear that H1 is correlated with X (1), but the transfor-

mation also removes the unobserved heterogeneities, namely it removes υi, ζ j and
λt when the transformation is applied to equation (3.4). While this transformation
looks complicated, it can be interpreted quite easily. Essentially, it is equivalent to
(xi jt − x̄i.− x̄. j.− x̄..t +2x̄...).

Intuitively, to find instruments for x′2i, the endogenous part of x′i, we can use all
regressors from x′i jt , which are uncorrelated with υi but this will work only if these
instruments are also not correlated with ζ j and λt . One way to ensure this is to
remove j- and t- variations from the instruments. As a result, the instrument set for
x′2i is simply

H2 = (QN1 ⊗ J̄N2T ) ·
(

X (1)
1 , X (1)

3 , X (1)
4 , X (1)

7 , X (2)
1

)
,
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where the exogenous X (2)
1 does not require any instrument.

Also note that H2 is a matrix containing the j, t-group means minus the overall
sample mean of the variables included. That is, it only contains variation over i and
therefore, this transformation will remove ζ j and λt . It is also important to note that
H2 only comprises of variables that are uncorrelated with υi, which underpins its
usage as an instrument for X (2)

2 , the individual-specific regressors correlated with
υi.

Following the similar arguments, the largest variable set uncorrelated with ζ j is

H3 = (J̄N1 ⊗QN2 ⊗ J̄T ) ·
(

X (1)
1 , X (1)

2 , X (1)
4 , X (1)

6 , X (3)
1

)
,

and finally, the largest variable set uncorrelated with λt is

H4 = (J̄N1N2 ⊗QT ) ·
(

X (1)
1 , X (1)

2 , X (1)
3 , X (1)

4 , X (4)
1

)
.

In other words, we have, by construction

plim
N1→∞

1
N1N2T H ′2(υ + ε) = 0

plim
N2→∞

1
N1N2T H ′3(ζ + ε) = 0

plim
T→∞

1
N1N2T H ′4(λ + ε) = 0 .

While the construction of transformation matrices, such as (QN1 ⊗ J̄N2 ⊗ J̄T ), may
seem memory demanding even on powerful personal computers when the dataset is
large, these transformations represent relatively simple operations on the data which
can be carried out sequentially. This makes the transformations computationally
feasible in practice. Specifically, these transformations define operations on simple
group means and the deviations from these group means. Table 3.2 provides a list of
matrix transformations with their equivalent scalar operations on each observation.

Table 3.2 Translation of matrix operations into scalar

Matrix Scalar

(QN1 ⊗QN2 ⊗QT )X x′i jt − x′. jt − x′i.t − x′i j.+ x′i..+ x′. j.+ x′..t − x′...
(J̄N1 ⊗QN2 ⊗QT )X x′. jt − x′..t − x′. j.+ x′...
(QN1 ⊗ J̄N2 ⊗QT )X x′i.t − x′i..− x′..t + x′...
(QN1 ⊗QN2 ⊗ J̄T )X x′i j.− x′. j.− x′i..+ x′...
(J̄N1 ⊗ J̄N2 ⊗QT )X x′..t − x′...
(J̄N1 ⊗QN2 ⊗ J̄T )X x′. j.− x′...
(QN1 ⊗ J̄N2 ⊗ J̄T )X x′i.− x′...
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Naturally, it is possible to use H = (H1, H2, H3, H4) directly as instruments to
the endogenous regressors. Alternatively, we can construct an asymptotically more
efficient estimator by accommodating the error component structure of the model.

3.2.3.1 Extending the Hausman-Taylor Two-Stage Least Squares Estimator

Performing two-stage least squares (2SLS) on model (3.4) with instrument set H is
identical to estimating

PHy = PHXβ +PHu (3.6)

with Least Squares where PH is the projection matrix, H(H ′H)−1H ′. Define

PH =
4

∑
p=1

PHp ,

and note that PH is symmetric idempotent given the orthogonality nature of Hp. The
estimator is then defined as

β̂HT 1 = (X ′PHX)−1X ′PHy . (3.7)

Note that the Hp matrices can be constructed by calculating simple group means
and deviations from group means from the original data matrix. The elements of
PHp are therefore straightforward to calculate. Hence, the estimator as defined in
equation (3.7) is computationally simple without excessive burden on the memory
or computation requirement.

3.2.3.2 The More Efficient Hausman-Taylor Estimator

The asymptotic efficiency of the estimator as defined in equation (3.7) can be im-
proved if we exploit the error component structure. As shown in Fuller and Battese
(1973) and following the same arguments as those in Chap. 2 (pp. 6-7), pre-multiply
model (3.2) by Ω−1/2 gives

Ω
−1/2y = Ω

−1/2Xβ +Ω
−1/2u ,

where Ω = E(uu′), then the same estimator as defined in equation (3.7) is asymp-
totically efficient. Alternatively, following the arguments in Maddala (1971), this
2SLS can be interpreted as a direct Least Squares on model

P∗Hy = P∗HXβ +P∗Hu ,

with

P∗H =
4

∑
p=1

1
σp

PHp ,
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where different weights are assigned to different parts of the instruments:3

σ
2
1 = σ

2
ε , σ

2
2 = σ

2
ε +N2T σ

2
υ , σ

2
3 = σ

2
ε +N1T σ

2
ζ
, and σ

2
4 = σ

2
ε +N1N2σ

2
λ
.

The more efficient estimator can then be computed as

β̂HT 2 = (X ′P∗HX)−1X ′P∗Hy . (3.8)

In practice, these variances are unknown. Specifically, the components of the
variance-covariance matrix Ω are usually unknown and must be estimated in order
to implement (3.8). The first observation is that the variance of the idiosyncratic
error term can always be estimated from the residuals given by the Within estimator:

ε̂ = ỹ− X̃ (1)
β̂
(1)
W , and σ̂

2
ε = ˆ̃ε ′ ˆ̃ε/(N1N2T −N1−N2−T +1) ,

where ỹ and X̃ denote y and X (1) after the Within transformation, respectively. β
(1)
W

is the Within estimate associated with X (1). Once we obtain consistent estimates for
β (m), m = 1 . . .4, we can use them to estimate συ , σζ and σλ . Specifically,

(QN1 ⊗ J̄N2T )
(

y−X (1)
β̂
(1)
HT −X (2)

β̂
(2)
HT

)
= û1 ,

and it can be shown that

plimN1→∞û′1û1/(N1N2T ) =plimN1→∞

1
N2T

· N1−1
N1

σ
2
ε +

N1−1
N1

σ
2
υ

=
1

N2T
σ

2
ε +σ

2
υ .

From this, we can estimate σ2
υ as

σ̂
2
υ = û′1û1/(N1N2T )− 1

N2T
σ̂

2
ε .

Similar procedures apply to the estimation of σ2
ζ

and σ2
λ

, where the residuals are
given by

(J̄N1 ⊗QN2 ⊗ J̄T )
(

y−X (1)β̂
(1)
HT −X (3)β̂

(3)
HT

)
= û2

(J̄N1N2 ⊗ Q̄T )
(

y−X (1)β̂
(1)
HT −X (4)β̂

(4)
HT

)
= û3 ,

which can be used to estimate the variance components as

σ̂2
ζ
= û′2û2/(N1N2T )− 1

N1T σ̂2
ε

σ̂2
λ
= û′3û3/(N1N2T )− 1

N1N2
σ̂2

ε .

3 The result PH Ω−1/2 = P∗H implied by the definition of the Q and J̄ matrices.



80 Laszlo Balazsi, Maurice J.G. Bun, Felix Chan, and Mark N. Harris

Note that for the consistent estimation of σ2
υ , we need N1→ ∞. Similarly, we need

N2 and T asymptotics for the consistency of the other two variance components
estimators.

The rank condition to ensure parameter identifiability is that X ′PHX must have
full rank. Similarly to Hausman and Taylor (1981), there is also a set of necessary
order conditions that is easier to verify. Specifically,

k(1)1 + k(1)3 + k(1)4 + k(1)7 ≥ k(2)2

k(1)1 + k(1)2 + k(1)4 + k(1)6 ≥ k(3)2

k(1)1 + k(1)2 + k(1)3 + k(1)5 ≥ k(4)2

(3.9)

have to be satisfied jointly. Although it seems the number of instruments far exceeds
the number of endogenous regressors, it is often the case that k(m)

l = 0 for several m
and l.

These order conditions reduce to the order condition in Hausman and Taylor
(1981) in the case of standard two-dimensional panels. This can be seen by assuming
the presence of only a single random effect, υi, with ζ j = λt = 0 for all j and t. Let
s denotes the joined index of j and t, we reduce the three-dimensional panel into a
standard two-dimensional case. This allows us to combine X (1)

1 , X (1)
3 , X (1)

4 , X (1)
7 as

they all vary over i and s and are uncorrelated with υi. If we denote the total number
of their columns k1, the first order condition in (3.9) simplifies to

k1 ≥ k(5)2 . (3.10)

Also, as k(3)2 = k(4)2 = 0, the second and third order conditions hold by construction.
Thus, the three order conditions reduce to equation (3.10), which requires at least as
many exogenous variables in x′is as endogenous variables in x′i. This is identical to
the order condition in Hausman and Taylor (1981).

We can also relate our order conditions to those of the two-way panel models
studied in Wyhowski (1994). If we restrict ζ j = 0 for all j and β

(3)
1 = β

(3)
2 = 0 with

N2 = 1, then the model reduces once again to a standard two-dimensional panel. Let
k1 = k(1)1 , k2 = k(1)4 + k(1)7 and k3 = k(1)2 + k(1)5 , then the above conditions reduce to

k1 + k2 ≥ k(2)2 and k1 + k3 ≥ k(4)2 ,

which is identical to the order conditions given in Wyhowski (1994).

3.2.4 Time Varying Individual Specific Effects

Model (3.4) assumes the individual specific effects are time invariant. Given the
multi-dimensional nature of the data, it is possible to incorporate time varying indi-
vidual effects. Specifically, consider model (2.2) from Chap. 2, which was referred
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to as the “all-encompassing model”,

yi jt = x′i jtβ +µi j +υit +ζ jt + εi jt , (3.11)

where the unobserved heterogeneities, µi j, υit , ζ jt , and the idiosyncratic disturbance
term, εi jt , are assumed to be pairwise uncorrelated, with zero means and finite vari-
ances. Recall in the case of model (3.4), only variables with a single index, namely,
x′i, x′j and x′t required instruments from x′i jt , as the rest of the parameters could be
identified from the Within estimator. This is no longer the case with model (3.11).
Since the unobserved heterogeneities vary over individuals and time, the Within
transformation will also eliminate all xi j, x′it and x′jt variables in addition to the vari-
ables with a single index. This means the parameters of x′i j, x′it and x′jt will also be
unidentified.

Following the same approach as in the previous subsection, Table 3.3 shows the
partitions of the regressor vector based on the sources of endogeneity:

Table 3.3 Sources of endogeneity on the level of partitions
of the regressors for model (3.11)

Correlated with Partition

None x′1i jt x′1i j x′1it x′1 jt x′1i x′1 j x′1t
µi j x′2i jt x′2i j x′2it x′2 jt x′2i x′2 j
υit x′3i jt x′3i j x′3it x′3 jt x′3i x′2t
ζ jt x′4i jt x′4i j x′4it x′4 jt x′3 j x′3t
µi j, υit x′5i jt x′5i j x′5it x′5 jt x′4i
µi j, ζ jt x′6i jt x′6i j x′6it x′6 jt x′4 j
υit , ζ jt x′7i jt x′7i j x′7it x′7 jt x′4t
µi j, υit , ζ jt x′8i jt x′8i j x′8it x′8 jt

The different group means of xi jt ′ can be used as instrumental variables for the
endogenous variables in x′i j, x′it , x′jt , x′i, x′j and x′t but interestingly, group means of
x′i j, x′it and x′jt can also be used as instruments for x′i, x′j and x′t . The potential of each
group of variables to be instruments of the others is illustrated in Figure 3.1.

Allowing individual specific effects to be time varying leads to some additional
complications in implementing HT-type estimators. Extra care is required to ensure
the validity of each internal instrument. For example, while the group means of x′2i jt
can in theory be used as instruments for x′3i j and x′5i j, the fact that x′2i jt is correlated
with µi j signifies that the group means must be taken over both i and j indexes,
which makes it invalid to be an instrument for x′5i j. This argument applies more
generally to model equation (3.11) and is summarised in Table 3.4.

While the general HT approach is still theoretically sound in this setting, the time
varying nature of individual specific effects imposes additional restrictions on the
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Fig. 3.1 Possible instrumental variables

Table 3.4 Pairs of variables needed
to be instrumented jointly

Variable Pairs

x′i j (x′3i j x′5i j)
(x′4i j x′6i j)
(x′7i j x′8i j)

x′it (x′2it x′5it )
(x′4it x′7it )
(x′6it x′8it )

x′jt (x′2 jt x′6 jt )
(x′3 jt x′7 jt )
(x′5 jt x′8 jt )

x′i (x′2i x′3i x′4i)
x′j (x′2 j x′3 j x′4 j)
x′t (x′2t x′3t x′4t )

order conditions. Following the same notation as above, define X (m)
l as the data ma-

trix counterpart of row l and column m in Table 3.3 where k(m)
l denotes the number

of columns of X (m)
l . The instrument(s) for variable X (m)

l can always be expressed as
linear transformations of the original variable(s). Specifically, Hp = Rp ·Xp, where
Xp is a collection of variables which are used to create internal instruments and Rp
represents the appropriate linear transformation. For each endogenous variable, Ta-
ble 3.5 presents the instruments, Hp, the associated transforms, Rp, and the original
variable set, Xp.

Note that exogenous variables also serve as their own instruments. Once we have
all the instruments collected, it is straightforward to extend the HT estimator by
following the same approach as before.
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Table 3.5 Proposed instruments Hp for each endogenous variable

Endogenous Instruments
Variables Rp Xp

X (1) (QN1 ⊗QN2 ⊗QT ) X (1)

(X (2)
2 , X (2)

1 ) (QN1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

3 , X (1)
4 , X (1)

7 , X (2)
1 )

(X (2)
3 , X (2)

5 ) (QN1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

4 )

(X (2)
4 , X (2)

6 ) (QN1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

3 )

(X (2)
7 , X (2)

8 ) (QN1 ⊗QN2 ⊗ J̄T ) X (1)
1

(X (3)
3 , X (3)

1 ) (QN1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

2 , X (1)
4 , X (1)

6 , X (3)
1 )

(X (3)
2 , X (3)

5 ) (QN1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

4 )

(X (3)
4 , X (3)

7 ) (QN1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

2 )

(X (3)
6 , X (3)

8 ) (QN1 ⊗ J̄N2 ⊗QT ) X (1)
1

(X (4)
4 , X (4)

1 ) (J̄N1 ⊗QN2 ⊗QT ) (X (1)
1 , X (1)

2 , X (1)
3 , X (1)

5 , X (4)
1 )

(X (4)
2 , X (4)

6 ) (J̄N1 ⊗QN2 ⊗QT ) (X (1)
1 , X (1)

3 )

(X (4)
3 , X (4)

7 ) (J̄N1 ⊗QN2 ⊗QT ) (X (1)
1 , X (1)

2 )

(X (4)
5 , X (4)

8 ) (J̄N1 ⊗QN2 ⊗QT ) X (1)
1

(X (5)
2 , X (5)

3 , X (5)
4 , X (5)

1 ) (QN1 ⊗ J̄N2 ⊗ J̄T ) (X (1)
1 , X (1)

4 , X (2)
1 , X (2)

4 , X (3)
1 , X (3)

4 , X (5)
1 )

(X (6)
2 , X (6)

3 , X (6)
4 , X (6)

1 ) (J̄N1 ⊗QN2 ⊗ J̄T ) (X (1)
1 , X (1)

3 , X (2)
1 , X (2)

3 , X (4)
1 , X (4)

3 , X (6)
1 )

(X (7)
2 , X (7)

3 , X (7)
4 , X (7)

1 ) (J̄N1 ⊗ J̄N2 ⊗QT ) (X (1)
1 , X (1)

2 , X (3)
1 , X (3)

2 , X (4)
1 , X (4)

2 , X (7)
1 )

Note: For each row p, the instrument is obtained as Hp = Rp · Xp . Instruments for exogenous
regressors are simply themselves, and added, quite arbitrarily, to lines 2,6,10,14,15, and 16.

β̂HT 1 = (X ′PHX)−1X ′PHy ,

and since all Hp are orthogonal to each other,

PH =
16

∑
p=1

PHp .

The more efficient estimator which takes into account the error structure in ui jt :

β̂HT 2 = (X ′P∗HX)−1X ′P∗Hy , (3.12)

with

P∗H = PH ·Ω−1/2
16

∑
p=1

1
σp

PHp ,

where
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σ
2
1 = σ

2
ε

σ
2
p = σ

2
ε +T σ

2
µ p = 2, . . . ,5

σ
2
p = σ

2
ε +N2σ

2
υ p = 6, . . . ,9

σ
2
p = σ

2
ε +N1σ

2
ζ

p = 10, . . . ,13

σ
2
14 = σ

2
ε +N2σ

2
υ +T σ

2
µ

σ
2
15 = σ

2
ε +N1σ

2
ζ
+T σ

2
µ

σ
2
16 = σ

2
ε +N1σ

2
ζ
+N2σ

2
υ .

(3.13)

The set of order conditions necessary to ensure parameter identification is, however,
much less trivial here. It is clear that the order condition for each X (m) is inde-
pendent of each other, as we use different group variations of the (possibly same)
instruments. The same is not true for the partitions within X (m). The order condition
for each has to hold not only individually, but also jointly. Table 3.6 organizes these
conditions, which all have to be satisfied in order to have as many instruments as
endogenous variables.

Table 3.6 Order conditions for model (3.11)

Variable Condition

X (2) k(1)1 ≥ k(2)7 + k(2)8

k(1)1 − k(2)7 − k(2)8 + k(1)3 ≥ k(2)4 + k(2)6

k(1)1 − k(2)7 − k(2)8 + k(1)3 − k(2)4 − k(2)6 + k(1)4 ≥ k(2)3 + k(2)5

k(1)1 − k(2)7 − k(2)8 + k(1)3 − k(2)4 − k(2)6 + k(1)4 − k(2)3 − k(2)5 + k(1)7 ≥ k(2)2

X (3) k(1)1 ≥ k(3)6 + k(3)8

k(1)1 − k(3)6 − k(3)8 + k(1)2 ≥ k(3)4 + k(3)7

k(1)1 − k(3)6 − k(3)8 + k(1)2 − k(3)4 − k(3)7 + k(1)4 ≥ k(3)2 + k(3)5

k(1)1 − k(3)6 − k(3)8 + k(1)2 − k(3)4 − k(3)7 + k(1)4 − k(3)2 − k(3)5 + k(1)6 ≥ k(3)3

X (4) k(1)1 ≥ k(4)5 + k(4)8

k(1)1 − k(4)5 − k(4)8 + k(1)2 ≥ k(4)3 + k(4)7

k(1)1 − k(4)5 − k(4)8 + k(1)2 − k(4)3 − k(4)7 + k(1)3 ≥ k(4)2 + k(4)6

k(1)1 − k(4)5 − k(4)8 + k(1)2 − k(4)3 − k(4)7 + k(1)3 − k(4)2 − k(4)6 + k(1)5 ≥ k(4)4

X (5) k(1)1 + k(1)4 + k(2)1 + k(2)4 + k(3)1 + k(3)4 ≥ k(5)2 + k(5)3 + k(5)4

X (6) k(1)1 + k(1)3 + k(2)1 + k(2)3 + k(4)1 + k(4)3 ≥ k(6)2 + k(6)3 + k(6)4

X (7) k(1)1 + k(1)2 + k(3)1 + k(3)2 + k(4)1 + k(4)2 ≥ k(7)2 + k(7)3 + k(7)4

The complexity of these necessary order conditions means that the general HT
approach may not be practical in higher dimensions. This provides a motivation to
consider other estimation strategies, such as the non-linear GMM estimator, which
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will be discussed in Sect. 3.3. Nevertheless, we present several statistical properties
of the HT estimator for Model (3.11) in the following subsection.

3.2.5 Properties

While the order conditions are necessary for parameter identification, it is well
known that HT-type estimators, as with other IV estimators in general, are biased in
finite samples. It is therefore important to examine their asymptotic properties. In
general, the estimators are consistent if the proposed instruments are asymptotically
uncorrelated with the composite disturbance term ui jt . As the instruments are con-
structed to fulfil this particular requirement under different types of asymptotics,
we have to derive the specific asymptotics to ensure the validity of all the instru-
ment sets. For both model (3.4) and (3.11), the β̂HT 1 and β̂HT 2 are consistent only
when all N1,N2,T → ∞ jointly. This is perhaps unsurprising, as instruments for x′i,
x′j and x′t are asymptotically uncorrelated with ui jt if N1→ ∞, N2→ ∞, and T → ∞,
respectively. The main asymptotic result is presented in the following proposition:

Proposition 1. Consider model (3.11) with β̂HT 2 defined as (3.12), then under as-
sumptions (1) - (15) in the Appendix

S(β̂HT 2−β )→d N(0,Γ ) as N1,N2,T → ∞ ,

where

S = diag
{√

N1N2T · Ik(1) ,
√

N1N2 · Ik(2) ,
√

N1T · Ik(3) ,
√

N2T · Ik(4) , ×
×
√

N1N2 · Ik(5) ,
√

N1T · Ik(6) ,
√

N2T · Ik(7)
}

and

Γ = diag
{

1/σ
2
ε Γ1, 1/σ

2
µΓ2, 1/σ

2
υΓ3, 1/σ

2
ζ

Γ4, 1/σ
2
µΓ5, 1/σ

2
υΓ6, 1/σ

2
ζ

Γ7

}
with

Γ1 = diag{V1,0k(2)+...+k(7)}
Γ2 = diag{0k(1) ,V2,22,0k(3)+...+k(7)}
Γ3 = diag{0k(1)+k(2) ,V3,22,0k(4)+...+k(7)}
Γ4 = diag{0k(1)+...+k(3) ,V4,22,0k(5)+...+k(7)}
Γ5 = diag{0k(1) ,V5,22,0k(3)+k(4) ,V5,44,0k(6)+k(7)}
Γ6 = diag{0k(1)+k(2) ,V6,33,0k(4)+k(5) ,V6,44,0k(7)}
Γ7 = diag{0k(1)+k(2)+k(3) ,V7,33,0k(5)+k(6) ,V7,44} .

Vp,rr denotes the sub-matrix rr of Vp.

Proof. See the Appendix.

Corollary 1. Consider model (3.4) with β̂HT 2 defined as equation (3.8), under as-
sumptions (A) - (I) in the Appendix,
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S(β̂HT 2−β )→d N(0,Γ−1) as N1,N2,T → ∞ ,

where
S = diag

{√
N1N2T · Ik(1) ,

√
N1 · Ik(2) ,

√
N2 · Ik(3) ,

√
T · Ik(4)

}
and

Γ = diag
{

1/σ
2
ε Γ1, 1/σ

2
υΓ2, 1/σ

2
ζ

Γ3, 1/σ
2
λ

Γ4

}
.

with
Γ1 = diag{V1,0k(2)+k(3)+k(4)}
Γ2 = diag{0k(1) ,V2,22,0k(3)+k(4)}
Γ3 = diag{0k(1)+k(2) ,V3,22,0k(4)}
Γ4 = diag{0k(1)+k(2)+k(3) ,V4,22} .

Proof. See the Appendix.

3.2.6 Using External Instruments

The discussion has so far focused on HT-type estimators which utilise existing vari-
ables to generate “internal” instruments for any endogenous regressors. This section
discusses briefly the more conventional IV approach, specifically, the use of “exter-
nal” variables as instruments for the endogenous variables.

Consider model (3.4) with the a priori knowledge that x′i jt , or any of its trans-
formed counterparts, are not correlated with x′i. Clearly, we can still use the Within
transform of x̄′i jt to instrument itself and use its different group means to instrument
x′j and x′t but the parameters associated with x′i cannot be identified due to the Within
transformation. In this case, we can try to find a variable z′i jt which can be fixed over
j and/or t, such that

Corr
(
z′i jt ,x

′
i
)
6= 0 and Corr

(
z′i..− z′...,ui jt

)
= 0 . (3.14)

Note that for the second condition in (3.14) to hold, we only require Corr(z′i jt ,υi) =
0. Once we obtain z′i jt , the instrument is constructed as in Sect. 3.2.3, where z′i jt is
used as instruments instead of x̄′i jt for x′2i.

In terms of identification, the additional order condition g ≥ k(2)2 , where g is
the number of instrumental variables, is required. The condition requires that the
number of instrumental variables must be as large as the number of endogenous
regressors in x′i, which coincides with the standard result of identifiability in the
instrumental variable literature.
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3.3 The Non-linear Generalized Method of Moments Estimator

Section 3.2 discussed how the HT-type estimators can be generalised to consistently
estimate three-way panel data models with endogenous regressors. It showed that
the complexity of the order conditions increase as we allow for more flexible error
component structures. This imposes practical difficulties in implementing such es-
timators. An alternative is to consider a non-linear GMM estimator, which exploits
the structure of the composite disturbance term and the assumptions regarding the
sources of endogeneity. It seeks to utilise a set of orthogonality conditions to con-
struct a consistent estimator.

Chan et al. (2016) proposed a GMM estimator, similar to Ahn and Schmidt
(1999), for model (3.11) on incomplete data. Although they only assumed that
E(x′itυit) 6= 0 and E(x′jtζ jt) 6= 0, with the rest of the variables assumed to be ex-
ogenous, their methodology can be readily extended to more general cases.

In particular, from the error component structure of model (3.11), ui jt = µi j +
υit + ζ jt , and from the underlying assumptions about the random effects, it is
straightforward to show the following. Define u jt = (u1 jt , . . . ,uN1 jt)

′ and uit =
(ui1t , . . . ,uiN2t)

′ as (N1×1) and (N2×1) vectors, respectively

E
(
uitu′it −uktu′kt

)
= 0 for all i,k = 1 . . .N1, k 6= i, t = 1 . . .T

E
(

u jtu′jt −ultu′lt
)

= 0 for all j, l = 1 . . .N2, k 6= i, t = 1 . . .T
E
(
uitu′it−1−uktu′kt−1

)
= 0 for all i,k = 1 . . .N1, k 6= i, t = 2 . . .T

E
(

u jtu′jt−1−ultu′lt−1

)
= 0 for all j, l = 1 . . .N2, k 6= i, t = 2 . . .T

E
(
uitu′kt−1

)
= 0 for all i,k = 1 . . .N1, k 6= i, t = 1 . . .T

E
(
u jtu′lt−1

)
= 0 for all j, l = 1 . . .N2, l 6= j, t = 1 . . .T

(3.15)

Note that k 6= i and l 6= j are required to avoid the degenerated case, as for k = i
and l = j the orthogonality condition becomes an identity. Equations (3.15) lead to
a maximum number of (N1−1)(2N1−1)+(N2−1)(2N2−1) moment conditions.
Define g(β ,X ,y) as the vector of orthogonality conditions in (3.15), the GMM esti-
mator is constructed as

β̂GMM = argmin
β

g′(β ,X ,y)Σ−1g(β ,X ,y) , (3.16)

where Σ denotes the optimal weight matrix. The common practice to obtain the
efficient GMM estimator is to first minimise (3.16) with Σ = I to β ∗, then estimate
Σ with

Σ̂(β ∗) =
1
T

T

∑
t=1

g(β ∗,Xt ,yt)g′(β ∗,Xt ,yt) , (3.17)

with Xt = (x11t , . . . ,xN1N2t)
′ which definition extends naturally to yt . Using the esti-

mated weight matrix, the efficient GMM is calculated from the functional form

β̂GMM,e f f = argmin
β

g′(β ,X ,y)Σ̂−1(β ∗)g(β ,X ,y) . (3.18)
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Chan et al. (2016) also showed that under the assumptions of specific sources of
endogeneity and the error component structure, β̂GMM and β̂GMM,e f f are consistent
as T → ∞, and (from the central limit theorem),

√
T (β̂GMM,e f f − β )→d N(0,V ),

where

V = E
(

∂g′(β ,X ,y)
∂β

(
g(β ,X ,y)g′(β ,X ,y)

)−1 ∂g(β ,X ,y)
∂β

)−1 ∣∣∣
β=β̂GMM,e f f

.

As model (3.4) is nested in model (3.11), the GMM estimator (3.18) with the
same set of underlying moment conditions can also be applied.

3.4 Mixed Effects Models

In Sects. 3.2 and 3.3, various estimators of pure random effects models were pro-
posed in the presence of endogeneity. Clearly such linear dependencies between the
effects and the observables do not matter in the case of fixed effects, as the orthog-
onal transformations remove the endogeneity bias by eliminating the fixed effects.
Sometimes, however, the application is such that it requires “mixed effects mod-
els”, models of both fixed and random effects. A brief discussion on the estimation
of such models can be found in Sect. 2.5.2. but the discussion did not consider any
endogeneity bias.

The solution here is to first eliminate the fixed effects from any mixed effects
model by applying the appropriate transformation. This is followed by finding viable
instruments for the endogenous (transformed) variables. As we will see, the task is
fundamentally similar to the original endogeneity problem discussed in Sect. 3.2.

Reconsider model (3.4),

yi jt = x′i jtβ +υi +ζ j +λt + εi jt , (3.19)

with the sole difference that λt is assumed to be a fixed parameter, rather than a ran-
dom variable. To eliminate λt apply the transformation ỹi jt = yi jt − ȳ..t , represented
by the matrix M = I− (J̄N1N2 ⊗ IT ). This gives

ỹi jt = x̃′i jtβ + υ̃i + ζ̃ j + ε̃i jt ,

which is a pure random effects model with de-meaned random effects and trans-
formed variables. To identify the sources of endogeneity in this model, we follow
the same approach as before by forming partitions of the regressors as presented in
Table 3.7. Let x̃i jt = ( ¯̃xi jt , x̃i j, x̃it , x̃ jt) with ¯̃xi jt = (x̃1i jt , x̃2i jt , x̃3i jt , x̃4i jt).

All regressors that vary over the time index, t, but fixed over i and j have been re-
moved along with the fixed effect, λt . Therefore, we can only identify the partitions
that are correlated with υ̃i and ζ̃ j.

From here, the approach follows the same arguments in Sect. 3.2.3: endogenous
partitions in x̃′i jt are instrumented from the Within estimator, while x̃′2i is instru-
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Table 3.7 Sources of endogeneity at
the level of partitions of the regressors
for model (3.19)

Correlated with Partition

None x̃′1i jt x̃′1i x̃′1 j
υ̃i x̃′2i jt x̃′2i
ζ̃ j x̃′3i jt x̃′2 j
υ̃i, ζ̃ j x̃′4i jt

mented with partitions of x̃′i jt that are uncorrelated with υi, namely, x̃′1i jt and x̃′3i jt .
x̃′2 j is instrumented with partitions of x̃′i jt that are uncorrelated with ζ j, namely, x̃′1i jt
and x̃′2i jt . The instruments have to be transformed to eliminate the remaining corre-
lation with ζ̃ j in the case of (x̃′1i jt , x̃′3i jt). The same is also true for υ̃i in the case of
(x̃′1i jt , x̃′2i jt).

Let X̃ (1)
l be the matrix stacked version of x̃′li jt , with X̃ (2)

l and X̃ (3)
l defined simi-

larly for x̃′li and x̃′l j. Define X̃ = MX , the instruments in matrix form can be written
as

H1 = (I− IN1 ⊗ J̄N2T − J̄N1 ⊗ IN2 ⊗ J̄T + J̄N1N2T )MX (1)

= (I− IN1 ⊗ J̄N2T − J̄N1 ⊗ IN2 ⊗ J̄T − J̄N1N2 ⊗ IT +2J̄N1N2T )X (1)

for X (1),

H2 = (QN1 ⊗ J̄N2T )M
(

X (1)
1 , X (1)

3 , X (2)
1

)
= (QN1 ⊗ J̄N2T )

(
X (1)

1 , X (1)
3 , X (2)

1

)
for X (2), and finally,

H3 = (J̄N1 ⊗QN2 ⊗ J̄T )M
(

X (1)
1 , X (1)

2 , X (3)
1

)
= (J̄N1 ⊗QN2 ⊗ J̄T )

(
X (1)

1 , X (1)
2 , X (3)

1

)
for X (3). Interestingly, the transformed mixed model (3.19) and the non-transformed
random effects model (3.4) have the same instrument set.4 Combining the instru-
ments in the usual way, two estimators emerge, the latter being more efficient than
the former:

β̂HT 1 = (X̃ ′PH X̃)−1X̃ ′PH ỹ; β̂HT 2 = (X̃ ′P∗H X̃)−1X̃ ′P∗H ỹ ,

where

PH =
3

∑
p=1

PHp , and P∗H =
3

∑
p=1

1
σp

PHp ,

with

4 Naturally, with the difference that x′t -type regressors are missing from the former and so do not
need to be instrumented.
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σ
2
1 = σ

2
ε , σ

2
2 = σ

2
ε +N2T σ

2
υ , and σ

2
3 = σ

2
ε +N1T σ

2
ζ
.

Different mixed effects models can be treated similarly. First, the fixed effects
should be eliminated with some M orthogonal projection, then the endogenous re-
gressors should be instrumented with the same instruments as in the pure random
effects case. In our previous example, endogenous regressors in the time dimension
are removed, which leads to fewer order conditions that need to be satisfied for the
instruments. This, however, comes at a price. That is, we are unable to reach full
parameter identification under the mixed effects specification because some of the
variables may be eliminated by the orthogonal project in the first step. In this sense,
mixed effects models stand somewhere between fixed and random effects models.
Fewer instruments are required yet some parameters remain unidentified.

3.5 Exogeneity Tests

The discussion thus far focuses on estimation issues in the presence of endogeneity.
In practice, the presence of endogeneity is often unclear. This section presents a test
of endogeneity under model (3.4), as well as a test for instrument validity.

3.5.1 Testing for Endogeneity

While the presence of endogeneity can often be argued on theoretical grounds, there
are many cases where its presence is not particularly obvious from a practical per-
spective. As such, tests for endogeneity are clearly useful. In the case of the one-way
error component model in a standard two-dimensional panel data model, a simple
Hausman test (see Hausman, 1978 and further Sect. 4.3 of Baltagi, 2013) is suf-
ficient. In this case, the rejection of the null of exogeneity not only suggests the
presence of endogeneity, but also the source of endogeneity, specifically, the regres-
sors are correlated with the unobserved heterogeneity.

The higher-dimensional case is slightly more complicated, as a standard Haus-
man test, which compares the GLS to the Within estimator, can only reveal the pres-
ence of endogeneity but not the actual sources of endogeneity. The null hypothesis
is

H0 : E(υi +ζ j +λt |x′i jt) = 0 against H1 : E(υi +ζ j +λt |x′i jt) 6= 0 . (3.20)

The GLS estimator under model (3.4) is consistent only if H0 is true, but the Within
estimator is consistent both under the null and alternative hypotheses. Following
Hausman (1978), a test can be constructed with the vector q̂1 = β̂

(1)
GLS− β̂

(1)
Within,
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m = q̂′1Var(q̂1)
−1q̂1

=
(

β̂
(1)
GLS− β̂

(1)
Within

)′(
Var(β̂ (1)

GLS)−Var(β̂ (1)
Within)

)−1(
β̂
(1)
GLS− β̂

(1)
Within

)
.

(3.21)

where Var(β̂ (1)
GLS− β̂

(1)
Within) = Var(β̂ (1)

GLS)−Var(β̂ (1)
Within).

Note that plim q̂1 = 0 under the null, but plim q̂1 = plim β̂
(1)
GLS−β 6= 0 under the

alternative. Therefore, if q̂1 is sufficiently far from 0, then there is evidence against
the null of exogeneity. The test statistic m can be shown to have a χ2

d distribution
with d = k(1), the number of variables in x′i jt .

The test of (3.20) only provides evidence against exogeneity, but it does not pro-
vide any information on the sources of endogeneity. For example, it may be the case
that the regressors are correlated with the error components solely through υi, and
so both E(ζ j|xi jt) = 0 and E(λt |xi jt) = 0. If this is the case, only two partitions of
x′i jt and x′i should be considered. Specifically, the ones that are uncorrelated and the
ones that are correlated with υi. This obviously reduces the assumptions we have
to make about the model and, at the same time, increases the number of variables
available for purposes of constructing internal instruments.

In order to address this issue, a set of subsequent tests can be constructed. If we
eliminate (ζ j,λt) from the model with a simple transformation such that

ỹi jt = x̃′i jtβ + υ̃i + ε̃i jt with x̃′i jt = (x′i jt − x̄′. j.− x̄′..t + x̄′...) ,

we can test
H0 : E(υ̃i|x̃′i jt) = 0 against H1 : E(υ̃i|x̃′i jt) 6= 0 , (3.22)

i.e., if the source of endogeneity is υi, after removing possible correlations with ζ j
and λt . We can repeat this test for ζ j and λt on models

ỹi jt = x̃′i jtβ + ζ̃ j + ε̃i jt with x̃′i jt = (x′i jt − x̄′i..− x̄′..t + x̄′...)
ỹi jt = x̃′i jtβ + λ̃t + ε̃i jt with x̃′i jt = (x′i jt − x̄′i..− x̄′. j.+ x̄′...)

by testing
H0 : E(ζ̃ j|x̃′i jt) = 0 against H1 : E(ζ̃ j|x̃′i jt) 6= 0
H0 : E(λ̃t |x̃′i jt) = 0 against H1 : E(λ̃t |x̃′i jt) 6= 0 ,

(3.23)

respectively. All three test statistics can be constructed similarly to equation (3.21)
and they follow a χ2

d distribution with d = k(1). Depending on the outcome of the
tests, we can reformulate the partitions of the variables to more efficiently obtain a
set of valid instruments.

3.5.2 Testing for Instrument Validity

The discussion so far implicitly assumed the existence of valid instruments, specifi-
cally,
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plim
N1,N2,T→∞

H ′u
N1N2T

= 0.

Typically economic rationale is often used to argue for or against this assumption,
however these arguments are usually much less credible and more difficult to justify
in random effects panel models. This is largely due to the many interdependencies
between the variables and the error components. Fortunately, it is possible to test
for the validity of the proposed instruments, so long as the parameters are over-
identified in the model. The basic idea is to compare the HT-type estimator to the
Within estimator. This is essentially another form of the Hausman test as proposed
in Hausman (1978), where we form our null and alternative as

H0 : plim
N1,N2,T→∞

H ′u
N1N2T

= 0 against H1 : plim
N1,N2,T→∞

H ′u
N1N2T

6= 0 (3.24)

and use the fact that the Within estimator is consistent under both the null and the al-
ternative, serving as a “reference estimator”, but the HT-type estimator is consistent
but efficient under the null.

A test statistic of the form, with q̂2 = β̂HT 2− β̂Within,

m = q̂′2Var(q̂2)
−1q̂2

can be constructed, and be shown to have a χ2
d distribution with d = rank(Var(q̂2)).

We can elaborate on Var(q̂2) and find that

Var(q̂2) = Var(β̂HT 2− β̂Within) = Var(β̂HT 2)−Var(β̂Within)

= (X ′PHΩ̂−1PHX)−1− (X̃ ′X̃)−1σ̂2
ε .

Intuitively, if q̂2 deviates from zero it raises concerns about the validity of the
instruments. If the null is rejected, it not only suggests that some variables failed
as instruments, but also implies that these variables required instruments from other
variables. In other words, these variables are themselves endogenous.

3.5.3 Testing in the Case of Fixed Effects

Consider the case when the individual effects υi, ζ j and λt are represented by fixed
estimable parameters, and after projectiong the effects out with some orthogonal
transformation, the endogeneity issue still persists. Two scenarios are considered
here: endogeneity due to not using the proper model specification, and endogeneity
arising from omitted variables.
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3.5.3.1 Improper Model Specifications

Assume that the hypothetical, correct specification is the basic model (3.4), with
individual and time fixed effects υi, ζ j and λt . We, however, use a different model
for estimation:

yi jt = x′i jtβ +υi +ζ j +ui jt , (3.25)

that is, time fixed effects are left for the disturbance term. The Within estimator of
the “misspecified” model reads as

β̂1 = (X ′M1X)−1X ′M1y with M1 = I− (IN1⊗ J̄N2T )− (J̄N1⊗ IN2⊗ J̄T )+ J̄N1N2T ,

where M1 is the matrix representation of the Within transformation x′i jt− x̄′i..− x̄′. j.+
x̄′... removing υi + ζ j. If the time effects are correlated with the regressors, β1 is
inconsistent.

Another estimator for the misspecified model, which in fact “over-clears” the
effects, is

β̂2 = (X ′M2X)−1X ′M2y with M2 = (IN1 − J̄N1)⊗ (IN2 − J̄N2)⊗ (IT − J̄T ) ,

where M2 is the matrix form of the scalar transformation (see equation (1.16) of
Chap. 1)

x′i jt − x̄′i j.− x̄′i.t − x̄′. jt + x̄′i..+ x̄′. j.+ x̄′..t − x̄′... .

As M2 clears all fixed effects in all three-dimensional models, β̂2 is consistent re-
gardless of the correlation of λt with the regressors. To decide then if β̂1 (in partic-
ular, the M1 transformation to be imposed) is proper, we should compare β̂1 and β̂2.
We form our null and alternative as

H0 : Corr(x′i jt ,λt) = 0 against H1 : Corr(x′i jt ,λt) 6= 0 .

Again, the first estimator β̂1 is consistent under the null, but inconsistent under the
alternative, while β̂2 is consistent both under the null and the alternative. This leads
to another Hausman type test, that is, if the difference of the two estimators q3 =
β̂1− β̂2 is sufficiently close to zero, we conclude that the null cannot be rejected
and the transformation M1 which led to estimator β̂1 is consistent. The test statistic
m = q̂′3Var(q̂3)

−1q̂3 can be shown to have a centered chi-squared distribution with
k(1) degrees of freedom, where k(1) is the number of regressors in x′i jt .

3.5.3.2 Conventional Endogeneity

The second case corresponds to the scenario where correlation remains between the
regressors and the disturbance term after the elimination of the fixed effects. That
is, we wish to test the hypothesis that Corr(x̃′i jt , ε̃i jt) = 0 in the transformed model
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ỹi jt = x̃′i jtβ + ε̃i jt ,

where “∼” denotes transformed variables. To test this, consider the null and alter-
native hypotheses as

H0 : Corr(x̃′i jt , ε̃i jt) = 0 against H1 : Corr(x̃′i jt , ε̃i jt) 6= 0 .

In order to construct the usual Hausman-Taylor test, we need to find an estimator
consistent under both the null and the alternative. An instrumental variable estimator
suffices if for some zi jt , the following two conditions hold:

Corr(zi jt , x̃′i jt) 6= 0 and Corr(zi jt , ε̃i jt) = 0 .

Comparing the Within estimator β̂1 = (X ′MX)−1X ′My with the IV estimator β̂2 =
(X ′MPZMX)−1X ′MPZMy, with M being the projector orthogonal to the fixed effects
and Z the matrix stacked instruments, gives all the required elements of the test.
The usual test statistic can be constructed and can be shown to follow a chi-squared
distribution.

3.6 Further Considerations

This section discusses some potential directions for further research.

3.6.1 Incomplete Data

Multi-dimensional panels are almost always incomplete. This can arise because of
data unavailability or individuals dropping from the sample, which can occur by
construction. In the case of flow-type data, such as Gravity models of international
trade, even if all the between-country flows are observed, within country movements
may not be well defined. That is, yi jt may not exist when i = j. Similarly, a complete
linked employer-employee data set would require all individuals to work at all firms
at all points in time. This clearly cannot happen.

We can think of incompleteness, as is introduced in Sects. 1.4 and 2.4, as that
(i j)-pairs in the data are not observed at all T time periods, but t ∈ Ti j, where Ti j ⊂
{1, . . . ,T} is the index set specific to (i j). Typically, Ti j 6= Ti′ j′ for different pairs,
and we can define |Ti j| as being the cardinality of the set Ti j.

Incompleteness, in general, does not violate the feasibility and the validity of
HT-type estimators, but may lead to computational difficulties. The transformations
required to construct the instruments cannot be represented as simple functions of
the sample means of the variables. Instead, we have to rely on the results from
Chap. 1 which derive incompleteness-robust data transformations.
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Clearly,this complexity is directly related to the complexity of the error compo-
nent structure. For model (3.4), (QN1 ⊗ J̄N2T ) can still be represented with scalar
operations: first, by taking averages over j and t for each i, then de-mean the data
with respect to i:

(QN1 ⊗ J̄N2T )X in a scalar form is 1

∑
j
|Ti j|

N2

∑
j=1

∑
t∈Ti j

x′i jt −
1

∑
i, j
|Ti j|

N1

∑
i=1

N2

∑
j=1

∑
t∈Ti j

x′i jt

for i = 1 . . .N1 .

A similar logic holds for (J̄N1 ⊗QN2 ⊗ J̄T ) and (J̄N1N2 ⊗QT ). The situation gets
complicated when multiple Q matrices appear in the Kronecker products, that is,
we remove more than one within group variation. For such cases involving matrix
operations is inevitable.

3.6.2 Notes on Higher-dimensional Panels

A full and comprehensive treatment of extensions to four- and higher-dimensional
analyses would be lengthy and daunting, and beyond the scope of this chapter. In-
stead, we describe intuitively the characteristics of higher-dimensional endogeneity
modelling.

In the case of three-dimensional models, the total number of random effects
model specifications is 64− 1 (removing the one with no effects), however this
number reaches 214−1 = 16,383 in the case of four-way panels. Although most of
these model specifications might not make sense or do not have empirical relevance,
it is clear that the number of possible specifications grows rapidly as the number of
dimensions increases.

In the case of four-dimensional data, the number of partitions required to imple-
ment Hausman-Taylor type estimator grows rapidly. This is accompanied by a large
set of highly interdependent order conditions, which might or might not be hard to
satisfy.

We also need to consider computational costs when dealing with higher-dimen-
sional data. To carry out the HT-type estimators, data transformations and the es-
timation of the variances of the random effects have to be conducted. In the case
of complete data, all these transformations and estimators are represented by sim-
ple scalar operations, which are straightforward to implement computationally. The
situation is fundamentally different when the underlying data is unbalanced or in-
complete, as data transformations cannot be carried out without using matrices of
potentially very large orders.5

5 This argument critically hinges on the number of “large” random effects. If there is only one,
transformation can easily be done as the underlying projection is block-diagonal. If there are more
than one, however, the projection includes a direct inverse calculation as large as the second largest
random effect.
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Keeping this computational concern in mind, GMM methods outlined in Sect. 3.3
are more suitable for higher-dimensional models, where only the orthogonality con-
ditions, exploiting the error component structure of the model, are to be constructed.
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Appendix: Proofs

Proof of Proposition 1

The proof follows the same arguments as Wyhowski (1994). We modified the as-
sumptions in Wyhowski (1994) for a higher dimensional panel. Specifically,

Assumption 1. plim
N1,N2,T→∞

1
N1N2T X (1)′PH1X (1) =V1

Assumption 2. plim
N1,N2→∞

1
N1N2T

(
X (1),X (2)

)′
(PH2 + PH3 + PH4 + PH5)

(
X (1),X (2)

)
=

V2(T )
for fixed T , and plim

T→∞

V2(T ) =V2

Assumption 3. plim
N1,T→∞

1
N1N2T

(
X (1),X (3)

)′
(PH6 + PH7 + PH8 + PH9)

(
X (1),X (3)

)
=

V3(N2)
for fixed N2, and plim

N2→∞

V3(N2) =V3

Assumption 4. plim
N2,T→∞

1
N1N2T

(
X (1),X (4)

)′
(PH10 +PH11 +PH12 +PH13)

(
X (1),X (4)

)
=

V4(T )
for fixed N1, and plim

N1→∞

V4(N1) =V4

Assumption 5. plim
N1→∞

1
N1N2T

(
X (1),X (2),X (3),X (5)

)′
PH14

(
X (1),X (2),X (3),X (5)

)
=

V5(N2,T )
for fixed N2, and T , and plim

N2,T→∞

V5(N2,T ) =V5

Assumption 6. plim
N2→∞

1
N1N2T

(
X (1),X (2),X (4),X (6)

)′
PH15

(
X (1),X (2),X (4),X (6)

)
=

V6(N1,T )
for fixed N1, and T , and plim

N1,T→∞

V6(N1,T ) =V6

Assumption 7. plim
T→∞

1
N1N2T

(
X (1),X (3),X (4),X (7)

)′
PH16

(
X (1),X (3),X (4),X (7)

)
=

V7(N1,N2)
for fixed N1, and N2, and plim

N1,N2→∞

V7(N1,N2) =V7

Assumption 8. All Vp, p = 1 . . .7 are finite, their lower right blocks are all non-
singular.

Assumption 9. 1√
N1N2T X (1)′PH1 u→d N(0,σ2

1V1) as N1,N2,T → ∞

Assumption 10. 1√
N1N2T

(
X (1),X (2)

)′
(PH2 +PH3 +PH4 +PH5)u→d N(0,σ2

2V2(T )) as
N1,N2→ ∞

Assumption 11. 1√
N1N2T

(
X (1),X (3)

)′
(PH6 +PH7 +PH8 +PH9)u→d N(0,σ2

3V3(N2))

as N1,T → ∞



98 Laszlo Balazsi, Maurice J.G. Bun, Felix Chan, and Mark N. Harris

Assumption 12. 1√
N1N2T

(
X (1),X (4)

)′
(PH10 +PH11 +PH12 +PH13)u→d

N(0,σ2
4V4(N1)) as N2,T → ∞

Assumption 13. 1√
N1N2T

(
X (1),X (2),X (3),X (5)

)′
PH14u→d N(0,σ2

5V5(N2,T ))
as N1→ ∞

Assumption 14. 1√
N1N2T

(
X (1),X (2),X (4),X (6)

)′
PH15u→d N(0,σ2

6V6(N1,T ))
as N2→ ∞

Assumption 15. 1√
N1N2T

(
X (1),X (3),X (4),X (7)

)′
PH16u→d N(0,σ2

7V7(N1,N2))

as T → ∞

We begin the proof by first verifying the following limits based on the definition
of σp as defined in equation (3.13).

lim
N1,N2,T→∞

A1 = lim
N1,N2,T→∞

diag
{

σ
−1
1 Ik(1) ,0k(2)+...+k(7)

}
= diag

{
σ−1

ε Ik(1) ,0k(2)+...+k(7)
}

lim
T→∞

Ap = lim
T→∞

diag
{

σ
−1
p Ik(1) ,

√
T σ
−1
p Ik(2) ,0k(3)+...+k(7)

}
= diag

{
0k(1) ,σ

−1
µ Ik(2) ,0k(3)+...+k(7)

}
p = 1, . . .5.

lim
N2→∞

Ap = lim
N2→∞

diag
{

σ
−1
p Ik(1) ,0k(2) ,

√
N2σ

−1
p Ik(3) ,Ok(4)+...+k(7)

}
= diag

{
0k(1)+k(2) ,σ

−1
υ Ik(3) ,0k(4)+...+k(7)

}
p = 6, . . . ,9.

lim
N1→∞

Ap = lim
N1→∞

diag
{

σ
−1
i Ik(1) ,0k(2)+k(3) ,

√
N1σ

−1
i Ik(4) ,0k(5)+...+k(7)

}
= diag

{
0k(1)+k(2)+k(3) ,σ

−1
ζ

Ik(4) ,0k(5)+...+k(7)

}
p = 10, . . . ,13.

lim
T→∞

A14 = lim
T→∞

diag
{

σ
−1
14 Ik(1) ,

√
T σ
−1
14 Ik(2) ,

√
N2σ

−1
14 k(3),0k(4) ,×

×
√

T σ
−1
14 Ik(5) ,0k(6)+k(7)

}
= diag

{
0k(1) ,σ

−1
µ Ik(2) ,0k(3)+k(4) ,σ

−1
µ Ik(5) ,0k(6)+k(7)

}
lim

N1→∞
A15 = lim

N2→∞
diag

{
σ
−1
15 Ik(1) ,

√
T σ
−1
15 Ik(2) ,0k(3) ,

√
N1σ

−1
15 k(4),0k(5) ,×

×
√

N1σ
−1
15 Ik(6) ,0k(7)

}
= diag

{
0k(1)+k(2)+k(3) ,σ

−1
υ Ik(4) ,0k(5) ,σ

−1
υ Ik(6) ,0k(7)

}
lim

N2→∞
A16 = lim

N2→∞
diag

{
σ
−1
16 Ik(1) ,0k(2) ,

√
N2σ

−1
16 Ik(3) ,

√
N1σ

−1
7 Ik(4) ,0k(5)+k(6) ,×

×
√

N2σ
−1
16 Ik(7)

}
= diag

{
0k(1)+k(2)+k(3) ,σ

−1
ζ

Ik(4) ,0k(5)+k(6) ,σ
−1
ζ

Ik(7)

}
Defining

S−1X ′P∗HXS−1 =
16

∑
p=1

Ap

(
1

N1N2T
X ′PHpX

)
Ap

and evaluating the limit of each term in the sum on the right hand side gives
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plim
N1,N2,T→∞

A2(
1

N1N2T X ′(PH2 +PH3 +PH4 +PH5)X)A2

= limA2 · plim
N1,N2,T→∞

(
1

N1N2T X ′(PH2 +PH3 +PH4 +PH5)X
)
· limA2

= limA2 ·V2 · limA2
= 1

σ2
µ

Γ2

plim
N1,N2,T→∞

A6(
1

N1N2T X ′(PH6 +PH7 +PH8 +PH9)X)A6

= limA6 · plim
N1,N2,T→∞

(
1

N1N2T X ′(PH6 +PH7 +PH8 +PH9)X
)
· limA6

= limA6 ·V3 · limA6
= 1

σ2
υ

Γ3

plim
N1,N2,T→∞

A10(
1

N1N2T X ′(PH10 +PH11 +PH12 +PH13)X)A10

= limA10 · plim
N1,N2,T→∞

(
1

N1N2T X ′(PH10 +PH11 +PH12 +PH13)X
)
· limA10

= limA10 ·V4 · limA10
= 1

σ2
ζ

Γ4

plim
N1,N2,T→∞

A14(
1

N1N2T X ′PH14 X)A14 = limA14 · plim
N1,N2,T→∞

(
1

N1N2T X ′PH14 X
)
· limA14

= limA14 ·V14 · limA14
= 1

σ2
µ

Γ5

plim
N1,N2,T→∞

A15(
1

N1N2T X ′PH15 X)A15 = limA15 · plim
N1,N2,T→∞

(
1

N1N2T X ′PH15 X
)
· limA15

= limA15 ·V15 · limA15
= 1

σ2
υ

Γ6

plim
N1,N2,T→∞

A16(
1

N1N2T X ′PH16 X)A16 = limA16 · plim
N1,N2,T→∞

(
1

N1N2T X ′PH16 X
)
· limA16

= limA16 ·V16 · limA16
= 1

σ2
ζ

Γ7

Hence,

plim
N1,N2,T→∞

S−1X ′P∗HXS−1 = 1
σ2

ε

Γ1 +
1

σ2
µ

Γ2 +
1

σ2
υ

Γ3 +
1

σ2
ζ

Γ4 +
1

σ2
µ

Γ5 +
1

σ2
υ

Γ6 +
1

σ2
ζ

Γ7

= Γ

Under assumptions (1) - (15),

S−1X ′P∗Hu =
1

N1N2T

16

∑
p=1

ApX ′PHpu→d N(0,Γ−1).

It then follows that
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S(β̂HT 2−β ) = S(X ′P∗HX)−1X ′P∗Hu
= S(X ′P∗HX)−1SS−1X ′P∗Hu

= (S−1X ′P∗HXS−1)−1S−1X ′P∗Hu d→ Γ−1 ·N(0,Γ ) = N(0,Γ−1) .

Proof of Corollary 1

Let’s redefine Vp, Ap matrices, and use σp and Hp proper for model (3.4).

Assumption A. plim
N1,N2,T→∞

1
N1N2T X (1)′PH1X (1) =V1

Assumption B. plim
N1→∞

1
N1N2T

(
X (1),X (2)

)′
PH2

(
X (1),X (2)

)
=V2(N2,T )

for fixed N2, and T , and plim
N2,T→∞

V2(N2,T ) =V2

Assumption C. plim
N2→∞

1
N1N2T

(
X (1)X (3)

)′
PH3

(
X (1),X (3)

)
=V3(N1,T )

for fixed N1, and T , and plim
N1,T→∞

V3(N1,T ) =V3

Assumption D. plim
T→∞

1
N1N2T

(
X (1),X (4)

)′
PH4

(
X (1),X (4)

)
=V4(N1,N2)

for fixed N1, and N2, and plim
N1,N2→∞

V4(N1,N2) =V4

Assumption E. All Vp, p = 1 . . .4 are finite, their lower right blocks are all non-
singular.

Assumption F. 1√
N1N2T X (1)′PH1u→d N(0,σ2

1V1) as N1,N2,T → ∞

Assumption G. 1√
N1N2T

(
X (1),X (2)

)′
PH2u→d N(0,σ2

2V2(N2,T )) as N1→ ∞

Assumption H. 1√
N1N2T

(
X (1),X (3)

)′
PH3u→d N(0,σ2

3V3(N1,T )) as N2→ ∞

Assumption I. 1√
N1N2T

(
X (1),X (4)

)′
PH4u→d N(0,σ2

4V4(N1,N2)) as T → ∞

The proof follows the same arguments as the proof for proposition (1).



Chapter 4
Dynamic Models and Reciprocity

Maurice J.G. Bun, Felix Chan, and Mark N. Harris

Abstract This chapter discusses the specification, estimation and testing of dynamic
models with multi-dimensional data. The difficulties in estimating dynamic models
in standard two-dimensional panel data are well known and these challenges are
exacerbated by the more complicated endogeneity problems associated with using
multi-dimensional data. Furthermore, the availability of multi-dimensional data al-
lows proper modelling of reciprocity. This chapter analyzes a general model con-
taining both reciprocity and short-run dynamics. It is straightforward to show that
endogeneity is an inherent feature of the general model and least squares type esti-
mators will be inconsistent. A set of valid orthogonal conditions is proposed, which
is then used in Generalized Method of Moments (GMM) estimation.

4.1 Introduction

Unbiased and consistent fixed and random effects estimation of multi-dimensional
panel data models with strictly exogenous regressors have been considered in Chaps.
1 and 2. This chapter considers the consistent estimation of the three-dimensional
panel data model when the specification contains autoregressive dynamics and re-
ciprocal relations. Consider the three-dimensional panel data model with outcome
variable yi jt . Autoregressive dynamics capture the partial adjustment in the outcome
variable due to recent changes in the explanatory factors. Reciprocal relations occur
when there is a tendency for a relation between two entities to flow both ways.
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The inclusion of lags of the dependent variable (yi jt−1 and further lagged values)
or reciprocity effects (y jit ) leads to different endogeneity problems. Least squares
based inference methods, i.e., the fixed effects and random effects estimators of
Chaps. 1 and 2, are therefore biased and inconsistent. In two-dimensional panel
data models with endogenous regressors, a commonly employed procedure is to
transform the model into first differences in order to remove the unobserved individ-
ual specific heterogeneity. Next, sequential moment conditions are exploited where
lagged levels of the variables are instruments for the endogenous differences and
the parameters estimated by the Generalized Method of Moments (GMM). GMM
produces consistent parameter estimates for a finite number of time periods (T ) and
a large cross-sectional dimension (N) (see, e.g., Arellano and Bond, 1991; Arellano
and Bover, 1995; Blundell and Bond, 1998). A main reason for its popularity in
empirical research is that the GMM estimation approach provides asymptotically
efficient inference employing a relatively minimal set of statistical assumptions.
This chapter investigates the extent in which we can apply the sequential moment
conditions developed for two-dimensional panel data models to multi-dimensional
panel data specifications. This includes short-run dynamics and reciprocity effects.
Throughout we consider a variety of models for the individual specific heterogene-
ity. As such, this chapter focuses on fixed T and large N asymptotics. Other cases
with large T and fixed N and large T and N are left for further research.1 The over-
all approach proposed in this chapter is to apply the appropriate transformation to
eliminate the unobserved heterogeneities before estimating the relevant parameters
with GMM, as this approach applies to both fixed and random effects models.

Three-dimensional dynamic panel data specifications have been used in the em-
pirical analysis of international trade flows (Egger, 2001; Bun and Klaassen, 2007;
Bun et al., 2009), migration flows (Ruyssen et al., 2014) and tourism demand (Mal-
oney and Montes Rojas, 2005). In these applications, a single observation is typi-
cally origin country i, destination country j and year t. Typically the standard two-
way error components structure including pair (i, j) and time (t) effects has been
used. Only in the empirical trade models have time-varying fixed effects been esti-
mated, leading to markedly different estimates compared with traditional panel data
specifications. Reciprocal relationships may also be important in these cases, as it is
unlikely that import flow from country i to country j would be independent of that
in the opposite direction. It would also seem important to examine if migration from
state i to state j depends on the population outflow from state j to other states. An
area where reciprocity receives a lot of attention is social network analysis, where
the bidirectional relation between yi jt and y jit results in a set of simultaneous equa-
tions. Applications are the firm-level network analyses of Lincoln et al. (1992) and
Keister (2001). One reason why reciprocity has not received the attention that it de-
serves is perhaps the lack of appropriate econometric techniques that will allow a
proper modelling of reciprocity. This chapter demonstrates that the inclusion of the
reciprocity term induces a different type of endogeneity problem to the presence of

1 The number of sequential moment conditions grows rapidly in the time dimension, hence the
analysis of large T panels is more complicated due to the additional issue of many moments, for
further details see Alvarez and Arellano (2003) and Hayakawa (2015).
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a lagged dependent variable, and that the problem is independent of the specification
of the unobserved heterogeneity.

This chapter is organised as follows: Sects. 4.2 and 4.3 discuss the GMM es-
timation of dynamic models and reciprocity, respectively. In Sect. 4.4, we merge
dynamics and reciprocity in one model, while in Sect. 4.5 we discuss extensions.

4.2 Dynamics

In this section, we analyze three-dimensional dynamic panel data models of the
form:

yi jt = βyi jt−1 +δ
′wi jt +πi jt + εi jt , t = 2, . . . ,T , (4.1)

where the data are observed along three indices i = 1, . . . ,N1, j = 1, . . . ,N2 and
t = 1, . . . ,T with wi jt denoting a (K×1) vector of covariates. Typically, i and j refer
to entities (individuals, firms, sectors, regions, countries), while t denotes time (day,
week, month, year). We will denote the total number of cross-sectional observations
by N = N1N2.

Without further structure, the two error components πi jt and εi jt are indistin-
guishable from each other. We therefore assume that πi jt is any of the cases de-
scribed in Chap. 2:

case 1 (equation 2.11): πi jt = νi +ζ j +λt
case 2 (equation 2.14): πi jt = µi j
case 3 (equation 2.9): πi jt = µi j +λt
case 4 (equation 2.5): πi jt = νit +ζ jt
case 5 (equation 2.2): πi jt = µi j +νit +ζ jt ,

where εi jt ∼ iid
(
0,σ2

ε

)
, while λt , νit and ζ jt are assumed to be weakly stationary

random effects and independent of εi jt . In all specifications in this chapter, we model
the unobserved heterogeneity πi jt as purely random effects. In dynamic panel data
models, this is by far the most common specification and it implies that the lagged
dependent variable regressor yi jt−1 is automatically correlated with the random ef-
fect πi jt . We therefore do not consider random effects estimators as these assume a
zero correlation between regressors and the random effect(s). We instead consider
fixed effects estimation, that is, we first apply the appropriate transformation to elim-
inate the random effect πi jt , and then apply GMM estimation exploiting sequential
moment conditions. Following the terminology of Lee (2016), this approach can be
classified as fixed effects (or related effects) as opposed to random effects (unrelated
effects). As such, the estimation methods proposed in this chapter can also be ap-
plied to the fixed effects specifications, namely, equations (1.2) - (1.7), as discussed
in Chap. 1.

First, we analyze the consequences of ignoring the unobserved heterogeneity for
the GMM estimation using sequential moment conditions from the two-dimensional
panel data literature. Second, we consider different moment conditions to deal with
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the more elaborate models for the unobserved heterogeneity. We will use first differ-
ences and Within transformations to wipe out this unobserved heterogeneity from
model (4.1). As such, the same method applies to both fixed and random effects
applications of πi jt . Third, in a number of Monte Carlo experiments, we analyze the
finite sample properties of the resulting GMM estimators.

4.2.1 Estimation

For ease of exposition, consider the first-order autoregressive model without addi-
tional covariates

yi jt = βyi jt−1 +πi jt + εi jt , t = 2, . . . ,T , (4.2)

where yi j0 is also observed. This model has been analyzed by Balazsi et al. (2015),
who show that the standard fixed effects estimator is consistent for cases 1 and 4,
but it is inconsistent for cases 2, 3, and 5. The intuition is that whenever bilateral
fixed effects (µi j) are present, some type of Nickell (1981) bias will emerge. In the
other cases, the number of incidental parameters is of a lower order than the cross-
sectional dimension, and the incidental parameter problem does not appear.

Cases 2, 3 and 5 are straightforward extensions of two-dimensional dynamic
panel data models to three-dimensional specifications. As long as T is small and N
is large, standard GMM methods for dynamic panel data models can be applied. We
consider dynamic models where the idiosyncratic errors obey the following condi-
tional moment restriction:

E
(

εi jt |yt−1
i j ,πi jt

)
= 0, t = 1, . . . ,T , (4.3)

where yt−1
i j =

(
yi j0,yi j1, . . . ,yi jt−1

)′. Assumption (4.3) rules out serial correlation
in εi jt , which is a base for constructing unconditional moments. As an example,
consider case 2, for which πi jt = µi j. Taking first differences, we remove the pair-
specific effects (µi j) resulting in

∆yi jt = β∆yi jt−1 +∆εi jt , (4.4)

for which the following unconditional moment conditions are available:

E
(

yt−2
i j ∆εi jt

)
= 0, t = 2, . . . ,T . (4.5)

Lagged levels of the endogenous variable can be used as instruments for current
changes. Simple IV estimators of this type were first proposed by Anderson and
Hsiao (1981, 1982) for the first order autoregressive AR(1) model and in a multi-
variate setting and GMM framework by Holtz-Eakin et al. (1988) and Arellano and
Bond (1991).
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It is well known (see, e.g., Blundell and Bond, 1998) that the GMM estimator of
the first-differenced model can have poor finite sample properties in terms of bias
and precision in this case. One reason for this is that lagged levels are weak pre-
dictors of the first differences when data are persistent. Blundell and Bond (1998)
advocated the use of extra moment conditions that rely on certain stationarity re-
strictions on the time series properties of the data, as suggested by Arellano and
Bover (1995). These amount to assuming

E(∆yi jt |µi j) = 0 , (4.6)

which implies that the original series in levels have constant correlation over time
with the individual-specific effects. Assumption (4.5) leads to the following addi-
tional moment conditions for the model in levels

E
(
∆yi jt−1(µi j + εi jt)

)
= 0, t = 2, . . . ,T . (4.7)

In other words, lagged changes can be used as instruments for current levels.
With time-varying unobserved heterogeneity, as in cases 4 and 5, however, the

standard moment conditions for two-dimensional panel data as outlined in (4.5) are
violated. Considering for example, πi jt = νit +µi j, we have for the equation in first
differences

∆yi jt = β∆yi jt−1 +∆νit +∆εi jt , t = 2, . . . ,T . (4.8)

Although we removed the time-invariant incidental parameters µi j, we cannot
apply OLS because the transformed regressor ∆yi jt−1 is correlated with the trans-
formed idiosyncratic error term ∆εi jt and possibly also with the transformed error
component ∆νit . Moreover, Arellano and Bond’s moments are not valid, as we can
show in the following:

E
(

yt−2
i j ∆εi jt |νit ,νit−1, . . .

)
6= 0 . (4.9)

The consequences are therefore similar to introducing an error factor structure (see,
for example, Sarafidis and Robertson (2009)). The main difference here is that we
can let either N1 or N2 go to infinity. This is of some importance for the asymptotic
properties of GMM estimators, as demonstrated by the proposition below.

Proposition 1. Let πi jt = µi j +νit and consider using yi jt−2 as a single instrument
resulting in the exactly identified IV estimator (Anderson and Hsiao, 1981, 1982).
Under fixed T with the assumptions (i) εi jt ∼ iid

(
0,σ2

ε

)
and (ii) νit is weakly sta-

tionary, then
plim
N1→∞

β̂AH = β + c1
c2
,

plim
N2→∞

β̂AH = β + η1
η2

,
(4.10)

where c1 and c2 are constants and η1 and η2 are random variables specified in the
proof.

Proof. See Appendix.
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For general νit , these results show that the simple IV estimator is inconsistent. The
bias is a fixed value when N1 → ∞ but it is a random limit when N2 → ∞. In the
special case of i.i.d. νit , we furthermore have that c1 = 0 and E(η1) = 0. These
results show that in the case of neglected time-varying unobserved heterogeneity,
the Arellano and Bond (1991) moment conditions for two-dimensional panel data
become invalid and the resulting GMM estimators are inconsistent.

The main message of Proposition (1) is that the unobserved heterogeneities must
be accommodated properly for the consistency of the GMM estimator. It is clear that
one can obtain similar results for the other cases by following the same arguments
as in the proof of Proposition (1); these derivations are therefore omitted for brevity.

For GMM estimation in three-dimensional panel data models, the Arellano and
Bond (1991) moment conditions must adapt. The time varying effect νit can be
eliminated by the following Within transformation on the model in first differences

∆yi jt −∆ ȳi.t = β
(
∆yi jt−1−∆ ȳi.t−1

)
+∆εi jt −∆ε̄i.t , (4.11)

which can be written more compactly as

∆̃yi jt = β∆̃yi jt−1 + ∆̃ εi jt , t = 2, . . . ,T . (4.12)

Under assumption (4.3), the following unconditional moment conditions are avail-
able:

E
(

yt−2
i j ∆̃ εi jt

)
= 0, t = 2, . . . ,T . (4.13)

Again, lagged levels of the endogenous variable can be used as instruments for
current changes. As long as N1→ ∞ and/or N2→ ∞, the resulting GMM estimator
is consistent.

One relevant aspect of the equation (4.12) is that the Within transformed error
term ∆̃ εi jt exhibits cross-sectional dependence. For example, when εi jt ∼ i.i.d.(0,σ2

ε )
it is easy to see that

E
(

∆̃ εi jt ∆̃ εikt

)
=−2σ2

N2
. (4.14)

Therefore, as long as N2 is finite, the standard weight matrix based on cross-
sectional independence will not lead to the optimal GMM estimator. This will have
implications for calculating subsequently diagnostic test statistics, such as the overi-
dentifying restrictions statistic. It is clear from equation (4.14) that when N2→ ∞,
cross-sectional dependence vanishes and the aforementioned problems do not occur.

The discussion generalizes in a straightforward manner to models with both it
and jt effects. Fixed effects GMM results when a set of N1(T − 1)+N2(T − 1) (it
and jt) time effects are substituted. Balazsi et al. (2015) show that the appropriate
Within transformation to eliminate the it and jt effects is

∆̃yi jt = ∆yi jt −∆ ȳ. jt −∆ ȳi.t +∆ ȳ..t . (4.15)
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Under assumption (4.3), the moment condition as defined in equation (4.13) is valid,
where ∆̃ ε i jt follows the same transformation as defined in equation (4.15). As long
as N1→ ∞ and/or N2→ ∞, the resulting GMM estimator is consistent. The optimal
weight matrix stays unchanged when both N1 and N2 are large. When N1 or N2 is
small, however, cross-sectional error dependence occurs again.

From the discussion so far, provided there is an appropriate transformation, it is
clear that equation (4.13) represents a set of valid moment conditions for purposes
of estimating the autoregressive parameter, β . In certain cases, such as equation
(2.14) when πi jt = µi j, additional moment conditions may also be available. Table
(4.1) contains the appropriate transforms for each πi jt specification listed in the
Introduction, as well as their corresponding moment conditions.

Table 4.1 List of transforms for equation (4.13)

πi jt Transforms Moment condition, t = 2, . . . ,T

2.11 ∆yi jt −∆ ȳ. jt or ∆yi jt −∆ ȳi,t E
(

yt−2
i j ∆̃ εi jt

)
= 0

2.14 ∆yi jt E
(

yt−2
i j ∆̃ εi jt

)
= 0

2.9 ∆yi jt −∆ ȳ. jt or ∆yi jt −∆ ȳi.t E
(

yt−2
i j ∆̃ εi jt

)
= 0

2.5 ∆yi jt −∆ ȳ. jt −∆ ȳi.t +∆ ȳ..t E
(

yt−2
i j ∆̃ εi jt

)
= 0

2.2 ∆yi jt −∆ ȳ. jt −∆ ȳi.t +∆ ȳ..t E
(

yt−2
i j ∆̃ εi jt

)
= 0

4.2.2 Monte Carlo Experiments

To show the finite sample properties of estimators and corresponding test statistics,
we conduct a small scale Monte Carlo experiment. We generate data according to
(4.2) with the unobserved heterogeneity following case 2 (equation (2.14)) and case
5 (equation (2.2)). In the latter case we limit ourselves to νit only. We estimate (4.2)
by the Within estimator and also exploit GMM using the Arellano and Bond (1991)
moments in equation (4.5) and the adapted moment conditions in (4.13).

We choose β = 0.5, hence we do not consider the weak instruments case. We
furthermore simulate under covariance stationarity, i.e.,

yi0 =
µi j

1−β
+

νit + εi jt√
1−β 2

, (4.16)

where µi j ∼ i.i.n.(0,σ2
µ) and εi jt ∼ i.i.n.(0,σ2

ε ). We also generate νit according to

νit = ρνit−1 +ξit , (4.17)
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where ξit ∼ i.i.n.(0,σ2
ξ
). We set σ2

µ = σ2
ε = 1.

We choose two different data generating processes (labeled dgp) for the unob-
served heterogeneity. We set σ2

ξ
= 0 (dgp = 2) or σ2

ξ
= 1 (dgp = 5). The former

equals case 2, while the latter is case 5. We furthermore choose two values for ρ .
When ρ = 0 omitting νit does not lead to violation of the moments, while bias will
occur in the case of ρ = 0.5.

We consider consistent estimation and inference in a small T , large N frame-
work. We therefore set T = 5 and N = 200, and hence we avoid the issue of many
instruments. We vary N1 and N2 and choose either 4 or 50. We estimate the model
without and with dummy variables for νit (labelled uh = 2 and uh = 5 respectively)
i.e., using the moments (4.5) and (4.13), respectively. All experiments have 1000
replications.

Table 4.2 summarizes the parameter settings of all experiments in this section and
reports the simulation results. We report bias and standard deviation of the GMM
coefficient estimator, as well as actual rejection percentages at nominal 5% Wald
t-statistics (labelled rp). We report the rejection percentage of the Hansen J test (la-
belled rp J) checking the validity of the moments. Unreported results show that, as
expected, the Within estimator is biased downward with a relatively small standard
deviation and the corresponding t-statistic is heavily oversized (up to 100%).

Table 4.2 Parameter values and simulation results for GMM

design T N1 N2 uh dgp ρ β mean of β̂ sd rp rp J

1 5 4 50 2 2 0 0.5 0.471 0.092 6.25 5.10
2 5 50 4 2 2 0 0.5 0.481 0.092 5.70 5.40
3 5 4 50 2 5 0 0.5 0.343 0.215 52.40 97.95
4 5 50 4 2 5 0 0.5 0.471 0.098 10.00 26.95
5 5 4 50 5 5 0 0.5 0.472 0.093 6.35 6.10
6 5 50 4 5 5 0 0.5 0.474 0.106 9.65 17.60
7 5 4 50 2 2 0.5 0.5 0.471 0.092 6.25 5.10
8 5 50 4 2 2 0.5 0.5 0.481 0.092 5.70 5.40
9 5 4 50 2 5 0.5 0.5 0.568 0.264 43.10 96.95
10 5 50 4 2 5 0.5 0.5 0.786 0.126 74.25 32.20
11 5 4 50 5 5 0.5 0.5 0.472 0.093 6.35 6.10
12 5 50 4 5 5 0.5 0.5 0.474 0.106 9.65 17.60

Experiments 1 and 2 show that when only µi j are included in both data gen-
erating process (DGP) and estimation, standard GMM results for two-dimensional
panel data are visible. There is no issue with weak or many instruments and there
is only a small bias in each of the coefficient estimators, t-statistic and J statistic.
As expected, the relative magnitude of N1 and N2 is immaterial for the finite sample
properties.

In experiments 3 and 4, we add i.i.d. νit to the DGP, but ignore these in the
estimation. This has detrimental effects on the estimation bias of the GMM estima-
tor, especially for N1 small. This can be explained by the theoretical results of the
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previous section. Although the unconditional moments in (4.5) are still valid, the
conditional moments (4.9) are not zero. Only in the special case of i.i.d. νit and N1
large does this not lead to asymptotic bias for the GMM estimator based on (4.5).
When N1 is small as in experiment 3, the GMM estimator converges to a random
limit, hence no systematic pattern on the bias can be detected. Indeed the Monte
Carlo standard deviation is much larger compared with experiment 4, and large size
distortions can be seen in the t-test. This demonstrates the adverse impacts of mis-
specifying the error components in estimating a dynamic panel data model in higher
dimensions.

In experiments 5 and 6, we add a set of N1(T − 1) dummy variables to explic-
itly take into account νit . Including these additional fixed effects in the estimation,
the GMM estimator now exploits the moment conditions in (4.13). Standard GMM
results are visible again irrespective of the relative magnitude of N1 and N2. Only
when N1 is large and N2 is small, does the J test show severe over-rejection. This
can be explained by the fact that a suboptimal weight matrix has been used in this
case since the cross-sectional dependence due to small N2 has been ignored (see
equation (4.14)).

Experiments 7 to 12 show similar results. In these experiments, time varying
unobserved heterogeneity is autocorrelated instead of iid. Experiments 7 and 8 show
standard GMM results. However, since νit is no longer i.i.d. even the unconditional
moments in (4.5) are not valid when omitting νit in estimation (experiments 9 and
10). Finally, experiments 11 and 12 give the same numerical results as experiments
5 and 6 due to the fact that νit is considered fixed in the GMM estimation.

4.3 Reciprocity

Three-dimensional panel data are used extensively in social network analysis, which
investigates relations between social entities. These entities can be individuals,
firms, groups or even countries. The smallest group of social entities is a dyad.
Consider the case of N1 entities, then we have N = 1

2 N1 (N1−1) dyads.
In the statistical analysis of networks, the outcome variable of interest is typi-

cally the occurrence of a link which is measured with a binary indicator variable.
The identification of true state dependence in the presence of unobserved hetero-
geneity can be achieved by considering random effects and fixed effects discrete
choice methods from the two-dimensional dynamic panel data literature, see Gra-
ham (2015) for an overview. Here we will consider the simpler case of having a
quantitative measure as the dependent variable, which allows the use of linear re-
gression models.

In network analysis, reciprocity is defined as the double link (with opposite di-
rections) between entities. Considering a relation yi j between two actors i and j in
the network, reciprocity implies the existence of the reverse relation y ji. Lincoln
(1984) considers the following cross-section model for reciprocity:
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yi j = α +φy ji + γ
′xi +δ

′x j + εi j,

y ji = α +φyi j +δ
′xi + γ

′x j + ε ji ,
(4.18)

where xi and x j are exogenous determinants. The assumed equality of coefficients
across equations aids identification. Consistent estimation of the reciprocity effect
φ , however, requires either a zero correlation between the error terms εi j and ε ji or
an exclusion restriction operating through γ and/or δ . Lincoln (1984) discusses in
some detail the drawbacks of both approaches. A zero correlation between εi j and
ε ji implies that variables omitted from the model would affect the flow of ties in one
direction only. An exclusion restriction would imply that some exogenous regressor
affected the outcome in one direction only. Thus, the estimation problem associated
with models similar to equation (4.18) requires a more thorough analysis, which is
the focus of this subsection.

4.3.1 Within Estimator

Let us examine the estimation problem in a more general setting, specifically, con-
sider,

yi jt = φy jit +δ
′wi jt +ui jt , i = 1, . . .N∗, t = 1, . . . ,T, (4.19)

where N1 = N2 = N∗ (N = N2
∗ ), ui jt = πi jt +εi jt and wi jt denotes a (K×1) vector of

covariates. Note that equation (4.19) implies that(
yi jt
y jit

)
=

(
y jit
yi jt

)
φ +

(
w′i jt
w′jit

)
δ +

(
ui jt
u jit

)
. (4.20)

Given equation (4.20), it is obvious that y jit is correlated with ui jt since the y jit
equation contains yi jt as a covariate. Thus, a reciprocity specification such as equa-
tion (4.19) induces another source of endogeneity similar to that caused by simul-
taneous equations. It should also be obvious that the endogeneity problem caused
by reciprocity exists regardless of the specification of ui jt . That is, regardless of the
specification of πi jt , pooled OLS and Within estimators as discussed in previous
chapters will generally be inconsistent. This can be more formally expressed by the
following proposition:

Proposition 2. Consider equation (4.19), define the Within estimator of φ as

φ̂ =
[
y′ (IT ⊗KN∗)MD (IT ⊗KN∗)y

]−1 y′ (IT ⊗KN∗)MDy (4.21)

where y denotes the T N vector of yi jt sorted first by i, then j, and then t. KN∗ denotes
(N×N) commutation matrix such that KN∗vec A = vec A′ for any (N∗×N∗) matrix
A and MD denotes the transformation so that MDD = 0 with D being the partitioned
matrix (W,Π). Under the assumption that φ 6= 1, E(yε ′)< ∞ and E(yy′)< ∞ then
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plim (φ̂ −φ) = lim
(1−φ 2){tr [MD (IT ⊗KN∗)]+φ tr(MD)}
(1+φ 2)tr(MD)+2φ tr [MD (IT ⊗KN∗)]

, (4.22)

where the limit can be taken over N, T or (N,T ).

Proof. See Appendix.

Note that the right hand side of equation (4.22) is generally not 0. This indicates
that the Within estimator is biased even when all the unobserved heterogeneities
have been appropriately accommodated. This is not surprising because the source
of endogeneity did not come from the unobserved heterogeneities in the case of the
reciprocity model.

The bias, however, does depend on the specification of the unobserved hetero-
geneities as reflected by the presence of MD on the right hand side of equation
(4.22). While it is difficult to generalise the magnitude of the bias, equation (4.22)
suggests that the bias tends to be positive.

Table (4.3) provides the traces under the different specifications of πi jt , whilst
Table (4.4) provides the corresponding bias expressions asymptotically and semi-
asymptotically. The case πi jt = 0 implies MD = IT N , which is equivalent to the OLS
estimator.

Table 4.3 Values of tr(MD) and tr(MD (IT ⊗KN∗ ))

πi jt tr(MD) tr(MD (IT ⊗KN∗ ))

0 T N T N∗
2.11 T N2

∗ −2N∗−T +2 T (N∗−1)
2.14 N2

∗ (T −1) N∗(T −1)
2.9 (N2

∗ −1)(T −1) (N∗−1)(T −1)
2.5 T (N∗−1)2 T (N∗−1)
2.2 (N∗−1)2(T −1) (N∗−1)(T −1)

Table 4.4 plim
(
φ̂ −φ

)
under different specifications of πi jt

πi jt N∗→ ∞ T → ∞ (T,N∗)→ ∞

0 φ
(
1−φ 2

)(
1+φ 2

)−1 (
1−φ 2

)
(1+φN∗)

[(
1+φ 2

)
N +2φ

]−1
φ
(
1−φ 2

)(
1+φ 2

)−1

2.11 φ
(
1−φ 2

)(
1+φ 2

)−1 (
1−φ 2)

)
[(1+φ(N∗+1)]

[
(1+φ 2)(N∗+1)+2φ

]−1
φ
(
1−φ 2

)(
1+φ 2

)−1

2.14 φ
(
1−φ 2

)(
1+φ 2

)−1 (
1−φ 2

)
(1+φN∗)

[
(1+φ 2)N∗+2φ

]−1
φ
(
1−φ 2

)(
1+φ 2

)−1

2.9 φ
(
1−φ 2

)(
1+φ 2

)−1 (
1−φ 2

)
[1+φ(N∗+1)]

[
(1+φ 2)(N∗+1)+2φ

]−1
φ
(
1−φ 2

)(
1+φ 2

)−1

2.5 φ
(
1−φ 2

)(
1+φ 2

)−1
(1−φ 2) [1+φ(N∗−1)]

[
(1+φ 2)(N∗−1)+2φ

]−1
φ
(
1−φ 2

)(
1+φ 2

)−1

2.2 φ
(
1−φ 2

)(
1+φ 2

)−1
(1−φ 2) [1+φ(N∗−1)]

[
(1+φ 2)(N∗−1)+2φ

]−1
φ
(
1−φ 2

)(
1+φ 2

)−1
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4.3.2 GMM Estimation

Given the results above, we need to establish a consistent estimator for φ . Equation
(4.20) provides some insights for obtaining such an estimator. It can be rewritten as
a reduced-form:

(
yi jt
y jit

)
=

1
1−φ 2

(
δ ′ φδ ′

φδ ′ δ ′

)(
wi jt
w jit

)
+

1
1−φ 2

(
1 φ

φ 1

)(
ui jt
u jit

)
. (4.23)

Equation (4.23) suggests that it is possible to consistently estimate φ and δ by re-
gressing yi jt on wi jt and w jit . Both φ and δ are identifiable under equation (4.23),
but φ is not identifiable in the absence of wi jt and w jit . Therefore, it is not possible
to estimate φ if the model contains only the reciprocal term without any additional
explanatory variables.

An alternative is to consider IV estimation. This requires a variable zi jt that is
correlated with y jit but not with ui jt . Such variable may exist externally but its ex-
istence would depend on the context of the dependent variable. In terms of internal
instruments, there are two potential candidates, specifically, yi jt and w jit . The first
candidate is clearly invalid because yi jt , while it is correlated with y jit , is also corre-
lated with ui jt . Moreover, ykst for k,s 6= i, j cannot be valid instruments because they
are not correlated with yi jt by definition. In terms of using w jit as an instrument, this
is equivalent to the reduced form approach as discussed previously.

A potential drawback in using w jit as an instrument is that πi jt is unlikely to be
zero in practice. It is also likely to be correlated with both wi jt and w jit , thus inducing
another form of endogeneity. While it is possible to accommodate this by applying
the appropriate transformations as discussed in Chap. 2, such transformations may
remove w jit . An alternative is to construct internal instruments following the ap-
proach as discussed in Chap. 3 but this is likely to require some strong assumptions
about the correlations between the elements in wi jt , w jit and πi jt .

Therefore, we will consider another route to estimate the parameters based, as
before, on lagged internal instruments. To demonstrate the idea, consider a simple
example:

yi jt = φy jit +δ ′wi jt +µi j + εi jt ,
y jit = φyi jt +δw jit +µ ji + ε jit .

Note that πi jt = µi j in this case. We can estimate φ from the first equation by taking
first differences to remove the fixed effects:

∆yi jt = φ∆y jit +δ
′
1∆wit +δ

′
2∆w jt +∆εi jt . (4.24)

The OLS estimator is inconsistent for the first-differenced equation because ∆y jit is
an endogenous regressor. Assuming that the errors εi jt are not autocorrelated as in
assumption (4.3), we can again use sequential moment conditions. For this model,
they are defined as
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E(y jis∆εi jt) = 0 s = 1, . . . t−2; t = 2, . . . ,T . (4.25)

Additional moment conditions follow from the assumed exogeneity of ∆wi jt (the
first difference of wi jt ). Specifically:

E(∆wi jt∆εi jt) = 0 i = 1, . . . ,N∗.

These can be used in standard two-step GMM estimation to provide asymptotically
valid inference for the reciprocity effect φ . The set of appropriate Within transfor-
mations for each specification of πi jt is the same as in the dynamic case which can
be found in Table 4.1. The set of moment conditions is also similar to those listed in
Table 4.1 with yt−2

i j being replaced by yt−2
ji .

4.3.3 No Self-flow

A special characteristic of a model with reciprocity is that yiit does not generally
exist and the transformations as listed in Table 4.1 are no longer applicable. In order
to accommodate the situation of no self-flow, a different set of transformations is
required. Similar to the approach above, the general idea is to first remove the static
unobserved heterogeneities by taking the first difference, then derive a set of trans-
formations to accommodate the remaining unobserved heterogeneities. The results
on self-flow from Chap. 1, specifically equation (1.21), are particularly helpful in
this case. Table 4.5 shows the appropriate transformations and the moment condi-
tions for all five cases.

Table 4.5 Transformations and moment conditions for models without self-flow

πi jt Transformations Moment Conditions, t = 2, . . . ,T

2.11 ∆y+ jt
N−1 or ∆yi+t

N−1 E
(

yt−2
ji ∆̃ εi jt

)
= 0

2.14 ∆yi jt E
(

yt−2
ji ∆̃ εi jt

)
= 0

2.9 ∆y+ jt
N−1 or ∆yi+t

N−1 E
(

yt−2
ji ∆̃ εi jt

)
= 0

2.5
(N−1)(∆yi+t+∆y+ jt)

N(N−2) − ∆y+it+∆y j+t
N(N−2) + ∆y++t

(N−1)(N−2) E
(

yt−2
ji ∆̃ εi jt

)
= 0

2.2
(N−1)(∆yi+t+∆y+ jt)

N(N−2) − ∆y+it+∆y j+t
N(N−2) + ∆y++t

(N−1)(N−2) E
(

yt−2
ji ∆̃ εi jt

)
= 0
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4.4 Combining Dynamics and Reciprocity

Short-run dynamics and reciprocity can be combined and analyzed jointly in one
model. For example, in network analysis we are interested in both the persistence of
dyads and reciprocity. First, short-run dynamics are present if links are persistent. If
actors i and j are previously connected, they are more likely to be linked in subse-
quent periods. Second, reciprocity implies that a flow from actor i to j is matched
with a flow in the opposite direction. A simple model incorporating both network
features is

yi jt = φy jit +βyi jt−1 +πi jt + εi jt , i = 1, . . . ,N1; j > i; t = 1, . . . ,T , (4.26)

where the unobserved heterogeneity πi jt can take any of the forms discussed pre-
viously. Model (4.26) assumes reciprocity only without any other spillover effects.
Additional covariates do not materially change the analysis and are omitted for ease
of exposition. Note that a relatively small number of entities N1 can already result
in a large number of cross-sectional observations N.

The reciprocity variable y jit is an endogenous regressor and, hence, the standard
fixed effects OLS estimator is inconsistent irrespective of the model for the unob-
served heterogeneity. Even for large T , the inconsistency does not vanish because
the origin of it is simultaneity bias rather than bias due to the predeterminedness
of the regressors. As long as T is small and N is large, however, standard GMM
methods for dynamic panel data models can be applied. Consider case 2, i.e., only
time-invariant unobserved heterogeneity. Taking first differences, we have

∆yi jt = φ∆y jit +β∆yi jt−1 +∆εi jt , t = 2, . . . ,T . (4.27)

Although we have removed the time-invariant incidental parameters µi j, we can-
not apply OLS because the transformed regressors ∆y jit and ∆yi jt−1 are both corre-
lated with the transformed idiosyncratic error term ∆εi jt . The conditional moment
equation (4.3), however, implies the following T (T −1) Arellano and Bond (1991)
moment conditions for the equation in first differences:

E(y jis∆̃ εi jt) = 0

E(yi js∆̃ εi jt) = 0

}
s = 1, . . . t−2; t = 2, . . . ,T . (4.28)

Note that these moment conditions are the combination of those proposed separately
for the dynamic and reciprocity models in earlier sections. These moment conditions
can be applied in the standard two-step GMM estimation of the parameters of in-
terest, φ and β . The assumption of uncorrelated errors εi jt is crucial for the validity
of these moment conditions. Inclusion of additional short-run dynamics, i.e., further
lagged values of the dependent variable, may therefore prove to be helpful.

Since the transformations required to eliminate the unobserved heterogeneities
and the associated moment conditions are the same for both reciprocity and dynamic
models for all error components specifications discussed in this chapter, it is not



4 Dynamic Models and Reciprocity 115

surprising that the transformations and moment conditions required for the GMM
estimator are also the same as those listed in Table (4.1) for the combined model.

When implementing the GMM estimator, one should take care of both many and
weak instrument problems. The number of moment conditions in (4.28) is O(T 2)
for each endogenous regressor, hence the total number of orthogonality conditions
increases rapidly with the number of time periods. Typically we economize on the
number of moment conditions by taking nearest lags only, which leads to less fi-
nite sample bias (Bun and Kiviet, 2006). Alternatively, Roodman (2009) proposes
collapsing the available moments.

When instruments are weak, that is, only lowly correlated with the endogenous
variables, IV and GMM estimators may perform poorly in finite samples (see, e.g.,
Bound et al. (1995) and Staiger and Stock (1997)). With weak instruments, IV or
GMM estimators for two-dimensional panel data models are biased in the direction
of the least squares estimator, and their distributions are non-normal (Wansbeek and
Knaap, 1999; Hahn et al., 2007; Kruiniger, 2009; Bun and Kleibergen, 2016), affect-
ing inference for φ and β in (4.27) using standard t− or Wald testing procedures.

The weak instrument problem in (4.27) occurs primarily through the value of β .
From the literature on two-dimensional panel data, it is well known that β ≈ 1 is
a notoriously difficult case, as lagged levels are then weak predictors of future first
differences. Additionally, β ≈ 0 may also be problematic. To illustrate this, consider
the first-differenced set of simultaneous equations:

∆yi jt = φ∆y jit +β∆yi jt−1 +∆εi jt ,
∆y jit = φ∆yi jt +β∆y jit−1 +∆ε jit .

(4.29)

Suppose the true value of β is zero, then the reduced form becomes

∆yi jt =
1

1−φ2 (φ∆ε jit +∆εi jt) ,

∆y jit =
1

1−φ2 (∆ε jit +φ∆εi jt) .
(4.30)

Now consider the moment conditions for the first equation

E
[
yi js(∆yi jt −φ∆y jit−1−β∆yi jt)

]
= 0,

E
[
y jis(∆yi jt −φ∆y jit−1−β∆yi jt)

]
= 0 ,

(4.31)

for s = t− 2, t− 3, . . .. Under εi jt ∼ iid(0,σ2
ε ), the strength of the instruments de-

pends primarily on the following two covariances between regressors and instru-
ments:

Cov
(
yi js,∆yi jt−1

)
, (4.32)

Cov(y jis,∆y jit) . (4.33)

The first moment condition is informative so long as the panel data are not persistent.
A weak instrument problem will occur, however, when the true value of β is close
to one. The same holds for the second moment condition, but there is an additional
identification problem when β is close to zero. In that case, the covariance in (4.33)
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is

Cov(y jis,∆y jit) = Cov
(

y jis,
1

1−φ 2 (∆ε jit +φ∆εi jt)

)
= 0

for all s = t−2, t−3, . . . In other words, instrumenting the endogenous reciprocity
regressor with lagged values requires some autoregressive dynamics in network for-
mation.

4.4.1 Monte Carlo Experiments

To show the finite sample properties of two-step GMM estimators and correspond-
ing test statistics in the model with both dynamics and reciprocity, we conduct a
small scale Monte Carlo experiment. We generate data according to (4.26) for the
unobserved heterogeneity case 2. We estimate (4.26) using the Within estimator and
exploit GMM estimator using the Arellano and Bond (1991) moments in (4.28).

We choose φ = {0,0.5} and β = {0,0.5}. The case β = 0 is potentially a
weak instruments case. The model is simulated under weak stationarity with µi j ∼
i.i.n.(0,σ2

µ) and εi jt ∼ i.i.n.(0,σ2
ε ); finally σ2

µ = σ2
ε = 1.

We consider consistent estimation and inference in a small T , large N framework
and therefore set T = 5, which already implies T (T −1) = 20 instruments. We vary
N1 and choose either 40 or 80 resulting in N = {780,3160}. Compared with existing
simulation results for two-dimensional panel data, these cross-section dimensions
are relatively large. All experiments have 1000 replications.

Table 4.6 summarizes the parameter settings of all experiments in this section and
reports the simulation results. We report bias and standard deviation of the GMM
coefficient estimator, as well as actual rejection percentages at nominal 5% Wald
t-statistics. We report the rejection percentage of the Hansen J test checking the
validity of the moments. Unreported results show that, as expected, the Within es-
timator is biased downward for β with a relatively small standard deviation and
the corresponding t-statistic is heavily oversized (up to 100%). Furthermore, bias in
estimating φ is upward.

Experiment 1 shows that for φ = β = 0.5 and N1 = 40, standard GMM results
are visible. There are no issues with weak or many instruments, hence, there is
small bias in all of the coefficient estimator, t-statistic and J statistic. Experiment 2
shows that the value of φ seems largely immaterial for the finite sample properties.
Experiment 3, however, confirms that weak instruments problems occur when β =
0. This has detrimental effects on the estimation bias of the GMM estimator of
φ , which is biased towards the Within estimator. This bias will not disappear for
larger N1 as shown in experiment 4. Remarkably, there does not seem to be a weak
instrument problem for β .
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Table 4.6 Parameter values and simulation results for GMM

design T N1 φ mean of φ̂ sd rp β mean of β̂ sd rp rp J

1 5 40 0.5 0.541 0.055 13.60 0.5 0.459 0.054 14.30 5.80
2 5 40 0 -0.002 0.089 5.20 0.5 0.488 0.047 5.60 4.60
3 5 40 0.5 0.805 0.150 57.40 0 -0.001 0.017 5.30 2.70
4 5 80 0.5 0.811 0.145 61.60 0 -0.000 0.008 4.40 3.40

4.5 Extensions

This section discusses some possible extensions, including a generalisation of reci-
procity as well as extensions to higher dimensions.

4.5.1 Generalized Reciprocity

The models so far assume reciprocity only without any other spillover effects. In
fact, the first two index sets are restricted to be the same. That is, the index set for i
is the same as the index set for j. It is possible to write this as a special case of

yi jt = βyi jt−1 + ∑
p6=i

∑
q 6= j

φpqypqt +µi j + εi jt , (4.34)

where the first index set does not have to be the same as the second index set. In fact,
if we define the first (or second) index set as a set of geographical regions, then this
specification can also be viewed as a generalisation of the Spatial Autoregressive
(SAR) model.

Although the models so far do not include spatial spillovers at the i jt level, the
possibility of controlling for cross-sectional dependencies increases in three dimen-
sional panel data models. In the standard two-dimensional error components model,
it is mainly the aggregated time effect λt which models the correlation between two
cross-sectional units. Additionally, in fixed effects estimation we allow for arbitrary
correlation between the time invariant µi j effects. In the three-dimensional model,
however, we can also incorporate ν it and ζ jt . Therefore, in fixed effects GMM es-
timation, we can allow for arbitrary cross-sectional dependencies at the it and jt
level.

If we want to allow for spillover effects at the i jt level, it is necessary to change
the set of moment conditions. A relatively simple extension is the model of Baltagi
et al. (2014). Abstracting from additional covariates, spatial autoregressive errors
and adapting their set up to three dimensions, their model is equation (4.34) with
φpq = φwpq with wpq being the known spatial weights. Note that model (4.26) results
as a special case when
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wpq =

{
1, p = j,q = i,
0, elsewhere.

Taking first differences, we get

∆yi jt = β∆yi jt−1 +φ ∑
p6=i

∑
q 6= j

wpq∆ypqt +∆εi jt . (4.35)

The Arellano and Bond (1991) moment conditions are then

E(y jis∆εi jt) = 0
E
(
∑p 6=i ∑p 6= j wpqypqs∆εi jt

)
= 0

}
s = 1, . . . , t−2; t = 2, . . . ,T . (4.36)

Once we know the spatial weights, this is a straightforward implementation again
of standard Arellano and Bond (1991) GMM.

It is also possible to allow for spatial dependence in the errors. Adapting the
model of Baltagi et al. (2014) to the three-dimensional panel data model, spatial
autoregressive errors can be specified as

εi jt = ρ ∑
p6=i

∑
q6= j

mpqεpqt +ui jt ,

where mpq is known. The set of moment conditions in (4.36) will stay valid, but
efficiency gains can be achieved. Sarafidis (2016) shows that the spatial Arellano
and Bond (1991) moment conditions are non-redundant and lead to an increase in
the asymptotic efficiency of existing estimators if they are used in combination with
the original moment conditions.

Further extensions to higher order (spatial) autoregressive models are provided
in Lee and Yu (2014). An important limitation of the spatial approach is that, up to a
scale parameter, the spatial interaction matrices are assumed to be known constants.
Kuersteiner and Prucha (2015) relax this assumption and allow for data-dependent
spatial weights. Furthermore, in their GMM framework, they allow for an error
factor structure, which is an example of strong cross-sectional dependence.

4.5.2 Higher Dimensions

The methods proposed in this chapter extend naturally beyond three dimensions for
the dynamic case. For example, consider the four dimensional dynamic panel data
model:

yi jkt = βyi jkt−1 +δ
′wi jkt +πi jkt + εi jkt .

As the number of dimensions increases, the theory on estimation with GMM and the
proposed moment conditions remains applicable under a similar set of assumptions.
For example,

E
(

yt−2
i jk ∆̃ εi jkt

)
= 0, t = 2, ...,T (4.37)
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is a set of valid moment conditions provided the appropriate transformation is avail-
able for four dimensional data. Therefore, the potential difficulty in higher dimen-
sions appears to be the derivation of the appropriate transformations to eliminate the
unobserved heterogeneities. This has been discussed in some detail already in Chap.
1.

The definition of reciprocity is somewhat unclear in higher dimensions, as there
are m! possible ways to arrange the indices of the m individual units for m+ 1-
dimensional data. Therefore the validity of the proposed approach would depend on
the definition of reciprocity and the model specification in higher dimensions.
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Appendix

Proof of Proposition 1

The Anderson and Hsiao (1981, 1982) IV estimator is equal to

β̂AH = β +
N1

∑
i=1

N2

∑
j=1

T

∑
t=2

yi jt−2 (∆νit +∆εi jt)

yi jt−2∆yi jt−1
.

Under the assumptions of the proposition, model (4.2) can be rewritten as:

yi jt = βyi jt−1 +νit +µi j + εi jt =
µi j

1−β
+∑

∞
s=0 β jνit−s +∑

∞
s=0 β jεi jt−s

=
µi j

1−β
+wit +∑

∞
s=0 β jεi jt−s ,

∆yi jt = β∆yi jt−1 +∆νit +∆εi jt = ∑
∞
s=0 β j∆νit−s +∑

∞
s=0 β j∆εi jt−s

= ∆wit +∑
∞
s=0 β j∆εi jt−s .

Therefore, we have

E
(
yi jt−2 (∆νit +∆εi jt) |νit ,νit−1, . . .

)
= ∆νit

∞

∑
s=0

β
j
νit−2−s 6= 0 ,

= wit−2∆wit−1 +E
(
∑

∞
s=0 β jεi jt−2−s ∑

∞
s=0 β j∆εi jt−1−s

)
= wit−2∆wit−1− σ2

ε

1+β
.

When N1→ ∞ we have that

plim
N1→∞

1
N1

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 yi jt−2 (∆νit +∆εi jt) = plim

N1→∞

1
N1

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 wit−2∆νit

= N2E
(
∑

T
t=2 wit−2∆νit

)
= c1 ,

plim
N1→∞

1
N1

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 yi jt−2∆yi jt−1 = plim

N1→∞

1
N1

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 wit−2∆wit−1

+plim
N1→∞

1
N1

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2
(
∑

∞
s=0 β jεi jt−2−s ∑

∞
s=0 β j∆εi jt−1−s

)
= N2E

(
∑

T
t=2 wit−2∆wit−1

)
− N2(T−1)σ2

ε

1+β

= c2 ,
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hence the asymptotic bias can be expressed as

plim
N1→∞

(
β̂AH −β

)
=

c1

c2
.

Both c1 and c2 are nonrandom limits because we took large N1 cross-sectional aver-
ages. In the special case that νit is i.i.d. we furthermore have that c1 = 0, hence β̂AH
is consistent for β .

When N2→ ∞ we have that

plim
N2→∞

1
N2

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 yi jt−2 (∆νit +∆εi jt) = plim

N2→∞

1
N2

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 wit−2∆νit

= ∑
N1
i=1 ∑

T
t=2 wit−2∆νit

= η1 ,

plim
N2→∞

1
N2

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 yi jt−2∆yi jt−1 = plim

N2→∞

1
N2

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2 wit−2∆wit−1

+plim
N2→∞

1
N2

∑
N1
i=1 ∑

N2
j=1 ∑

T
t=2
(
∑

∞
s=0 β jεi jt−2−s ∑

∞
s=0 β j∆εi jt−1−s

)
= ∑

N1
i=1 ∑

T
t=2 wit−2∆wit−1− N1(T−1)σ2

ε

1+β

= η2 ,

hence the asymptotic bias can be expressed as

plim
N2→∞

(
β̂AH −β

)
=

η1

η2
.

Both η1 and η2 are random limits now, however, because we took large N2 cross-
sectional averages. In the special case that νit is i.i.d., we have that E(η1) = 0, which
explains that in the Monte Carlo simulations β̂AH is still centered around β .

Proof of Proposition 2

Under the assumptions on the existence of moments, straightforward manipulation
on equation (4.21) gives

φ̂ =φ +
[
y′ (IT ⊗KN∗)MD (IT ⊗KN∗)y

]−1 y′ (IT ⊗KN∗)MDε

plim φ̂ −φ =plim tr
[
y′ (IT ⊗KN∗)MD (IT ⊗KN∗)y

]−1 y′ (IT ⊗KN∗)MDε

=plim
tr [y′ (IT ⊗KN∗)MDε]

tr [y′ (IT ⊗KN∗)MD (IT ⊗KN∗)y]

=plim
tr [MD (IT ⊗KN∗)yε ′]

tr [(IT ⊗KN∗)MD (IT ⊗KN∗)yy′]

= lim
tr [MD (IT ⊗KN∗)E(yε ′)]

tr [MD (IT ⊗KN∗)E(yy′)(IT ⊗KN∗)]
.

(A2)
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Under the assumption that ε ∼ iid(0,σ2
ε I), it is straightforward to show that

E(yi jtεi jt) =

{
σ2

1−φ2 i 6= j
σ2

1−φ
i = j

E(y jitεi jt) =
φσ2

1−φ 2

E
(
y2

i jt
)
=


(1+φ2)σ2

(1−φ2)
2 i 6= j

(1+φ)σ2

(1−φ2)
2 i = j

E(yi jty jit) = 2
φσ2

(1−φ 2)2 .

Using these expressions, it is possible to show that

E
(
yε
′)=σ

2
[

1
1−φ 2 IT N +

φ

1−φ 2 (IT ⊗KN∗)

]
E
(
yy′
)
=σ

2

[
1+φ 2

(1−φ 2)2 IT N +
2φ

(1−φ 2)2 (IT ⊗KN∗)

]
.

Substituting these results in the last line of (A2) gives the results. This completes
the proof.





Chapter 5
Random Coefficients Models

Jaya Krishnakumar, Monika Avila Márquez, and Laszlo Balazsi

Abstract This chapter deals with specification, estimation and inference within the
framework of a random coefficient model in the presence of higher dimensional
panel data. Most of the chapter is concerned with a three-dimensional setting with
an extension to higher dimensions at the end. We discuss several estimation meth-
ods, starting with the GLS made feasible by a new procedure for the estimation of
the variance-covariance components, as well as an extension of the MINQUE ap-
proach for this setting. We also derive the full Maximum Likelihood and a Restricted
Maximum Likelihood estimators involving the maximization of the log-likelihood
in a subset of the parameter space for an independent estimation of the variance-
covariance elements. Furthermore, we design specification tests that allow to deter-
mine if the response coefficients are constant or varying. Additionally, we present
different extensions of the linear model including unbalanced panels, correlated ran-
dom components and correlation of the stochastic elements with the regressors. Fi-
nally, the chapter ends with brief discussions of non-linear and higher dimensional
extensions as well as a simulation experiment comparing the performance of the
above methods in a finite sample setting.

5.1 Introduction

The main focus of this chapter is a Random Coefficient Linear Model (RCM) for
three-dimensional panel data, within which we discuss the estimation of the un-
known parameters, hypothesis testing and some special issues, such as correlated
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effects and unbalanced data. After a detailed examination of this model, we present
some extensions to higher-dimensional settings as well as nonlinear specifications.
Our model is a generalization of the random coefficient linear model for the anal-
ysis of multilevel panel data allowing the intercept and slope coefficients to vary
along the three dimensions. A typical three-dimensional panel data set consists of
time series observations for different individuals within groups. For instance, one
can think of time series data on GDP growth for different regions or states within
various countries, or time series on investments of firms belonging to different in-
dustries, and so on. In this setting, the heterogeneity of responses at the three levels
of the data can be captured by assuming that the coefficients vary over all three
dimensions. Due to the potentially large number of unknown parameters that this
entails, the coefficients are usually assumed to be random and made up of different
components corresponding to the different dimensions.

The motivation to propose this study is twofold. First, there is an increasing
availability of three-level panel data as well as an increasing use of such data in
economic models. Secondly, varying coefficients improve the fitting and predictive
power of the model when it is not appropriate to assume that the response coef-
ficients are fixed along cluster, individual and time dimensions. Indeed, ignoring
these sources of heterogeneity can lead to biased estimators (see, e.g., Skrondal and
Rabe-Hesketh, 2010). Additionally, De Leeuw et al. (2008) explain that individ-
uals who belong to a group can be correlated, while interclass correlation is less
common. Modelling three-level heterogeneity can capture these intra and inter class
dependence structures.

Three-level panel data have been widely used in several fields such as inter-
national trade, biostatistics and health economics. Egger and Pfaffermayr (2003)
adopted nested fixed effects for three-level panel data to take into account bilat-
eral interaction effects. Gibbons and Hedeker (1997) studied the consequences of
smoking cessation interventions by fitting a random effects probit model to this
type of panel data. One can also refer to Balazsi et al. (2015), who present a three-
dimensional fixed effects model and a Within procedure to estimate it. The most
common model includes fixed effects for each of the three dimensions and the most
efficient Within estimator is the one that wipes out the three effects simultaneously.
They also present another model that takes into account bilateral interactions by in-
cluding nested fixed effects. Finally, they analyze the behaviour of the estimators
under unbalanced panel data and dynamic autoregressive models. The models em-
ployed for the analysis of three-level panel data are principally linear with either
fixed or random effects.

Random coefficient models go further than the linear introduction of fixed and
random effects because they represent unobserved individual heterogeneity in re-
sponses to explanatory variables. Several empirical studies have shown that varying
response coefficients are more appropriate in various practical situations. To illus-
trate, we can mention the study developed by Heckman and Vytlacil (1998) to esti-
mate rates of return to schooling with a random coefficient model. Another example
is the application done by Kwan (1991) for the estimation of interest rate sensitivity
of commercial bank stock returns.
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Although heterogeneous coefficient models exist for cross-sectional (Hildreth
and Houck, 1968) and panel (Swamy, 1970; Hsiao, 1975) settings, such a specifi-
cation has not yet been proposed for higher-dimensional data. Swamy (1970) spec-
ified an efficient estimation methodology for a model with random coefficients that
change in the individual dimension, applying Aitken’s Generalized Least Squares
for the estimation of the coefficients. In order to make the estimator feasible, he
proposed running linear regressions separately for each individual for estimating
the variance components. He also developed a test to determine whether the co-
efficients are random or not. All in all, Swamy (1970) introduced the estimation
strategy along with a hypothesis testing procedure.

Building on Hsiao (1975), Hsiao and Pesaran (2008) present two approaches for
the estimation of coefficients in a Random Coefficient Model in the presence of two-
dimensional panel data. The first is feasible generalized least squares (FGLS) using
a minimum quadratic unbiased estimation (MINQUE) approach for estimating the
variance components and the second is the maximum likelihood estimation (MLE).
Interestingly, they show that this model has a Bayesian justification. The key advan-
tage of this model lies in the fact that even allowing the coefficients to differ from
unit to unit and over time, the number of parameters to be estimated is still small.

We generalise the above models in a three-dimensional setting by proposing ran-
dom coefficient components in all three dimensions with non-diagonal variance-
covariance matrices. We first discuss the application of the GLS method, paying
attention to the computational aspect, as well as the estimation of the variance-
covariance components. We propose two consistent methods for the latter. The first
is a method that exploits either the sub-level Within variations or the overall varia-
tion of coefficients. The second is an extension of MINQUE methodology. Then we
go on to examine MLE and its implementation using Anderson’s (1971) algorithm.
Using the asymptotic properties of the estimators, we develop tests for constant ver-
sus varying coefficients. A simulation experiment shows that FGLS performs better
than OLS, but MLE beats FGLS. Furthermore, we analyse some important special
issues, such as correlated components and unbalanced panels. Finally, we discuss a
non-linear extension and propose a Monte-Carlo EM algorithm for its estimation.

The chapter is organized as follows: Sect. 5.2 sets out the model and presents
FGLS and variance-covariance components estimation methods, Sects. 5.3 dis-
cusses MLE and Restricted MLE, Sect. 5.4 addresses inference questions, Sect. 5.5
derives predictors of the heterogenous coefficients, Sect. 5.6 presents a Bayesian ap-
proach, Sect. 5.7 discusses extensions within the linear model, Sect. 5.8 introduces
non-linearity, Sect. 5.9 reports simulation results, and finally Sect. 5.10 draws some
conclusions.
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5.2 The Linear Model for Three Dimensions

5.2.1 The Model

We consider the following model for t = 1, . . . ,T observations of j = 1, . . . ,N2 in-
dividuals in i = 1, . . . ,N1 groups:

yi jt = x′i jtβi jt + εi jt , (5.1)

where
βi jt = (β̄ +αi + γ j +λt) , (5.2)

with x′i jt being the (1×K) vector of explanatory variables, β̄ the (K×1) vector of
unobserved parameters, αi, γ j, λt are the (K×1) random vectors, and finally, εi jt is
an additive random disturbance. The following is assumed to hold.

Assumption 1
E(εi jt) = 0 , E(ε2

i jt) = σ
2
ε .

Assumption 2

E(αi) = 0 , E(γ j) = 0 , and E(λt) = 0

E(αiα
′
h) =

{
∆α if i = h
0 otherwise

E(γ jγ
′
l ) =

{
∆γ if j = l
0 otherwise

E(λtλ
′
s) =

{
∆λ if t = s
0 otherwise

E(αiγ
′
j) = E(αiλ

′
t ) = E(γ jλ

′
t ) = 0 .

Note that our variance-covariance matrix is different from the ones found in the
literature on RCM. We assume a full variance-covariance matrix for all the random
components, while they are usually restricted to be diagonal (see e.g., Hsiao, 1974).
A typical element of the k-th row and k′-th column of ∆α is called σα,kk′ , while it is
σ2

α,kk when k = k′.

Assumption 3 X is non-stochastic and rank(X) = K.

Stacking the observations, we get:

y = X β̄ +X1α +X2γ +X3λ + ε , (5.3)

with, using X̃ = diag(x′111, . . . ,x
′
N1N2T ) of size (N1N2T ×N1N2T K),
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X1 = X̃ ((IN1 ⊗ ιN2 ⊗ ιT )⊗ IK) of size (N1N2T ×N1K)
X2 = X̃ ((ιN1 ⊗ IN2 ⊗ ιT )⊗ IK) of size (N1N2T ×N2K)
X3 = X̃ ((ιN1 ⊗ ιN2 ⊗ IT )⊗ IK) of size (N1N2T ×T K) ,

and stacked parameters α , γ , λ of sizes (N1K×1), (N2K×1) and (T K×1), respec-
tively. The covariance matrix is then given by

Ω = X1(IN1 ⊗∆α)X ′1 +X2(IN2 ⊗∆γ)X ′2 +X3(IT ⊗∆λ )X
′
3 +σ

2
ε IN1N2T . (5.4)

The observations relate to different groups within which we observe cross-
sectional units and for each unit we have time series information. However, it is
not mandatory that the indices refer to time, individual and group. For example, in
another setting, one could have workers in companies of different countries. Thus
our general structure is suitable for multi-level data (perhaps with nested indices).

Assumption 1 implies that the disturbance term has constant variance along time,
individuals and groups. Thus, there is no serial correlation or correlation among
groups or individuals. Assumption 2 entails that the random elements added to the
mean vector of coefficients are not correlated between each other but each vector has
a full (non-diagonal) variance-covariance matrix as pointed out earlier. This leads
to coefficients that are correlated among groups, individuals and time periods even
though the random elements are not.

5.2.2 Feasible Generalized Least Squares (FGLS)

The GLS estimator of the model is given by

ˆ̄
βGLS = (X ′Ω−1X)−1X ′Ω−1y .

Since Ω is unknown, one needs a prior estimation of variance components for im-
plementing GLS. But before addressing this question, we first examine a computa-
tional issue which is particularly relevant in our context due to the potentially huge
size of Ω .

The dimension of Ω , whose inverse has to be calculated for obtaining the GLS
estimator, is (N1N2T ×N1N2T ), consequently a direct computation is not generally
recommended. We propose the following step-wise solution for computing its in-
verse.

First, let us rewrite

Ω = Iσ
2
ε +X1(IN1 ⊗∆α)X ′1 +X2(IN2 ⊗∆γ)X ′2 +X3(IT ⊗∆λ )X

′
3 ,

and call
P1 = Iσ

2
ε +X1(IN1 ⊗∆α)X ′1 .

It can be easily shown, that
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P−1
1 = diag{IN2T σ

2
ε −Xi(X ′i Xi +∆

−1
α σ

2
ε )
−1X ′i /σ

2
ε , i = 1 . . .N1},

with Xi = (xi11, . . .xiN2T )
′, a (N2T ×K) matrix. Now if we continue and define

P2 = Iσ
2
ε +X1(IN1 ⊗∆α)X ′1 +X2(IN2 ⊗∆γ)X ′2 = P1 +X2(IN2 ⊗∆γ)X ′2 ,

its inverse can be obtained by applying the Woodbury matrix identity:

P−1
2 = P−1

1 −P−1
1 X2R−1

1 X ′2P−1
1 ,

with
R−1

1 =
(
IN2 ⊗∆

−1
γ +X ′2P−1

1 X2
)−1

of size (N2K×N2K). Finally, using the Woodbury matrix identity again, to invert

Ω = P2 +X3(IT ⊗∆λ )X
′
3

gives
Ω
−1 = P−1

2 −P−1
2 X3R−1

2 X ′3P−1
2 ,

with
R−1

2 =
(
IT ⊗∆

−1
λ

+X ′3P−1
2 X3

)−1
,

a matrix of size (T K×T K).
As seen from the derivation, two inverses have to be computed directly: R−1

1
and R−1

2 , with orders N2K and T K, respectively. Note that the inverse of P1 can
be performed analytically due to its block-diagonal nature. This observation offers a
natural opportunity to reduce calculations by taking the largest random coefficient as
P1. Thus, for example, if a linked employer-employee data is such that it comprises
N1 = 100,000 employees, N2 = 1,000 firms and T = 10 years with K = 5 regressors,
the direct inverses to be taken are (5,000× 5,000) and (50× 50) matrices (doable
by most computers), as opposed to the brute-force calculations on Ω , which in this
case is a matrix of the order of 5,000,000,000.

Now let us turn to to the estimation of variance components.

5.2.3 Method 1: Using Within Dimensions Variation

This method uses the variation within each dimension along the lines of Hsiao
(1974). We fix one of the dimensions, say the group dimension i such that we have
the following model:

yi jt = x′i jt
(
β̄ +αi

)
+ x′i jt (γ j +λt)+ εi jt ≡ x′i jtβi +ui jt , (5.5)

with the composite disturbance term

ui jt = x′i jt (γ j +λt)+ εi jt .
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Then, the variance-covariance matrix of ui jt is given by

E
(
ui jtu′ils

)
=


0 if j 6= l and t 6= s

∑
K
k=1 ∑

K
k′=1 xi jt,kxils,k′σλ ,kk′ if j 6= l and t = s

∑
K
k=1 ∑

K
k′=1 xi jt,kxils,k′σγ,kk′ if j = l and t 6= s

∑
K
k=1 ∑

K
k′=1 xi jt,kxils,k′

(
σλ ,kk′ +σγ,kk′

)
+σ2

ε if j = l and t = s .

As the variance-covariance matrix is non-diagonal, we cannot follow Hsiao’s (1974)
approach from here on. Instead, we propose the following new procedure.

First, we can estimate the ui jt error term of model (5.5) by running an OLS
separately for each individual i

ri jt = yi jt − x′i jt β̂i ,

with

β̂i =
(
X ′i Xi

)
X ′i yi , yi = (yi11,yi12, . . . ,yiN2T )

′ , and Xi = (xi11,xi12, . . . ,xiN2T )
′ .

Stacking over j and t, the residual can be expressed as

ri = MXiui ,

where the idempotent matrix MXi is

MXi = IN2T −Xi
(
X ′i Xi

)−1 X ′i .

Taking the expectation of rir′i we have

E
(
rir′i
)
= MXiE

(
uiu′i
)

MXi = MXiΩiMXi , (5.6)

where we know that the variance-covariance matrix can be written as

Ωi =
K

∑
k=1

K

∑
k′=1

σγ,kk′Hi
γ,kk′ +

K

∑
k=1

K

∑
k′=1

σλ ,kk′Hi
λ ,kk′ +σ

2
ε IN2T (5.7)

and

Hi
γ,kk′ = X̃i,k (IN2 ⊗ ιT )

(
IN2 ⊗ ι

′
T
)

X̃ ′i,k′ ; Hi
λ ,kk′ = X̃i,k (IT ⊗ ιN2)

(
IT ⊗ ι

′
N2

)
X̃ ′i,k′ .

Thus, the expectation of the outer product of the vector of residuals can be expressed
as:

E
(
rir′i
)
=

K

∑
k=1

K

∑
k′=1

σγ,kk′MXiHi
γ,kk′MXi +

K

∑
k=1

K

∑
k′=1

σλ ,kk′MXiHi
λ ,kk′MXi +σ

2
ε MXi . (5.8)

Using the vec operator (where vec(A) gives the (NM× 1) column vector built up
from arranging each column of the (N×M) matrix A below each other) and the vech
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operator (where vech(G) gives the (N(N + 1)/2× 1) column vector built up from
stacking up the different elements of each column of the (N×N) symmetric matrix
G)

vec(E(rir′i)) = ∑
K
k=1 ∑

K
k′=1 σγ,kk′vec(MXiHi

γ,kk′MXi)

+∑
K
k=1 ∑

K
k′=1 σλ ,kk′vec(MXiHi

λ ,kk′MXi)+σ2
ε vec(MXi)

= Aγ,i ·vec(∆γ)+Aλ ,i ·vec(∆λ )+σ2
ε vec(MXi)

= Aγ,iD ·vech(∆γ)+Aλ ,iD ·vech(∆λ )+σ2
ε vec(MXi)

(5.9)

for i = 1, . . . ,N1, with

Aγ,i =
(

vec(MXiHiγ,11 MXi), . . . ,vec(MXiHiγ,kk MXi)
)

Aλ ,i =
(

vec(MXiHiλ ,11 MXi), . . . ,vec(MXiHiλ ,kk MXi)
)

D = ∑i= j vec(Li j)u′i j
Li j = E ji +Ei j
Ei j = eie′j ,

where ei is a unit vector with one in the ith position and zeros otherwise, ui j is a
vector of order 1

2 n(n+1) with unity in its [( j−1)n+ i− 1
2 j( j−1)]-th position and

zeros otherwise and D is the duplication matrix of size (K2×K(K+1)/2) with full
column-rank.

Writing (5.9) as
Ri = Ziη for i = 1, . . . ,N1 , (5.10)

with

Ri = vec
(
E(rir′i)

)
; Zi =

(
Aγ,iD,Aλ ,iD,vec(Mi)

)
with rank 2K(K +1)/2+1

and
η
′ = (vech(∆γ)

′vech(∆λ )
′
σ

2
ε ) ,

we can estimate the variance-covariance elements as

η̂
(i) =

(
Z′iZi

)−1 Z′i R̂i for i = 1, . . . ,N1 . (5.11)

This is equivalent having the following setting:

R̂i = Ziη +µi , (5.12)

where µi is an error term that represents the deviation of R̂i from E(rir′i). For sim-
plicity reasons, we use rir′i as an estimator of E(rir′i). This is unbiased, although not
efficient, and additionally, it retrieves good final estimators of the coefficients. We
could have also used the sample estimator

Ê(rir′i) =
1

N1−1

N1

∑
i=1

(ri− r̄i)(ri− r̄i)
′ , (5.13)
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but this estimated matrix would be invariant over i, and so may not be appropriate
for the regression (5.12).

Formulas (5.11)-(5.13) lead to N1 estimators for ∆γ , ∆λ and σ2
ε , so in order to

use information more effectively, one can go ahead and take their means over i to
get

∆̂γ = 1
N1

∑
N1
i=1 ∆̂

(i)
γ

∆̂λ = 1
N1

∑
N1
i=1 ∆̂

(i)
γ

σ̂2
ε = 1

N1
∑

N1
i=1 σ̂2(i)

ε .

(5.14)

We can repeat the same procedure for the other two dimensions, fixing them one
by one. This process gives two estimators for each of the variance components ∆γ ,
∆λ and ∆α . We can once again take their means in order to have a single estimator
at the end. Similarly, σ2

ε has three estimations (one from each estimation), so again
we can do the trick and take their overall mean to get a single estimator. It can easily
be shown that all the listed estimators are consistent.

5.2.4 Method 2: Using the Overall Variation

In this section, we propose another method for the estimation of the variance-
covariance matrix which simultaneously estimates all three components using the
residuals from the pooled OLS written as

ri jt = yi jt − x′i jt β̂ , (5.15)

where
β̂ =

(
X ′X

)−1 X ′y (5.16)

Stacking observations over i, j and t, the residual can be expressed as

r = MX u with MX = IN1N2T −X
(
X ′X

)−1 X ′ . (5.17)

Taking the expectation of rr′, we have

E
(
rr′
)
= MX E

(
uu′
)

MX = MX ΩMX . (5.18)

Just as in Sect. 5.2.3, the variance-covariance matrix Ω can be written as

Ω =
K

∑
k=1

K

∑
k′=1

σα,kk′Hα,kk′ +
K

∑
k=1

K

∑
k′=1

σγ,kk′Hγ,kk′ +
K

∑
k=1

K

∑
k′=1

σλ ,kk′Hλ ,kk′ +σ
2
ε IN1N2T ,

(5.19)
where

Hα,kk′ = X̃k(IN1 ⊗ ιN2 ⊗ ιT )(IN1 ⊗ ι ′N2
⊗ ι ′T )X̃k′

′

Hγ,kk′ = X̃k(ιN1 ⊗ IN2 ⊗ ιT )(ι
′
N1
⊗ IN2 ⊗ ι ′T )X̃k′

′

Hλ ,kk′ = X̃k(ιN1 ⊗ ιN2 ⊗ IT )(ι
′
N1
⊗ ι ′N2

⊗ IT )X̃k′
′
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and X̃k is the (N1N2T ×N1N2T ) diagonal matrix constructed from the k-th column
of the data matrix X . As before, the expectation of the outer product of the vector of
residuals can be expressed as

E(rr′) = ∑
K
k=1 ∑

K
k′=1 σα,kk′MX Hα,kk′MX +∑

K
k=1 ∑

K
k′=1 σγ,kk′MX Hγ,kk′MX

+∑
K
k=1 ∑

K
k′=1 σλ ,kk′MX Hλ ,kk′MX +σ2

ε MX .
(5.20)

Applying the vec operator and vech operator

vec(E(rr′)) = ∑
K
k=1 ∑

K
k′=1 σα,kk′vec(MX Hα,kk′MX )

+∑
K
k=1 ∑

K
k′=1 σγ,kk′vec(MX Hγ,kk′MX )

+∑
K
k=1 ∑

K
k′=1 σλ ,kk′vec(MX Hλ ,kk′MX )+σ2

ε vec(MX )
= Bα vec(∆α)+Bγ vec(∆γ)+Bλ vec(∆λ )+σ2

ε vec(MX )
= Bα Dvech(∆α)+Bγ Dvech(∆γ)+Bλ Dvech(∆λ )+σ2

ε vec(MX ) ,

with the appropriate definitions

Bα = (vec(MX Hα,11MX ), . . . ,vec(MX Hα,KKMX ))
Bγ =

(
vec(MX Hγ,11MX ), . . . ,vec(MX Hγ,KKMX )

)
Bλ =

(
vec(MX Hλ ,11MX ), . . . ,vec(MX Hλ ,KKMX )

)
.

From this, the variance-covariance components can be estimated as

η̂ =
(
Z′Z
)−1 Z′R̂ (5.21)

with

R̂ = vec(rr′)
Z =

(
Bα D, Bγ D, Bλ D, vec(MX )

)
of rank 3K(K +1)/2+1

D is the duplication matrix defined in Sect. 5.2.3
η̂ ′ =

(
vech(∆̂α)

′ vech(∆̂λ )
′ vech(∆̂γ)

′ σ̂2
ε

)
This is equivalent to having the following setting

R̂ = Zη +µ , (5.22)

where µ is the error term representing the deviation of rr′ from E(rr′). It can be
shown that the above procedure leads to consistent estimators of ∆α , ∆γ , ∆λ and
σ2

ε . The caveat of the method above is that it does not necessarily lead to a positive
definite estimated variance-covariance matrix. In order to overcome this problem,
we propose to do a re-parametrization. We set the diagonal elements as

σ
2
α,kk = exp{τα,kk} k ∈ 1,2, . . . ,K ,

similarly for γ , λ and σ2
ε . Let us denote by ϑ the new vector of parameters with

all the elements of the variance-covariance matrix as before, except for the diagonal
components that are replaced by the new parametrization. We propose a constrained
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non-linear least squares estimation by minimizing the sum of squared errors under
positivity restrictions, as positive diagonal elements are not sufficient to guarantee
positive definiteness. Thus, the problem to be solved is

min
τl ,σl,kk

(R−Zϑ)′(R−Zϑ) , such that

∆α , ∆γ , ∆λ are positive definite .
(5.23)

Following Benson and Vanderbei (2003), we can use an interior-point method
for non-linear programming to solve our problem. In this case, we apply the spec-
tral decomposition to each matrix, and our restrictions are equivalent to imposing
that all the eigenvalues of each matrix are positive. Although implementing the pro-
gramming exercise (5.23) would take us beyond the scope of the chapter, it should
be noted that our simulation experiment in Sect. 5.9 produces a relatively high pro-
portion of non-positive estimated variance-covariance matrices.

5.2.5 Minimum Norm Quadratic Unbiased Estimation (MINQUE)

In this section, we apply the Minimum Norm Quadratic Unbiased Estimation (here-
after, MINQUE) method (see Rao, 1970) for estimating the variance components of
our model. Fixing the group and individual dimensions, and letting the coefficients
vary randomly over time, we can write

yi j = Xi j(β +αi + γ j)+X3,i jλ + εi j ≡ Xi jβi j +ui j , (5.24)

with yi j, Xi j and X3,i j being the (T ×1), (T ×K), and (T ×T K) matrices of y, X and
X3 for individual pair i j. Now, the variance-covariance matrix is

Ωi j = X3,i j(IT ⊗∆λ )X
′
3,i j +σ

2
ε IT . (5.25)

We define the problem as that of finding the matrix A that minimizes ||U ′AU || with
U = (X3,i j, IT ), subject to

1. Unbiasedness condition: E(y′i jAyi j) = tr(IT ⊗∆λ )(X3,i jAX3,i j)+σ2
ε tr(A)

2. Invariability condition: X ′3,i jAX3,i j = 0.

Using the results of Rao (1970), the matrix A is given by:

A = Ri jX̃i jΛ X̃ ′i jRi j , (5.26)

with Λ as a solution of X̃ ′i jRi jIT Λ IT Ri jX̃i j +Ri jX̃ ′i jΛ X̃i jRi j = M.
Using this, the MINQUE estimators of ∆λ and σ2

ε are given by the solution to
the following system of equations:

vi jv′i j = X̃ ′i jRi jX̃i j(IT ⊗∆λ )X̃ ′i jRi jX̃i j +σ2
ε X̃ ′i jRi jRi jX̃i j

u′i jui j = trRi jX̃i j(IT ⊗∆λ )X̃ ′i jRi j +σ2
ε trRi jRi j ,

(5.27)



136 Jaya Krishnakumar, Monika Avila Márquez, and Laszlo Balazsi

where
Ri j = F−1

i j (I−Pi j) , Pi j = Xi j(X ′i jF
−1
i j Xi j)

−X ′i jF
−1
i j ,

vi j = X̃ ′i jRi jYi j , and ui j = Ri jYi j .

And we can use two matrices for Fi j, the first approximates Ωi j by taking ∆λ = IK
and σ2

ε = 1 and the second uses an initial estimate of it:

Fi j = ∑
k

∑
k′

X̃i j,kX̃ ′i j,k′ + Ii j

Fi j = Ωo,i j .

We thus obtain N1N2 estimators of ∆λ and σ2
ε , and take their average as our final

estimator. Finally, the procedure is repeated for each dimension.
According to Callanan (1985), one problem of MINQUE estimation is that in

spite of being unbiased, it can retrieve estimators that are not within the parameter
space. This means that we can end up with a non-positive definite matrix, facing the
same problem as we did in the previous section. A possible solution to this is ob-
taining the estimators under a constraint for keeping the estimations in the parameter
space, which ensures that the variance-covariance matrix is positive definite. Never-
theless, the drawback of this approach is that the estimators may be biased.

5.2.6 Properties of the Estimators

Given that the elements of the variance-covariance matrix can be estimated in a
consistent way, we can easily show that the FGLS estimator of β̄ is consistent with
the asymptotic variance given by Var( ˆ̄

β ) =
(
X ′Ω−1X

)−1. Recall that for Hsiao’s
(1974) 2D model both N and T asymptotics are required, whereas in our case the
growth of any two indices is sufficient.1 This is a huge improvement over earlier
results, as consistent estimation is now feasible for short panels as well, with T fixed
and small. Further, if N1,N2 → ∞ holds, ˆ̄

β is asymptotically normally distributed
with √

N1N2

(
ˆ̄
β − β̄

)
∼ N

(
0,
(
X ′Ω−1X

)−1
)
. (5.28)

1 Strictly speaking, N2→∞ or T →∞ is sufficient for the consistent estimation of σ̂2
αk, N1→∞ or

T → ∞ is sufficient for the consistent estimation of σ̂2
γk, and N1→ ∞ or N2→ ∞ for the consistent

estimation of σ̂2
λk. Putting these three conditions together gives the overall condition.



5 Random Coefficients Models 137

5.3 Maximum Likelihood Estimation

5.3.1 The Unrestricted Maximum Likelihood

Under the assumption that the error term and the random components follow a nor-
mal distribution with zero mean and σ2

ε , ∆α , ∆γ and ∆λ respective variance and
variance-covariance matrices, the log-likelihood is given by

lnL(β ,σα ,σγ ,σλ ,σε |y) =−
N1N2T

2
ln(2π)− 1

2
|Ω |− 1

2
(y−Xβ )′Ω−1(y−Xβ ) .

(5.29)
Following Hsiao (1974), we can express the variance-covariance matrix as a linear
combination of the variance components as

Ω = ∑
K
k=1 σ2

α,kkHα,kk +∑k,k′;k 6=k′ σα,k′k(Hα,k′k +Hα,kk′)

+∑
K
k=1 σ2

γ,kkHγ,kk +∑k,k′;k 6=k′ σγ,k′k(Hγ,k′k +Hγ,kk′)

+∑
K
k=1 σ2

λ ,kkHλ ,kk +∑k,k′;k 6=k′ σλ ,k′k(Hλ ,k′k +Hλ ,kk′)

+σ2
ε IN1N2T ,

(5.30)

which is naturally equivalent to (5.19) derived in Sect. 5.2.4, only now are diagonal
elements in ∆α etc. are taken out from the sums. Now, following Anderson (1971),
the term (y−Xβ )′Ω−1(y−Xβ ) can be re-expressed as tr(Ω−1)(y−Xβ )′(y−Xβ ).
The first order conditions of the likelihood function, using expression (5.30) are
given by

X ′Ω−1Xβ = X ′Ω−1y
tr(Ω−1)Hm,kk = tr(Ω−1)Hm,kkΩ−1(y−Xβ )′(y−Xβ )

tr(Ω−1)(Hm,k′k +Hm,kk′) = tr(Ω−1)(Hm,k′k +Hm,kk′)Ω
−1(y−Xβ )′(y−Xβ )

tr(Ω−1) = tr(Ω−1)Ω−1(y−Xβ )′(y−Xβ )
(5.31)

with the index m referring to α,γ or λ , giving a system of total 8 equations. As the
system in (5.31) is non-linear, we have to linearize it using, for example, Anderson’s
(1971) algorithm. Solutions are then collected from solving the linear system of
equations for β and the variance-covariance components.

As previously mentioned, a major computational problem is the inversion of the
variance-covariance matrix. Luckily, the step-wise procedure to construct the in-
verse, presented in Sect. 5.2.2, can also be applied for this MLE case.

Another MLE can be designed by fixing two of the dimensions for the random
components and estimate the variance-covariance elements for the remaining one.
For instance, if we fix time and individual j, that is components λt and γ j, the vari-
ance covariance matrix is given by

X1 (IN1 ⊗∆α)X ′1 +σ
2
ε IN2T . (5.32)
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The likelihood function is written as before, and the FOC equations are solved to
obtain ∆α and σ2

ε . This process should be repeated for each dimension. As a result,
we have three estimates for σ2

ε and once again we can take their average.
The MLE estimator has the usual drawbacks that it relies on a parametric spec-

ification of the data generating process and the variance covariance estimators are
not corrected for the loss of degrees of freedom. Notwithsanding, Harville (1977)
argues that even when the true distribution is not normal, the estimations obtained
under this assumption may still be suitable.

5.3.2 Restricted Maximum Likelihood Estimation

Patterson and Thompson (1971) developed an alternative method called the Re-
stricted Maximum Likelihood Estimation (RMLE) to obtain unbiased estimators.
This method maximizes the likelihood over a restricted parameter space by splitting
the log-likelihood into two orthogonal components such that we can estimate the
elements of the variance-covariance matrix independently of those of β̄ . We apply
this to our model.

First, we rewrite the probability density function of y as:

f (y|β̄ ,Ω) = f (U |Ω) f (β̂G|β̄ ,Ω)|Jh−1(y)| , (5.33)

where U is defined as

U = L′y with LL′ = I−X(X ′X)−1X ′ = MX and L′L = I , (5.34)

and

Jh−1(y) =
∂ f (U, β̂ )

∂y
. (5.35)

From the properties of L ,it is implied that U is independent of β̂G, as U lies in the
orthogonal column space of X .

The estimation of the variance-covariance components is carried out using the
conditional likelihood L(Ω |U), first by observing

f (U |Ω) =
f (y|β̄ ,Ω)

f (β̂G|β̄ ,Ω)
|Jh−1(y)|

−1 , (5.36)

and that

f (U |Ω) = (2π)(−N1N2T+K)|Ω |−1/2|(X ′(Ω)−1X)−1|−1/2×
×exp

{
− 1

2 (Y −X β̂G)
′Ω−1(Y −X β̂G)

}
,

(5.37)

which in turn gives
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lnL(Ω |U) = (−N1N2T +K) ln(2π)− (1/2) ln |(Ω)|− (1/2)×
× ln |(X ′(Ω)−1X)|−1/2(y−X β̂G)

′Ω−1(y−X β̂G) .
(5.38)

In line with Callanan (1985), the solution to the FOC can be obtained using var-
ious algorithms, such as the EM algorithm, the Newthon–Raphson method or the
method of Scoring. According to Jiang (1996), the estimators are asymptotically
normal and have similar properties to the ones obtained by MLE under some reg-
ularity conditions; however, the rates of convergence are already corrected for the
loss of degrees of freedom for this restricted case.

5.4 Inference: Varying (Random) or Constant Coefficients?

In order to use the random coefficient specification, it is necessary to test whether
the variance-covariance matrices for the random components are significantly dif-
ferent from zero, that is, (some or all of them) should be treated as random variables,
or simply as constants. In this section, we propose several specification tests to in-
vestigate this. Different testing procedures are derived for the different underlying
estimation methods used for the variance-covariance components. Such tests em-
ploy nulls, like ∆α = 0 and/or ∆λ = 0 and/or ∆γ = 0.

5.4.1 Testing for Methods 1 and 2

Suppose we want to test the following null:

H0 : ∆λ = 0 ,

assuming that ∆γ , ∆α and σ2
ε are known. In order to test this hypothesis, we need an

estimator for ∆λ , so let’s write model (5.1) as

yi jt = x′i jt
(
β̄ +λt

)
+ x′i jtαi + x′i jtγ j + εi jt ≡ x′i jtβt +ui jt , (5.39)

with an obvious change of notations in the second part of the equation. Fixing t, we
can estimate βt with the number of N1N2 observations for each period

β̂t =
(
X ′t Xt

)−1 X ′t yt ,

where
Xt = (x11t , . . . , xN1N2t)

′ ,

similarly for y. It can be shown that the above estimator is consistent for N1, N2 or
both, and asymptotically normally distributed

√
N1N2(β̂t −βt)∼ N(0,Σt) ,
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with

Σt =
(
X ′t Xt

)−1 X ′t
(
X1,t(IN1 ⊗∆α)X ′1,t +X2,t(IN2 ⊗∆γ)X ′2,t +σ

2
ε IN1N2

)
Xt
(
X ′t Xt

)−1

with X1,t and X2,t being the (N1N2×N1K) and (N1N2×N2K) sub-matrices of X1
and X2 where only the N1N2 rows corresponding to time t are preserved.

Given that Var(βt) = ∆λ , a feasible candidate for estimating ∆λ can be con-
structed as follows

∆̂λ = 1
T−1

(
∑

T
t=1 β̂t β̂

′
t − 1

T ∑
T
t=1 β̂t ∑

T
t=1 β̂ ′t

)
− 1

T σ2
ε (X

′
t Xt)

−1

− 1
T−1 ∑

T
t=1 (X

′
t Xt)

−1 X ′t
(

X1,t(IN1 ⊗∆α)X ′1,t +X2,t(IN2 ⊗∆γ)X ′2,t
)

Xt (X ′t Xt)
−1

+ 1
T (T−1) ∑

T
t=1 (X

′
t Xt)

−1 X ′t X1,t(IN1 ⊗∆α)∑
T
t=1 X ′1,tXt (X ′t Xt)

−1

+ 1
T (T−1) ∑

T
t=1 (X

′
t Xt)

−1 X ′t X2,t(IN2 ⊗∆γ)∑
T
t=1 X ′2,tXt (X ′t Xt)

−1 .

(5.40)
Note that all the terms after the first one are correcting for the bias. It can be

shown that the above estimator follows a Wishart distribution provided ∆γ , ∆α and
σ2

ε are all known. However, in practice we rarely know their true values, hence we
can hardly implement any test based on this Wishart distribution. If on the other
hand, we replace the unknown variance-covariance elements by their consistently
estimated counterparts, we end up with a sum of correlated random variables whose
distribution is unknown. Consequently, it is impossible to directly test for H0 : ∆λ =
0. Similar reasoning holds for ∆α and ∆γ .

5.4.1.1 Test in Steps

The failure of the direct test leads us to propose an alternative testing procedure
which assesses the equality of the coefficients (against variability) taking a “fixed-
effects” perspective. Following Hsiao (1974), we propose a test in steps: first, test
variability in one of the dimensions, specifying the heterogeneity in this particular
dimension as varying coefficients while removing the other coefficient components
to the composite error term, as done in (5.39). Specifically, our first null is given by

H0 : β1 = β2 = · · ·= βT (5.41)

for model (5.39).
Note that H0 can be written as R1β(t) = 0, where

β(t) = (β1,β2, . . . ,βT )
′

and
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R1 =


IK −IK 0 0 0 0
0 IK −IK 0 0 0

. . .
0 0 0 0 IK −IK

 of size (K(T −1)×KT )

is a matrix of ones and zeros aiding to formulate the K(T − 1) linear constraints.
With this clever notation we have the following statistic

β̂
′
(t)R
′
1
(
R1Σ1R′1

)−1 R1β̂(t) ∼ χ
2
K(T−1) ,

where Σ1 is the asymptotic variance of β̂(t).
If we do not reject the null, we can go on to test the variability of the effects over

the second dimension, say j. Once again we test this through assessing the equality
of the coefficients across this dimension on model

yi jt = x′i jt(β̄ + γ j)+ x′i jt(αi)+ εi jt = x′i jtβ j +ui jt , (5.42)

with the following null hypothesis:

H0 : β1 = β2 = · · ·= βN2 .

Note that now λt is eliminated from the model as the result of the first test.
The OLS estimator for each individual j is given by

β̂ j =
(
X ′jX j

)−1 X ′jy j , (5.43)

where
X j =

(
x1 j1, . . . , xN1 jT

)′
,

similarly for y j. The variance-covariance matrix of estimator (5.43), under the null
hypothesis, and given the non-rejection of the first test, is

Σ j =
(
X ′jX j

)−1 X ′j
(
X1, j(IN1 ⊗∆α)X ′1, j +σ

2
ε IN1T

)
X j
(
X ′jX j

)−1
, (5.44)

where X1, j is the (N1T ×N1K) sub-matrix of X1 with all columns and rows only
corresponding to individual j. Stacking all N2 individual estimators, the vector

β̂( j) =
(

β̂.1., β̂.2., . . . , β̂.N2.

)′
is asymptotically distributed as

√
N1T (β̂( j)−β( j))∼ N(0,Σ2) ,

with which the test statistic is constructed as,

β̂
′
( j)R

′
2
(
R2Σ2R′2

)−1 R2β̂( j) ∼ χ
2
(N2−1)K ,
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where

R2 =


IK −IK 0 0 0 0
0 IK −IK 0 0 0

. . .
0 0 0 0 IK −IK

 of size (K(N2−1)×KN2) .

Finally, if we fail to reject the above null, we are left with testing the variability
over the last remaining dimension i.e., at the group level i in an exactly similar
manner to the other two. The null hypothesis on model

yi jt = x′i jt(β̄ +αi)+ εi jt = x′i jtβi + εi jt (5.45)

is
H0 : β1 = β2 = · · ·= βN1 .

Under the null hypothesis, pooling provides a consistent way of estimating the vec-
tor of parameters. Thus, the following statistic can be constructed:

N1

∑
i

(
β̂i− β̂

)′
(X ′i Xi)

−1
(

β̂i− β̂

)
σ̂(i)

, (5.46)

where

Xi = (xi11, . . . , xiN2T )
′

β̂ = (X ′X)−1X ′y and σ̂(i) =
(yi−Xiβi)

′ (yi−Xiβi)

N2T −K
.

The asymptotic distribution is χ2 with degrees of freedom equal to (N1−1)K.
Naturally, the order of the testing is arbitrary.

5.4.1.2 Joint Test for the Presence of Random Elements

We can also go ahead and jointly test for the presence of two random elements.
This means that we test, let’s say, whether ∆α = ∆γ = 0, but clearly the nullity of
any combination of the random elements can be tested. Once more, we set it as an
indirect test of equality of coefficients in the corresponding dimensions, say

H0 : β11 = β12 = · · ·= β1N2 = · · ·= β21 = · · ·= β2N2 = · · ·= βN1N2

on model
yi jt = x′i jt(β̄ +αi + γ j)+ x′i jtλt + εi jt = x′i jtβi j +ui jt . (5.47)

Following the logic of the previous tests, we end up with the statistic

β̂
′
(i j)R

′
3
(
R3Σ3R′3

)−1 R3β̂(i j) ∼ χ
2
(N1N2−1)K ,
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where β̂(i j) is the column of the N1N2 individual estimators, estimated by OLS using
T observations for each i j pair, Σ3 its variance, and

R3 =


IK −IK 0 0 0 0
0 IK −IK 0 0 0

. . .
0 0 0 0 IK −IK

 of size (K(N1N2−1)×KN1N2) .

If the null hypothesis is not rejected, we can test the variability of the effects over
the remaining dimension.

5.4.2 Testing in the Case of MLE

In order to test the hypothesis of the presence of random components in the co-
efficients for the maximum likelihood estimators we use the asymptotic distribu-
tion of the estimators. Indeed, if we stack all the estimators in a column of size
3K(K +1)/2+1,

θ̂ =
(
vech ∆̂α , vech ∆̂γ , vech ∆̂λ , σ̂

2
ε

)
.

Denoting the Fisher Information matrix as

Iθ = plim
N1N2T→∞

1
N1N2T

κθ

and typical elements of κθ as

κkk′gg′ =

{
1
2 tr Σ−1HkkΣ−1Hgg if k = k′;g = g′
1
2 tr Σ−1(Hk′k +Hkk′)Σ

−1(Hg′g +Hgg′) otherwise,

with k,g ∈ 1,2, . . . ,3K(K +1)/2+1. The first case is for the diagonal elements of
the variance-covariance matrix, while the second is for the off-diagonal elements.
The limiting distributions of the elements of the vector θ are given by:

√
N1
(
σ̂

2
α,kk−σ

2
α,kk
)
∼ N

(
0,I−1

θ ,kkgg

)
(5.48)

√
N2

(
σ̂

2
γ,kk−σ

2
γ,kk

)
∼ N

(
0,I−1

θ ,kkgg

)
(5.49)

√
T
(

σ̂
2
λ ,kk−σ

2
λ ,kk

)
∼ N

(
0,I−1

θ ,kkgg

)
(5.50)

√
N1N2T

(
σ̂

2
ε −σ

2
ε

)
∼ N

(
0,I−1

θ ,kkgg

)
. (5.51)
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Knowing these asymptotic distributions, we can test the variability of coefficients
along one or more of the three dimensions. A generic null would be

H0 : Glθ = 0 ,

where l can be 1, 2 or 3 defining the three cases below. The corresponding Wald
statistic is given by

θ
′G′l
(
GlI−1

θ
G′l
)−1

Glθ ∼ χ
2
d fl ,

where d fl is the number of degrees of freedom corresponding to the number of
restrictions for the cases l = 1,2,3. The three possible nulls are as follows.

1. Simultaneous test for the equality of coefficients across all dimensions
In this case the null is:

H0 : σ2
α,11 = σα,12 = · · ·= σ2

α,KK = σ2
γ,11 = σγ,12 = · · ·= σ2

γ,KK
= σ2

λ ,11 = σλ ,12 = · · ·= σ2
λ ,KK = 0

with G1 =
(
I3K(K+1)/2, 0(3K(K+1)/2×1)

)
and d f1 = 3K(K +1)/2.

2. Joint test for equality over two dimensions
Let’s say we want to test if the coefficients are constant at the group and indi-
vidual levels, at the same time. This is equivalent to the following null:

H0 : σ
2
α,11 = σα,12 = · · ·= σ

2
α,KK = σ

2
γ,11 = σγ,12 = · · ·= σ

2
γ,KK = 0

with G2 =
(
I2K(K+1)/2, 0(2K(K+1)/2×K(K+1)/2+1)

)
and d f2 = 2K(K +1)/2.

3. Test for constancy along one dimension
In the case we want to test the equality of the coefficients along a single dimen-
sion, like i, a null is formulated as

H0 : σ
2
α,11 = σα,12 = · · ·= σ

2
α,KK = 0

with G3 =
(
IK(K+1)/2, 0(K(K+1)/2×2K(K+1)/2+1)

)
and d f3 = K(K +1)/2.

If the above tests present problems due to the null being at the boundary of the
parameter space, we could go for a likelihood ratio-based approach

l = 2(lnLu− lnLr)∼ χ
2
p ,

where p is the number of restrictions and Lu and Lr are the unrestricted and restricted
MLE, respectively. For example, to test the first hypothesis that there is no variability
in the coefficients, p = 3K2.
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5.5 Prediction of the Coefficients

In many cases, we may also be interested in predicting the random coefficients them-
selves. This may be the case when a particular individual carries some importance
or we wish to predict future values of the dependent variable for a given individ-
ual. Here we extend an approach developed by Lee and Griffiths (1979) to our 3D
setting. We write the model as

y = X̃ β̃ + ε

β̃ = ιN1N2T ⊗ β̄ +(IN1 ⊗ ιN2T ⊗ IK)α +(ιN1 ⊗ IN2 ⊗ ιT ⊗ IK)γ +(ιN1N2 ⊗ IT ⊗ IK)λ

with the variance-covariance matrices of β̃ and ε given by

Ω = σ
2
ε IN1N2T

and
Σ = (IN1 ⊗ ιN2T ⊗ IK)(IN1 ⊗∆α)(IN1 ⊗ ι ′N2T ⊗ IK)

+(ιN1 ⊗ IN2 ⊗ ιT ⊗ IK)(IN2 ⊗∆γ)(ι
′
N1
⊗ IN2 ⊗ ι ′T ⊗ IK)

+(ιN1N2 ⊗ IT ⊗ IK)⊗ (IT ⊗∆λ )⊗ (ι ′N1N2
⊗ IT ⊗ IK) ,

respectively.
The coefficient vector is estimated by minimizing

Q(β̃ , β̄ ) =
1

σ2
ε

(y− X̃ β̃ )′(y− X̃ β̃ )+(β̃ − ιN1N2T ⊗ β̄ )′Σ−1(β̃ − ιN1N2T ⊗ β̄ )

with respect to β̃ . The solution is simply

β̃ = (
1

σ2
ε

X̃ ′X̃ +Σ
−1)−1(

1
σ2

ε

X̃ ′y+Σ
−1

ιN1N2T ⊗ ˆ̄
βGLS) . (5.52)

Although we have a solution which varies in all dimensions, the problem with this
method is that we cannot identify the three components inside the coefficient vec-
tor, but only the sum total of all the components. Additionally, we need to replace
the variance-covariance components by the corresponding estimates. The follow-
ing procedure gives a way out for predicting individual components. Let us rewrite
model (5.1) by merging α and β̄ to some δ ,

y = X1δ +X2γ +X3λ + ε = X1δ +u , u∼ (0,C1)

where δ is a stochastic vector of length N1K with

δ = (ιN1 ⊗ IK)β̄ +α α ∼ (0,C2)

with

C1 = X2(IN2 ⊗∆γ)X ′2 +X3(IT ⊗∆λ )X
′
3 + IN1N2T σ

2
ε and C2 = (IN1 ⊗∆α)
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being the covariance matrices at the two levels. Lee and Griffiths (1979) prove that
the optimization problem

min
δ ,β̄

(y−Xδ )′C−1
1 (y−Xδ )+(δ − (ιN1 ⊗ IK) β̄ )′C−1

2
(
δ − (ιN1 ⊗ IK)β̄

)
, (5.53)

which combines the sample and the prior information on the coefficient vector δ

gives BLUE estimators for β̄ (which is actually numerically the same as the ˆ̄
βGLS)

and δ , given C1 and C2. This yields

δ̂ =
(
X ′1C−1

1 X1 +C−1
2
)−1
(

X ′1C−1
1 y+C−1

2 (ιN1 ⊗ IK)
ˆ̄
βGLS

)
.

This can be proven using the Woodbury matrix identity that
(
X ′1C−1

1 X1 +C−1
2

)
=

Ω , corresponding to (5.4), whose inverse has already been obtained whilst com-
puting the GLS estimator. Regarding the two remaining inverses, one is trivial
(C−1

2 = (IN1⊗∆−1
α )), while C−1

1 can be reached in steps similarly to Ω−1 as outlined
in Sect. 5.2.2. The last step to get the individual predictor α̂i for a given individual i
is the removal of the mean from δ̂i, that is

α̂i = δ̂i− ˆ̄
βGLS ,

where δ̂i denotes the (K×1) long i-th subvector of δ̂ . By repeating the calculations
with δ = (ιN2 ⊗ IK)β̄ + γ and δ = (ιT ⊗ IK)β̄ +λ , we obtain the predictors for γ j
and for λt .

5.6 Bayesian Approach

Hsiao and Pesaran (2008) show that the RCM can also be imagined from a Bayesian
angle. This is due to the fact that in RCM the coefficients are considered as random
variables. Indeed, we can view the parameter βi jt as stochastic with mean β̄ . Under
the assumption that

βi jt = β̄ + γ j +αi +λt ,

and knowing that the random coefficients satisfy the distributional assumptions 1
and 2, we can settle with the following.

1. The prior distribution of β̄ is diffuse.
2. The prior distributions of the error components are

α ∼ N (0,(IN1 ⊗∆α))
γ ∼ N

(
0,(IN2 ⊗∆γ)

)
λ ∼ N (0,(IT ⊗∆λ )) .

(5.54)

3. The joint distribution of the observations, given β̄ , α , γ and λ , is
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fy|β̄ ,α,γ,λ

(
y|β̄ ,α,γ,λ

)
∼ N

(
X β̄ + X̃ (IN1 ⊗ ιN2T ⊗ IK)α

+X̃ (IN2 ⊗ ιN2T ⊗ IK)γ + X̃ (ιN1N2 ⊗ IT ⊗ IK)λ ,σ2
ε IN1N2T

)
.

(5.55)
Now,

a. The posterior distribution of β̄ given y is

f
β̄ |y
(
β̄ |y
)
∼ N

((
X ′Ω−1X

)−1 (
X ′Ω−1y

)
, (X ′Ω−1X)−1

)
. (5.56)

b. The posterior distribution of α given y is

fα|y (α|y) =
∫ ∫ ∫

f
α,γ,β̄ ,λ |y

(
α,γ, β̄ ,λ |y

)
dγdβ̄dλ . (5.57)

This is proportional to

fα|y (α|y) ∝ fy|β̄ ,γ,α,λ

(
y|β̄ ,γ,α,λ

)
f
β̄ ,γ,α,λ

(
β̄ ,γ,α,λ

)
, (5.58)

finally,
fα|y (α|y) ∝ fy|β̄ ,γ,α,λ

(
y|β̄ ,γ,α,λ

)
fα (α) . (5.59)

Then, the posterior is given by

fα|y (α|y)∼ N (ᾱ,Σ4) , (5.60)

with an appropriate ᾱ mean and Σ4 variance.

The expressions for λ and γ are obtained following the same process that we
used for α . Then, adding them to ˆ̄

βGLS yields the same estimator as the one ob-
tained using the extension of Lee and Griffiths (1979) proposed before. When the
variance-covariance matrices are unknown, we have to add the assumptions on their
prior distributions. In this case, we assume that ∆α ,∆γ and ∆λ follow a Wishart
distribution and σ2

ε a χ2 distribution.

5.7 Extensions within the Linear Model

5.7.1 Alternative Model Formulations

Model (5.1) with coefficients as in (5.2) is, of course, only one model formula-
tion among many possibilities for 3D data. One of the key characteristics of multi-
dimensional data, however, is that heterogeneity may take on more complicated
forms, and so can be incorporated into a random coefficient model in several alter-
native ways. Here, with no claim to being exhaustive, we collect alternative model
specifications (which we represent with their coefficient structures) along with the
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matrices necessary for their GLS estimation, estimation of their covariance matrices,
and for the prediction of their coefficients.

The model (5.1) could have bilateral coefficients (i.e., varying simultaneously in
the first two dimensions i and j) as follows:

βi jt = β̄ + γi j (5.61)

or bilateral and time coefficients as:

βi jt = β̄ + γi j +λt . (5.62)

Similar assumptions to 1-3 also hold for these models. Notice that both models
can be thought of as straight 2D models if we let the (i j) pairs represent the individ-
uals.2 As all properties of these models are known from the existing literature, they
enjoy limited attention here.

Instead, let us turn to models of interaction coefficients, like

βi jt = β̄ +αit +α
∗
jt , (5.63)

or to the all-encompassing parameter structure

βi jt = β̄ + γi j +αit +α
∗
jt , (5.64)

or
βi jt = β̄ +αi + γi j +λt . (5.65)

Table 5.1 collects the variable matrices and the covariance matrices to represent
each model, while Table 5.2 collects matrices needed for the prediction of the ran-
dom coefficients.

Table 5.1 Matrices to support the GLS estimation of models (5.61)–(5.64)

Model βi jt Z

(5.61) β̄ + γi j (X , X4) = X̃ [ιN1N2T , (IN1N2 ⊗ ιT )]⊗ IK

(5.62) β̄ + γi j +λt (X , X3, X4) = X̃ [ιN1N2T , (IN1N2 ⊗ ιT ), (ιN1N2 ⊗ IT )]⊗ IK

(5.63) β̄ +αit +α∗jt (X , X5, X6) = X̃ [ιN1N2T , (IN1 ⊗ ιN2 ⊗ IT ), (ιN1 ⊗ IN2T )]⊗ IK

(5.64) β̄ + γi j +αit +α∗jt (X , X4, X5, X6) = X̃ [ιN1N2T , (IN1N2 ⊗ ιT ), (IN1 ⊗ ιN2 ⊗ IT ), (ιN1 ⊗ IN2T )]⊗ IK

(5.65) β̄ +αi + γi j +λt (X , X1, X4, X3) = X̃ [ιN1N2T , (IN1 ⊗ ιN2T ), (IN1N2 ⊗ ιT ), (ιN1N2 ⊗ IT )]⊗ IK

As seen in Table 5.1, we have all the ingredients necessary for the GLS estima-
tion of models (5.61)–(5.64). Specifically, for model (5.64) for example, the GLS
estimator is done with

Ω = X4E(γγ
′)X ′4 +X5E(αα

′)X ′5 +X6E(α∗α∗
′
)X ′6 +σ

2
ε I ,

2 Model (5.61) corresponds to Swamy’s (1970) model, while (5.62) to Hsiao (1974).
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where X4, X5 and X6 are defined in Table 5.1, and we keep assuming the pairwise
uncorrelatedness of the random coefficients. As computational difficulties are likely
to step in again, the step-wise technique to invert Ω outlined in Sect. 5.2.2 comes
handy.

To make the GLS feasible, the estimation of the variance components is to be
done, which turns out to be no more difficult than it was for model (5.1). For each
model, we just need to set the appropriate design matrices and all the procedures for
the estimation of the variance-components presented before can be easily adapted
to the specific characteristics of each model.

Predicting the random coefficients, along with the estimation of β̄ may also be
equally important in models (5.61)–(5.64). Luckily, the prediction technique out-
lined in Sect. 5.5 can be directly applied to these models with δ , C1 and C2 collected
in Table 5.2.

Table 5.2 Matrices to support the prediction of the random coefficients for models (5.61)–(5.64)

Model Predict δ C1 C2

(5.61) γi j (ιN1N2 ⊗ IK)β̄ + γ Iσ2
ε (IN1N2 ⊗∆γ )

(5.62) γi j (ιN1N2 ⊗ IK)β̄ + γ X3(IT ⊗∆λ )X ′3 + Iσ2
ε (IN1N2 ⊗∆γ )

λt (ιT ⊗ IK)β̄ +λ X4(IN1N2 ⊗∆γ )X ′4 + Iσ2
ε (IT ⊗∆λ )

(5.63) αit (ιN1T ⊗ IK)β̄ +α X6(IN2T ⊗∆α∗ )X ′6 + Iσ2
ε (IN1T ⊗∆α )

α∗jt (ιN2T ⊗ IK)β̄ +α∗ X5(IN1T ⊗∆α )X ′5 + Iσ2
ε (IN2T ⊗∆α∗ )

(5.64) γi j (ιN1N2 ⊗ IK)β̄ + γ X5(IN1T ⊗∆α )X ′5 +X6(IN2T ⊗∆α∗ )X ′6 + Iσ2
ε (IN1N2 ⊗∆γ )

αit (ιN1T ⊗ IK)β̄ +α X4(IN1N2 ⊗∆γ )X ′4 +X6(IN2T ⊗∆α∗ )X ′6 + Iσ2
ε (IN1T ⊗∆α )

α∗jt (ιN2T ⊗ IK)β̄ +α∗ X4(IN1N2 ⊗∆γ )X ′4 +X5(IN1T ⊗∆α )X ′5 + Iσ2
ε (IN2T ⊗∆α∗ )

(5.65) αi (ιN1 ⊗ IK)β̄ +α X3(IT ⊗∆λ )X ′3 +X4(IN1N2 ⊗∆γ )X ′4 + Iσ2
ε (IN1 ⊗∆α )

γi j (ιN1N2 ⊗ IK)β̄ + γ X1(IN1 ⊗∆α )X ′1 +X3(IT ⊗∆λ )X ′3 + Iσ2
ε (IN1N2 ⊗∆γ )

λt (ιT ⊗ IK)β̄ +λ X1(IN1 ⊗∆α )X ′1 +X4(IN1N2 ⊗∆γ )X ′4 + Iσ2
ε (IT ⊗∆λ )

5.7.2 Incomplete Panels

So far we have assumed that the data is complete and all variables span the
three-dimensional space. We know, however, that real life data, especially multi-
dimensional ones, are almost always of an incomplete nature. In the presence of
such incompleteness, usual estimators might fail, and the identification of some
parameters requires stronger assumptions. To formulate unbalanced observations,
consider the following. For each i j-pair of individuals, instead of having T data
points, observations are made on a Ti j ∈ {1 . . .T} set, with cardinality (i.e., number
of elements) |Ti j|.

Incomplete data during the GLS estimation means that we can no longer repre-
sent the covariance matrix Ω with kronecker products. While this is certainly in-
convenient from mathematical and modelling points of view, it takes nothing away
from the practical feasibility and the simplicity of the estimator as long as there is
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no selection process causing the missing observations. Regardless of the incomplete
nature of the data, we can assume without loss of generality that the number of total
individuals and total time periods is still N1, N2 and T . With this observation, the
covariance formulation (5.4) is simply given by

Ω = Iσ
2
ε + X̄1(IN1 ⊗∆α)X̄ ′1 + X̄2(IN2 ⊗∆γ)X̄ ′2 + X̄3(IT ⊗∆λ )X̄

′
3 ,

where the “−” matrices are obtained from their complete data counterparts X1, X2
and X3 by leaving out the rows corresponding to missing observations. In this way,
these data matrices will uniformly shrink vertically until they have precisely ∑i j |Ti j|
rows. This vertical, but not horizontal shrinkage holds as long as no “full” individual
or time period is removed from the data, in which case we simply redefine N1, N2
or T . Luckily, the inverse of the covariance matrix is obtained in the same way as
Sect. 5.2.2 suggested, with the same computational costs.

The same also holds for the estimation of the covariance matrix and the predic-
tion of the random coefficients, where, if we adjust the matrices to incomplete data,
that is, we leave out the rows corresponding to missing observations, the estimations
and the predictions are done analogously to the complete data case.

5.7.3 Cross-Sectional Dependence

As with two-dimensional panels, sometimes we cannot rule out the possible cross-
sectional dependence between the error terms. In the case of three-dimensional pan-
els this could mean O(N2

1 ) (O(N2
2 )) extra parameters if dependence is solely as-

sumed between individuals i ( j), but can even mean controlling for O(N2
1 N2

2 ) ex-
tra unknown parameters if we feel that dependence between cross-sectional pairs
should be addressed. To reduce the number of parameters to be incorporated, a con-
venient parametrization of the dependence structure can be proposed taking the form

εi jt =
σi j√

1+δ ′i jδi j

(δ ′i j ft +ϑi jt) , (5.66)

where ft and δi j are some (s× 1) latent factors and individual-pair-specific factor
loadings, and ϑi jt is the idiosyncratic error term. It is easy to show that the cross-
correlation between the i j and kl pairs of individuals is given by

ρi jkl = ρkli j =
δ ′i jδkl√

1+δ ′i jδi j ·
√

1+δ ′klδkl

.

Naturally, we do not always need this fully specified correlation structure for pairs
of individuals. In many examples it is enough to address correlation between indi-
vidual i-s or j-s. Using the example of linked employer-employee data, unobserved
characteristics of firms might as well be cross-sectionally correlated, at least such
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an idea is more reasonable than assuming the same for individuals. A simplified
structure of (5.66) reflecting this is

εi jt =
σ j√

1+δ ′jδ j

(δ ′j ft +ϑi jt) ,

where now only a number of N2 unknown parameters are incorporated into the
model. Either way, Pesaran (2006) shows that the focus parameters can be con-
sistently estimated in both scenarios (N1 → ∞ or N2 → ∞ is necessary in the case
of δi j-type factor loadings, while N1 → ∞ is necessary for δi-type factor loadings)
when the observed regressors are augmented with the cross-sectional averages of
the dependent variables and the regressors

ȳt = ∑
i j

wi jyi jt ; x̄t = ∑
i j

wi jxi jt ,

with any weights satisfying

wi j = O(1/N1N2) , ∑
i j

wi j = 1 , ∑
i j
|wi j|< a for some finite a.

The non-weighted average wi j = 1/N1N2 is of course a natural candidate.
We can also estimate the unobserved factors (and the factor loadings in turn) by

factor analysis, as shown in Bai and Ng (2002).3 The estimation takes the objective

V = min
δ , f
{ 1

N1N2T ∑
i jt

(εi jt −δ
′
i j ft)2} s.t.

F ′F
T

= Is ,

with being the (s×T ) matrix stacked version of ft . This minimization problem is in
fact identical to

max
F
{tr(F ′(ε∗ε∗′)F)} , with ε

∗ =

 ε111 . . . εN1N21
...

. . .
...

ε11T . . . εN1N2T


from which the estimator for F is actually

√
T times the eigenvectors corresponding

to the s highest eigenvalues of the (T ×T ) matrix ε∗ε∗
′
. Once F̂ is computed, the

estimator for the factor loadings is obtained as in

δ̂
′ = (F̂ ′F̂)−1F̂ ′ε∗ =

F̂ ′ε∗

T
.

3 The method had originally been proposed in Connor and Korajzcyk (1986, 1988) for short panels
(small T ), and was later extended to large panels by Forni et al. (2000) and Stock and Watson
(1998).
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The factors are estimated consistently if T → ∞, and if either N1 → ∞ or N2 → ∞

holds.
The above minimization problem is suited to cases when T is much smaller than

N1(N2), while its alternative, when instead of F , δ is constrained, is more efficient
for panels where T is larger than the individual dimensions. Here we prefer the first
option, as multi-dimensional panels tend to comprise many more individual units,
than time periods.

5.7.4 Random Coefficients Correlated with the Explanatory
Variables

If we cannot maintain the assumption regarding the mean independence of the ran-
dom coefficients of the explanatory variables, the problem of the correlated effects
emerges. Indeed, one could postulate

E(αi|Xi jt) 6= 0
E(γ j|Xi jt) 6= 0
E(λt |Xi jt) 6= 0
E(εi js|Xi jt) = 0 .

In this case, one can use Mundlak’s approach and model the dependency as follows:

αi = (ιK⊗ x̄′i..)ζ1 +υi
γ j = (ιK⊗ x̄′. j.)ζ2 + τ j

λt = (ιK⊗ x̄′..t)ζ3 +πt ,

where the new stochastic components are independent and identically distributed as
well as orthogonal to each other. This allows us to decompose the original stochastic
components into two parts: one that is dependent on the explanatory variables, and
another that is orthogonal to them.

Now, plugging these three equations into the original model and regrouping all
the coefficients in one vector called Φ we get an augmented model of the form

y = SΦ + ε̃ , (5.67)

which can be estimated with (F)GLS with the techniques outlined in Sect. 5.2.2.
Additionally, we can test for the absence of correlation by testing for the significance
of the corresponding coefficient, e.g., ζ1 = 0 for the absence of correlation between
xi jt and αi.
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5.7.5 Some Random and Some “Fixed” Coefficients?

In this chapter, we have covered the cases when the varying coefficients are ex-
clusively thought of as random. The case of fixed coefficient components is rather
straightforward as far as the estimation procedure is concerned if we make the i.i.d.
assumption for the idiosyncratic error term. Hence, we do not devote much space
to it in our chapter. However, the major problem in this case is the number of pa-
rameters to be estimated, which is potentially large taking away plenty of degrees
of freedom. In fact, we did assume non-randomness of some components in many
first stage estimations proposed for FGLS estimation and testing.

Now, it is not at all necessary to assume that either all are random or all are fixed.
As it may very well happen in practice, it makes sense to incorporate different types
of effects at different levels. Such “mixed” models can be specified in an analogous
manner to model (5.1)-(5.2), where, for example αi and γ j are considered as random,
but λt ’s are “fixed” coefficients.

This interesting model formulation is only briefly mentioned in theoretical works,
see Hsiao (2003), but is fully absent from empirical works. This is hardly surprising
for two main reasons. First, there is an enormous number of possible model speci-
fications. We have already shown five economically meaningful random coefficient
models – now imagine how this number grows when each coefficient can be either
fixed or random. There is no testing tool constructed at the moment which can help
decide between the numerous possible specifications. Second, computational diffi-
culties are already present for many pure random and fixed coefficient models, and
also arise (as we will see shortly) for mixed models.

Due to the aforementioned number of specifications and the scope of this chapter,
we only briefly discuss the essentials of the estimation of “mixed” models, rather
than excessively (and possibly dauntingly) carrying out a lengthy analysis.

Let us rewrite model (5.1)-(5.2) as

yi jt = x′i jt(β̄ +λt)+ui jt , with ui jt = x′i jt(αi + γ j)+ εi jt . (5.68)

Note that now β̄ and λt are estimable, fixed parameters, and αi and γ j are pairwise
uncorrelated random coefficients satisfying Assumption 2 of Sect. 5.2. The first ob-
servation to be made is that β̄ and λ cannot be separated, and so are not identified.4

To be able to estimate out β̄ and λt , K parameter restrictions have to be imposed.
An “even” restriction is to normalize the mean of λt , as

T

∑
t=1

λt = 0 (K×1) .

The restricted model from this point behaves exactly as a pure random coefficients
model, where now both β̄ and λt are estimated from an FGLS, performed taking
the covariance structure Ω = E(ui jtu′i jt) into account. Once the variance-covariance

4 This is so, as the data matrix matching with (β̄ , λ ) has a rank deficiency of K.
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matrix is inverted (using the step-wise inverse outlined in Sect. 5.2.2), the FGLS
should have no further computational burden, as long as T is moderately small,
which is typically the case.

In theory, any “mixed” model can be estimated using the following recipe: (i)
identify the number and the form of parameter restrictions necessary to identify the
model, and incorporate them (ii) derive the variance-covariance matrix Ω (more
precisely its inverse), (iii) perform the GLS, and (iv) estimate the covariance ma-
trix to make the GLS feasible. Although this is easily described in theory, the size
and the number of fixed–random coefficients can strongly discourage its practical
application. For example, when both αi and λt are considered fixed along with
β̄ , the number of parameters to be estimated directly (in the restricted model) is
K+(N1−1)K+(T −1)K = (N1 +T −1)K, which is infeasible with any statistical
package even for moderately large Ni.

A possible solution to this dimensionality issue is to estimate the incomplete rank
model with FGLS, then line up the parameter restriction. This might be more conve-
nient, as long as Ω−1/2 can be attained at reasonable costs, as then we first transform
model (5.68) by pre-multiplying with Ω−1/2, then estimate the transformed model
with least squares of incomplete rank. Intuitively, picking up the notation of Section
5.2,

Ω
−1/2y = Ω

−1/2X β̄ +Ω
−1/2X3λ +Ω

−1/2u

is simply some “pure” fixed coefficient model

ỹ = X̃ β̄ + X̃3λ + ũ .

5.7.6 Higher Dimensions

We have seen how to formulate and estimate random coefficient models on three-
dimensional panels. It is more and more typical, however, that the data at hand
is four or even higher-dimensional, like industry, firm, or product level bilateral
trade panels. In principle, higher-dimensional random coefficient models are just
as easily analysed as their 3D counterparts, however, their investigation is subject
to two key characteristics. One, due to several possible (semi-)asymptotic cases,
the conditions needed for consistent estimation, prediction, or testing are highly
non-trivial and need constant attention. Conveniently, for some models, especially
for those with random coefficients only depending on a few indices, consistency is
actually guaranteed with only one or two indices tending towards infinity. Second,
the proposed estimation techniques become computationally forbidding. As four or
even more indices are present, the few million observations usually contained in
three-dimensional panels can now reach tens or even hundreds of millions of data
points.

As an example, a typical four-dimensional model can be specified as

yi jst = x′i jst(β̄ +αi + γ j +ζs +λt)+ εi jst . (5.69)
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with the additional index going from 1 to N3, and conditions analogous to As-
sumptions 1 to 3 of Sect. 5.2. In order to obtain the GLS estimator of β̄ given in
Sect. 5.2.2, a matrix as large as the second highest dimension needs to be directly
inverted. While this is most probably doable if the dataset is not large in all direc-
tions, the tables are turned once interaction effects are controlled for in the models.
The same reasoning also holds for prediction and testing for the existence of the
random components.

5.8 Non-linear Extension: RC Probit Model

This section explores the extension of the RCM framework to dichotomous out-
comes. Let us consider a probit specification. We set the latent variable model as
follows:

y∗i jt = x′i jt
(
β̄ +αi + γ j +λt

)
+ εi jt .

The observed variable yi jt takes the value 1, if y∗i jt > 0 and 0, if y∗i jt ≤ 0. This is
equivalent to saying:

yi jt =

{
1, if εi jt >−x′i jt

(
β̄ +αi + γ j +λt

)
0, otherwise.

If we assume that εi jt follows a standard normal distribution we are in the Probit
setting. Fixing the random coefficient components, the likelihood is the product of
the probability function distribution of each observation:

P(yi jt = 1|αi,γ j,λt) = P
(
εi jt < x′i jt(β̄ +αi + γ j +λt)|αi,γ j,λt

)
.

However, the distribution of yi jt without fixing the random coefficient components
is not identical nor independent across observations. Thus, the likelihood can no
longer be the product of individual likelihoods.

As a result, the estimation of this model is computationally demanding because it
requires the evaluation of N1N2T integrals. Following Chib and Greenberg (1998),
we can use a Markov Chain Monte Carlo EM algorithm in order to estimate the
parameter vector β and the variance-covariance matrix Ω . Denoting the condi-
tional distribution of y∗ given y as g(y∗|y,θ) where θ is the vector containing β

and 3K(K+1)/2 +1 parameters in the covariance matrix Ω , the algorithm runs as
follows.

1. E-step: Estimation of the conditional expectation in iteration r.

Q(θ , θ̂ r) =
∫

ln f(y,y∗|θ̂ r)g(y∗|y, θ̂ r)dy∗ =
∫

ln f(y∗|θ̂ r)g(y∗|y, θ̂ r)dy∗ .

The calculation of Q(θ , θ̂ r) is not possible, hence we estimate it with
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Q(θ , θ̂ r) =
1
M

M

∑
h=1

ln f(Y ∗h |θ) ,

where the M values of y∗h are drawn from the distribution using a Gibbs sam-
pling technique which has the truncated multivariate normal distribution as the
equilibrium distribution

φN1N2T (y∗|X ˆ̄
β

r, Σ̂ r)I(y∗ ∈ B) (5.70)

I(y∗ ∈ B) indicates the vector of events that y∗i jt > 0 if yi jt = 1 and y∗i jt ≤ 0 if
yi jt = 0. To sample from this distribution, we follow Chib and Greenberg (1998)
which suggests to sample each observation from the untruncated normal distri-
bution and then use inverse sampling to get data within the event y∗ ∈B. Finally,
f (y∗|θ) is the N1N2T multivariate normal with mean X β̄ and covariance matrix
Ω .
Furthermore, in order to reduce the computational cost of doing a Gibbs Sam-
pling in each E-step, Levine and Casella (2001) suggest replacing it by impor-
tance sampling. Thus, in the first step Q(θ , θ̂ 0) is obtained by sampling from
the truncated multivariate normal distribution with a given starting value for the
parameters. Then, at each iteration instead of sampling again, an update is done
on the conditional mean in the E-step given by

Q(θ , θ̂ r) =
∑

M
h=1 whln f(Y ∗h |θ)

∑
M
h=1 wh

,

where the weights in each iteration are:

wh =
g(Y ∗|Y, θ̂ r)

g(Y ∗|Y, θ̂ 0)
.

2. M-Step: Maximize the function Q(θ , θ̂ r) for θ .
The maximization has to be done in two stages. In the first, we obtain the esti-
mator of β̄ , then we plug this value back into Q(θ , θ̂ r). Then we maximize this
function for the elements in the covariance matrix Ω using a Newthon-Raphson
algorithm.

5.9 A Simulation Experiment

In order to assess the performance of the proposed estimation methods, we con-
ducted a Monte Carlo experiment generating 100 samples in 10 different scenarios
(See Table 5.3).

In 8 of the 10 cases, the data were generated from a normally distributed distur-
bance term, whereas in the last 2 cases the stochastic elements followed a t-location
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Table 5.3 Various scenarios used for the simulation exercise

Scenario Data Generating Process Value Size
RCC Disturbance Term Indep. Var. Interc. Slope N1 N2 T

1 a N(0,0.25) N(0,25) 2 3 20 20 5
2 a N(0,0.25) N(0,25) 2 3 10 10 5
3 a N(0,0.25) N(0,25) 2 0.7 20 20 5
4 a N(0,0.25) N(0,25) 2 0.7 10 10 5
5 a N(0,0.25) U(0,25) 2 3 20 20 5
6 a N(0,0.25) U(0,25) 2 3 10 10 5
7 a N(0,0.25) U(0,25) 2 0.7 20 20 5
8 a N(0,0.25) U(0,25) 2 0.7 10 10 5
9 b T-scale location: µ = 0,

σ = 0.5, d f = 3
U(0,25) 2 3 20 20 5

10 b T-scale location: µ = 0,
σ = 0.5, d f = 3

U(0,25) 2 3 10 10 5

Notes: RCC=Random Coefficient Components. Interc.: Intercept. a: N
((

0
0

)
,

(
1 0.5

0.5 1

))
. b:

t-location scale
((

0
0

)
,

(
1 0.5

0.5 1

))
, d f = 3.

scale distribution. We implement the following three estimation methods using Mat-
lab:5

• FGLS using an estimated variance-covariance with Method 1.
• FGLS using an estimated variance-covariance with Method 2.
• MLE: Anderson algorithm.

The performance of the different coefficient estimators (including OLS) is pre-
sented in Table 5.4 for three small sample scenarios.6

Table 5.4 Small sample results for the slope parameters

Scenario OLS Method 1 Method 2 MLE

Relative Bias (%) 4 9.9143 11.8143 11.8000 9.4714
8 -6.9857 -7.4429 -7.6571 -7.5000
10 1.1033 -0.0400 0.1133 -0.0100

RMSE 4 0.5226 0.5128 0.5169 0.4995
8 0.6244 0.6477 0.6593 0.6462
10 0.1742 0.0353 0.0271 0.0052

Considering the Root Mean Square Error (RMSE), we conclude that the Feasible
Generalised Least Squares (FGLS) and the Maximum Likelihood (ML) estimates

5 Program codes are available with the authors on request.
6 We do not present all the tables and graphs obtained for RMSE and Relative Bias for length
reasons but all of them are available with the authors on request.
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are better than Ordinary Least Squares (OLS). MLE performs better than FGLS in
all scenarios. Additionally, using within dimensions variability (Method 1) is better
than using overall variation (Method 2) for the estimation of the variance-covariance
components. This is always the case, except when the regressors are random draws
from a uniform distribution. In this case, it is better to estimate them using the
overall variation. MLE performs better than FGLS, which is expected since the true
data generating process is a Normal distribution and this is the likelihood that is
maximized. However, MLE beats FGLS even when the data generating process is
not normal.

Concerning the estimated parameters of the variance-covariance matrix, MLE
outperforms Methods 1 and 2 in all scenarios, although Methods 1 and 2 retrieve
good estimators of the variance-covariance elements in all scenarios. However, we
can see that the RMSE increases considerably when the estimation is done with a
small sample.

All in all, the results for the estimation methods proposed suggest that the best
one is MLE, followed by Method 1 (using within variation) and finally Method 2
(with overall variability).

Looking at the computational time, it is interesting to note the low computing
time of Methods 1 and 2 compared to MLE. Both these methods are easy to imple-
ment. Method 1 using within variability has the lowest computing time: 0.5 seconds
for the small sample and 7.5 seconds for the larger one. Method 2 requires 0.7
seconds for a total sample size of 500 observations. The computing time rises ex-
ponentially with an increase of the sample size. In our case, an increase to 2,000
units leads to a time of 20 seconds, which is still fast. The implementation of the
MLE is more cumbersome and requires more computing power. The time required
for the small sample is approximately 0.8 seconds and for the bigger one 40. The
convergence with Anderson algorithm is fast reaching a maximum with three or four
iterations. However, the linearization used in the algorithm can retrieve less accurate
estimators.

Methods 1 and 2 suffer from the usual problems:

1. The estimated variance-covariance matrix can be negative definite as anticipated
in Sect. 5.2.4. A possible solution is the positivity restricted non-linear least
squares outlined in Sect. 5.2.5.

2. There is a 5% probability of having a non-invertible estimated variance-covari-
ance matrix. A possible solution is to use the Moore-Penrose Pseudo inverse.
This non-invertibility issue is also present in the case of MLE.

5.10 Conclusions

Higher dimensional data are becoming more and more available and used in empiri-
cal studies. Such data allow us to explicitly take into account possible heterogeneity
in response coefficients across different dimensions. This chapter proposes a random
coefficient framework as a way of modelling response heterogeneity, and examines
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the specification, estimation and inference in random coefficient models for three
dimensional panel data, typically made up of individuals within groups followed
over time. This model is particularly useful for policy evaluation when treated indi-
viduals have heterogeneous responses to the treatment. Adding another dimension
can also allow us to have a randomized setting within groups. The chapter ends with
extensions to non-linear and higher dimensional settings.

We derive feasible generalized least squares and maximum likelihood estimators
of the coefficients involving a prior or simultaneous estimation of the variance com-
ponents. For the first method, we not only generalise existing two-dimensional ap-
proaches but also develop two new estimation methods for the variance-covariance
components, while for the latter we adapt an algorithm based on Anderson (1971).
We also develop tests for the presence/absence of heterogeneity in response co-
efficients. We show the infeasibility of a direct test for the coefficient variance-
covariance matrix equal to zero, and propose an alternative procedure testing equal-
ity of coefficients across various dimensions. We go on to examine the prediction of
the random components, incomplete panels, cross-sectional dependence as well as
possible correlation of the random coefficients with the explanatory variables.

We present two major extensions of the three-dimensional linear model: (i) a
probit setting with random coefficients, for which we suggest a Monte Carlo Ex-
pectation Maximisation algorithm for solving the maximum likelihood problem to
estimate the coefficients as well as the variance components; and (ii) possible spec-
ifications for higher dimensional data.

Finally, running a small simulation experiment for the three-dimensional linear
model, we show that FGLS has a lower RMSE than OLS and MLE beats FGLS. We
also observe that FGLS can often yield non-positive definite matrices, while MLE
is computationally costlier.
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Chapter 6
Discrete Response Models

Balazs Kertesz

Abstract In this chapter, we consider the estimation of binary and multiple choice
fixed effects models in a multi-dimensional setting. Sufficient statistics are put into
action to get rid of the fixed effects, considered as nuisance or incidental parameters.
We show how multiple choice models can, in fact, be viewed and treated as binary
choice ones with an added dimension. We also deal with the issue of selectivity in a
“Heckit” approach.

6.1 Introduction

There are many applications where one would like to infer effects based on qualita-
tive data. In such situations, the researcher is often faced with a discrete rather than
a continuous outcome variable discussed in the previous chapters. In general, we
focus on models where the outcome variable takes the values of 0,1,2, . . . . How-
ever, the order of values representing an economic outcome might not necessarily
be meaningful, for example, in consumer choice settings. A special case of this type
is when the outcomes are binary, and the dependent variable of the model is in fact
an indicator variable describing an event happening or not, labelled by 1 and 0,
respectively. As in all previous chapters, in most of our discussion we use the no-
tation i representing an individual-i (for instance a consumer), j also denoting an
individual- j (for example a brand) and t for time, representing a three-dimensional
panel model. As seen in the previous chapters, heterogeneity can be viewed as ran-
dom or fixed.

The standard approach for estimating models with a discrete dependent variable
is the Maximum Likelihood Estimation (or some variant of it), although there is
considerable development in the two-dimensional panel model literature regarding
semi-parametric approaches. The theoretical foundation of discrete choice models
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is connected to the axiomatic approach discussed by McFadden (1973). Chamber-
lain (1980) introduced the fixed effect approach in non-linear panel models and one
of the possible estimation procedures, the conditional likelihood estimation. Manski
(1975) considered a binary choice model with individual fixed effects estimated by
a semi-parametric approach, the Maximum Score Estimator. Among other unfavor-
able properties, this procedure is of limited use in multi-dimensional panels, because
it is applicable for only a narrow set of fixed effects, as discussed by Charbonneau
(2012). Mundlak (1978) introduced the correlated random effects framework, fur-
ther developed by Chamberlain (1984), which is a kind of competing approach to
the fixed effect models. Correlated random effect models relax the independence
assumption between the unobserved heterogeneity and the covariates, which is a
key assumption in random effects models. Pakes et al. (2015) capture the behav-
ioral choice model with moment inequalities without specifying the distribution of
disturbance terms parametrically. Bonhomme (2012) extends the approach with mo-
ment conditions to continuous dependent variables. The other strand of the literature
tries to reduce the bias caused by the omitted variables, initially discussed by Hahn
and Newey (2004) and further developed by Arellano and Bonhomme (2009) and
Fernandez-Val and Weidner (2016).

In this chapter, we discuss the fixed effects approach for static non-linear binary
and multiple choice multi-dimensional panel models, using conditional Maximum
Likelihood techniques. The general outline of the estimation procedure is as follows.
As in Chap. 1, we would like to get rid of the fixed effects, as their number is large,
and estimating them in most cases is neither necessary nor feasible. After specifying
the model including the fixed effects, we derive a sufficient statistic for the fixed
effect parameters using the Neyman-Fisher factorization theorem, which enables
us to eliminate the heterogeneity factors (this in fact corresponds to the orthogonal
projections used for linear models). By conditioning on the sufficient statistic, the
likelihood can be maximized by standard procedures to get consistent estimates for
the parameter of interest. In the case of the presence of more than one fixed effect,
we rely on the solution that Charbonneau (2012, 2014) proposes, she repeatedly
applies the sufficient statistic approach to eliminate the fixed effects one by one.
In constructing the sufficient statistic, the free dimension through which the fixed
effects are held constant plays a crucial role, as one has to consider the sum of the
outcome variable in this dimension.

6.2 Fixed Effects Binary Choice Models

We begin our discussion with the binary choice models. Throughout this chapter,
we still think about the data generating process as linear, though one is restricted to
observing only binary outcomes, usually denoted by a sequence of zeroes and ones.
We are looking for the estimators of the same models as covered in Chap. 1, and
here we give the modeling equations in a compressed form.

In a three-dimensional setting, these models look like
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yi jt = 1{x′i jtβ +FEi jt +εi jt ≥ 0},

where 1{Cond} is the indicator function taking value 1 whenever the condition
Cond is satisfied and 0 otherwise. xi jt is a (p× 1) vector of explanatory variables,
and β is its (p× 1) coefficient vector. The FEi jt are the fixed effect parameters
and the εi jt are the disturbance terms. Here we are covering the same fixed effects
specifications as in Chap. 1

FEi jt = γi j (6.1)
FEi jt = αit (6.2)
FEi jt = αit +α

∗
jt (6.3)

FEi jt = γi j +λt (6.4)
FEi jt = αi + γ j +λt (6.5)
FEi jt = αit +α

∗
jt + γi j . (6.6)

The interpretation of such various fixed effect parameters FEi jt , like in the 2D case,
is that we account for a deterministic shift (the constant term of the regression
model) being constant along the dimensions not appearing in the index of the fixed
effect parameters that otherwise vary through the dimensions as indicated. The role
of including these fixed effects into a regression model is to account for the het-
erogeneity of the data, while omitting them would result in the well-known omitted
variable bias.

6.2.1 Model Assumptions

The theoretical grounding of non-linear fixed effects models is discussed in a two-
dimensional framework by Lechner et al. (2008). However, we view the fixed ef-
fect parameters, as discussed in Chap. 1, as parameters to be estimated. Following
Chamberlain (1980), we assume in the case of the first model (6.1) that the binary
outcomes of the variables yi jt are independent conditional on the explanatory vari-
ables x, their coefficients β and the fixed effects γ both within the group formed by
the pairs of individual-i and individual- j and across groups, which is the conditional
independence assumption, with the specification

P(yi jt = 1 | {γi j}i j,β ,{xi jt}i jt) = F(γi j + x′i jtβ ).

The latter is referred to as the strict exogeneity assumption. We use the nota-
tion {anm}n to indicate that the object anm’s indices run through index n. In the
case of fixed effects, for example, γnm represents a bilateral individual fixed effect
(individual-i, individual- j fixed effect) for the nth and mth individuals, respectively.

It can be seen from this formulation that every model has its own set of as-
sumptions, and when using them, one needs to make sure that they are met. The
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assumptions of the second model (6.2) can be written symmetrically, but now, the
binary outcome yi jt needs to be independent within and between groups conditional
on ({αit}it ,β ,{xi jt}i jt), where groups are formed by the pairs of individual-i and
time t, with the specification

P(yi jt = 1 | {αit}it ,β ,{xi jt}i jt) = F(αit + x′i jtβ ).

To estimate model (6.3), we require the independence of the outcome variable yi jt
conditional on the fixed effects, slope parameters and the covariates ({αit}it ,{α∗jt} jt ,
β ,{xi jt}i jt) both between and within groups formed by individual-i and time t as
well as individual- j and time t, with the specification

P(yi jt = 1 | {αit}it ,{α∗jt} jt ,β ,{xi jt}i jt) = F(αit +α
∗
jt + x′i jtβ ).

To estimate model (6.4) we make very similar assumptions as in (6.1) but condi-
tional on ({γi j}i j,{λt}t ,β ,{xi jt}it j), with the specification

P(yi jt = 1 | {γi j}i j,{λt}t ,β ,{xi jt}it j) = F(γi j +λt + x′i jtβ ).

Similarly, the last two models (6.5) and (6.6) require the same independence
assumptions, namely that the binary outcome variable yi jt is independent across all
the dimensions, but with conditions ({αi}i,{γ j} j,{λt}t ,β ,{xi jt}i jt) in the case of
the fifth model and ({αit}it ,{α jt}∗jt ,{γ}i j,β ,{xi jt}i jt) in the case of the last model
with the specifications

P(yi jt = 1 | {αi}i,{γ j} j,{λt}t ,β ,{xi jt}i jt) = F(αi + γ j +λt + x′i jtβ )

and

P(yi jt = 1 | {αit}it ,{α∗jt} jt ,{γ}i j,β ,{xi jt}i jt) = F(αit +α
∗
jt + γi j + x′i jtβ ),

respectively.
In fact, we are going to treat the fixed effects as nuisance (or incidental) parame-

ters. We start by assuming a balanced panel, that is we have a panel of individual-is
running through i = 1, . . . ,N1, within each individual-i, we observe individual- js
running through j = 1, . . . ,N2 tracked over time t = 1, . . . ,T . In practice, N1 and N2
are often large relative to the length of time T . At the end of this chapter, we relax
this assumption and show that it has practically no effect on the estimation.

6.2.2 Problems with Non-linear Fixed Effects Models

A crucial difficulty arises with respect to the identification in these models. As usual
in regression estimation, variability is required for parameter identification. There-
fore, for example in model (6.1), it is impossible to identify the effect of time-
invariant observables. In the case of model (6.2), explanatory variables being con-
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stant over individual- j dimension invalidates the identifiability of their effects. In
general, the variability of the explanatory variables along the free dimension of a
fixed effect is a necessary condition for identifying the impact of a covariate (ex-
planatory variable). Otherwise, we are unable to compare choice probabilities for
various values of the covariates, which means that we cannot use these models to
identify causal effects unless some distributional assumptions are made.

Therefore, as another issue caused by the discreteness of the dependent variable
y, when individuals (individual-(i j)s in the case of model (6.1)) stay in the same
state, they do not provide any information for the estimation of β . This is the so-
called mover-stayer problem. Assuming that the fixed effects γi j in the complete
period of time t = 1, . . . ,T were such that they produced “only” outcomes yi jt = 1,
they would also produce the same for any other fixed effect γ̄i j > γi j. Therefore, es-
timations must be carried out on individuals which change states over time (moving
individuals).

Our main aim is to deliver an estimation procedure for the models discussed at
the beginning of this chapter. However, we come across two difficulties when trying
to do so. Since the fixed effects are parameters, we need to take care of them. Ba-
sically, there are two options at hand. One could either consistently estimate these
parameters, or eliminate them assuming that they are nuisance. Consistently esti-
mating these parameters is hardly achievable in general, because it requires asymp-
totics in the free dimension of the fixed effect, T along with both N1 and N2 for
instance in model (6.1). Despite having N1→ ∞ and N2→ ∞, the finite number of
observations in the time dimension invalidates the consistency of the nuisance pa-
rameter estimates and their inconsistency eventually also contaminates the estimates
of the slope parameters β . Standard techniques of orthogonal projections covered in
Chap. 1 cannot be applied directly to non-linear models, hence we cannot directly
eliminate the fixed effect parameters. As a consequence, we turn to Maximum Like-
lihood techniques based on distributional assumptions on the disturbance terms εi jt .

For illustrative purposes, consider model (6.1), which can in fact be reduced to a
two-dimensional model treating the individual index-pairs (i j) as one, k. The model
then can be transformed into a familiar form of a two-dimensional panel model

y(i j)t = 1{γ(i j)+ x′(i j)tβ + ε(i j)t ≥ 0}

ykt = 1{γk + x′ktβ + εkt ≥ 0} .

Nonetheless, issues we come across in two-dimensional models are amplified in a
general higher dimensional setting.

For the likelihood, first we derive the probabilities of the event {ykt = 1} occur-
ring and its complement {ykt = 0} conditional on the data we observe and the model
parameters
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P(ykt = 1 | xkt ,γk,β ) = P(γk + x′ktβ + εkt ≥ 0 | xkt ,γk,β )

= P(−εkt ≤ γk + x′ktβ | xkt ,γk,β )

= P(εkt ≤ γk + x′ktβ | xkt ,γk,β )

= F(γk + x′ktβ ) ,

where we assumed the disturbance term to be symmetrically distributed with a
cumulative distribution function F . Furthermore, throughout the discussion of the
fixed effects estimation in this section, we assume that the cumulative distribu-
tion function of the disturbance terms can be given by the logistic distribution, so
F(u) =Λ(u) := exp(u)/(1+exp(u)). We call the models logit when the disturbance
term is distributed logistically (F(u) = Λ(u)), and probit when this distribution is
the standard normal (F(u) = Φ(u)). Therefore,

P(ykt = 1 | xkt ,γk,β ) =
exp(γk + x′ktβ )

1+ exp(γk + x′ktβ )
,

while
P(ykt = 0 | xkt ,γk,β ) =

1
1+ exp(γk + x′ktβ )

.

Since the binary choice model is in fact a Bernoulli scheme, by slightly abusing the
notation, we can write the likelihood function as

L = L(γk,β ;ykt ,xkt)

= ∏
k

T

∏
t=1

P(ykt = 1 | xkt ,γk,β )
ykt P(ykt = 0 | xkt ,γk,β )

1−ykt

= ∏
k

T

∏
t=1

F(γk + x′ktβ )
ykt
[
1−F(γk + x′ktβ )

]1−ykt .

Taking logs, we get the log-likelihood function as

lnL(γk,β ;ykt ,xkt) = ∑
k

T

∑
t=1

ykt ln
[
F(γk + xkt)

′
β
]
+(1− ykt) ln

[
1−F(γk + x′ktβ )

]
.

Essentially, as the time dimension is often limited in practice, we cannot consistently
estimate the fixed effect parameters γk. More crucially, inconsistency in the fixed
effect parameter estimation transmits to the slope parameter β and the bias might
be as large as the parameter itself; in the case of T = 2 and N2 = 1, β̂ = 2β , see
also Andersen (1970) and Arellano and Honore (2001). This issue is known as the
incidental parameter problem (Neyman and Scott, 1948).
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6.2.3 Elimination of Fixed Effects

As seen in Chap. 1, in a linear model one can wipe out the fixed effects by ap-
propriate orthogonal projections. However, although we do not have such a direct
tool in non-linear models, we are able to eliminate these parameters considered as
nuisance or incidental. This procedure was developed and first applied by Rasch
(1960, 1961), Andersen (1970), Chamberlain (1980) and for a good summary, see
also Arellano and Honore (2001). As soon as we eliminate the fixed effects, we
are able to consistently estimate the parameters of interest β . In order to do so,
we derive a sufficient statistic for the fixed effects. Then, instead of direct Maxi-
mum Likelihood Estimation (that should otherwise be avoided in the case of small
T ), conditional likelihood procedures are used. Conditional Maximum Likelihood is
proved to be consistent for the slope parameters regardless of the number of time pe-
riods T . Moreover, under appropriate regularity conditions, the resulting estimator
is asymptotically normal (see Andersen, 1970).

Let us first define what a sufficient statistic is.

Definition 1. Let Z be a random variable. r = R(Z) is a sufficient statistic for the
parameter θ that characterizes the random variable Z if the conditional probability
distribution of the random variable Z does not depend on the parameter θ given the
sufficient statistic r = R(Z), that is

f (z | r,θ) = f (z | r).

The definition simply suggests that one cannot give a better estimation of the distri-
bution function of a random variable Z knowing the theoretical distribution param-
eters θ than just knowing the sufficient statistic r = R(Z).

Furthermore, we have a constructive theorem that provides a simple device for
obtaining a sufficient statistic in some cases (see Fisher, 1922).

Theorem 1. Let Z be a random variable with probability density function f (z | θ),
where θ is the parameter that characterizes the distribution of Z. Then r = R(Z)
is a sufficient statistic for the parameter θ if and only if there exist non-negative
functions g and h such that

f (z | θ) = h(z)g(R(z),θ).

In other words, the probability distribution function of Z can be factored into two
multiplicatively separable non-negative parts, for which h does not depend on the
parameter θ , while g depends on the parameter θ and depends on the realizations z
only through the statistic R(z). We will use this theorem to find a sufficient statistic
for the incidental parameters.

Unfortunately, probit models cannot be estimated by a Conditional Maximum
Likelihood procedure as opposed to the logit models derived below. If we started
to derive the sufficient statistic, we would be faced with the problem of non-
separability of the outcome variable from the fixed effects and, therefore, we would
be unable to obtain the sufficient statistic:
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f ({yi jt}i jt | {γi j}i j;β ,{xi jt}i jt)

=
N1

∏
i=1

N2

∏
j=1

T

∏
t=1

Φ(γi j + x′i jtβ )
yi jt
[
1−Φ(γi j + x′i jtβ )

]1−yi jt

=
N1

∏
i=1

N2

∏
j=1

T

∏
t=1

[
1√
2π

exp

(
−
(γi j + x′i jtβ )

2

2

)]yi jt

×

[
1− 1√

2π
exp

(
−
(γi j + x′i jtβ )

2

2

)]1−yi jt

from which we see that no part can be factored out containing only the data and a
function of the data as desired. Hence our attention is limited to the logit framework
here.1

Let us first consider the model described in equation (6.1). We would like to
derive the sufficient statistic for the incidental parameter γi j, for which we apply
the results of the Fisher-Neyman factorization theorem. For simplicity, let us have 2
periods of time, T = 2. Then

f ({yi jt}i jt | {γi j}i j;β ,{xi jt}i jt)

=
N1

∏
i=1

N2

∏
j=1

2

∏
t=1

Λ(γi j + x′i jtβ )
yi jt
[
1−Λ(γi j + x′i jtβ )

]
=

N1

∏
i=1

N2

∏
j=1

2

∏
t=1

[
exp(γi j + x′i jtβ )

1+ exp(γi j + x′i jtβ )

]yi jt
[

1
1+ exp(γi j + x′i jtβ )

]1−yi jt

=
N1

∏
i=1

N2

∏
j=1

[
exp

(
γi j

2

∑
t=1

yi jt +(xi j1yi j1 + xi j2yi j2)
′
β

)

+ exp

(
γi j

(
2

∑
t=1

yi jt +1

)
+(xi j1yi j1 + xi j2yi j2 + xi j1)

′
β

)

+ exp

(
γi j

(
2

∑
t=1

yi jt +1

)
+(xi j1yi j1 + xi j2yi j2 + xi j2)

′
β

)

+ exp

(
γi j

(
2

∑
t=1

yi jt +2

)
+(xi j1yi j1 + xi j2yi j2 + xi j1 + xi j2)

′
β

)]
×
[
1+ exp(γi j)(1+ exp(γi j))exp((xi j1 + xi j2)

′
β )
]−1

=
N1

∏
i=1

N2

∏
j=1

hi j({yi jt}t ;β ,{xi jt}t)gi j(R({yi jt}t),γi j;β ,{xi jt}t),

1 Let us note, however, that it is possible to derive the Conditional Maximum Likelihood estimation
for Poisson models, for example.
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where

hi j({yi jt}t ;β ,{xi jt}t) = exp
(
(xi j1yi j1 + xi j2yi j2)

′
β
)

gi j(R({yi jt}t),γi j;β ,{xi jt}t) = exp

(
γi j

2

∑
t=1

yi jt

)
×
[
1+ exp(γi j + x′i j1β )+ exp(γi j + x′i j2β )+ exp(2γi j +(xi j1 + xi j2)

′
β )
]

×
[
1+ exp(γi j)(1+ exp(γi j))exp((xi j1 + xi j2)

′
β )
]−1

and

h({yi jt}i jt ;β ,{xi jt}i jt) =
N1

∏
i=1

N2

∏
j=1

hi j({yi jt}t ;β ,{xi jt}t)

g(R({yi jt}i jt),{γi j}i j;β ,{xi jt}i jt) =
N1

∏
i=1

N2

∏
j=1

gi j(R({yi jt}t),γi j;β ,{xi jt}t).

Therefore, in this case, the sufficient statistic for γi j is R({yi jt}t) = ∑
2
t=1 yi jt , i.e., it

is enough to know what the sum of the outcome variable across time is for a specific
individual unit i j. The previous calculation can be generalized to any period of time
T .

As we derived the sufficient statistic for the fixed effect parameters, we can cal-
culate the conditional probability

P(yi jt = 1 | {γi j},β ,{xi jt}i jt ,yi jt + yi js = 1) = Λ
[
(xi jt − xi js)

′
β
]
.

From this formula we could construct the conditional likelihood function to be max-
imized, but rather, we apply this formula to every cell of the data resulting in the
following function to be maximized

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

∑
s∈Bi jt

ln
(

exp [(xi jt − xi js)
′β ]

1+ exp [(xi jt − xi js)′β ]

)
,

where Bi jt = {s : yi jt + yi js = 1} for each t = 1, . . . ,T .
It is not surprising that the estimator for this model is quite similar to Chamber-

lain (1980), because this model is purely two-dimensional as already discussed.
Let us now turn to the model (6.2). In this case, we would like to construct a

sufficient statistic for αit . We proceed as before and for simplicity let us have only
2 individual- js, N2 = 2. Now we get



172 Balazs Kertesz

f ({yi jt}i jt | {αit}it ;β ,{xi jt}i jt)

=
N1

∏
i=1

2

∏
j=1

T

∏
t=1

Λ(αit + x′i jtβ )
yi jt
[
1−Λ(αit + x′i jtβ )

]
=

N1

∏
i=1

2

∏
j=1

T

∏
t=1

[
exp(αit + x′i jtβ )

1+ exp(αit + x′i jtβ )

]yi jt
[

1
1+ exp(αit + x′i jtβ )

]1−yi jt

=
N1

∏
i=1

T

∏
t=1

[
exp

(
αit

2

∑
j=1

yi jt +(xi1tyi1t + xi2tyi2t)
′
β

)

+ exp

(
αit

(
2

∑
j=1

yi jt +1

)
+(xi1tyi1t + xi2tyi2t + xi1t)

′
β

)

+ exp

(
αit

(
2

∑
j=1

yi jt +1

)
+(xi1tyi1t + xi2tyi2t + xi2t)

′
β

)

+ exp

(
αit

(
2

∑
j=1

yi jt +2

)
+(xi1tyi1t + xi2tyi2t + xi1t + xi2t)

′
β

)]
×
[
1+ exp(αit)(1+ exp(αit))exp((xi1t + xi2t)

′
β )
]−1

=
N1

∏
i=1

T

∏
t=1

hit({yi jt} j;β ,{xi jt} j)git(R({yi jt} j),αit ;β ,{xi jt} j),

where

hit({yi jt} j;β ,{xi jt} j) = exp
(
(xi1tyi1t + xi2tyi2t)

′
β
)

git(R({yi jt} j),αit ;β ,{xi jt} j) = exp

(
αit

2

∑
j=1

yi jt

)
×
[
1+ exp(αit + x′i1tβ )+ exp(αit + x′i2tβ )+ exp(2αit +(xi1t + xi2t)

′
β )
]

×
[
1+ exp(αit)(1+ exp(αit))exp((xi1t + xi2t)

′
β )
]−1

and

h({yi jt}i jt ;β ,{xi jt}i jt) =
N1

∏
i=1

T

∏
t=1

hit({yi jt} j;β ,{xi jt} j)

g(R({yi jt}i jt),{αit}it ;β ,{xi jt}i jt) =
N1

∏
i=1

T

∏
t=1

git(R({yi jt} j),αit ;β ,{xi jt} j).

We can see that in this model, the sufficient statistic for the fixed effect parameter
αit is unsurprisingly R({yi jt} j) = ∑

2
j=1 yi jt , because of the similarity of the model

to (6.1). As before, the conditional probability becomes

P(yi jt = 1 | {αit},β ,{xi jt}i jt ,yi jt + yilt = 1) = Λ
[
(xi jt − xilt)

′
β
]
.
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Similarly to the previous model, we obtain the function to be maximized with re-
spect to the slope parameters β by applying this formula to every cell of the data

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

∑
l∈Bi jt

ln
(

exp [(xi jt − xilt)
′β ]

1+ exp [(xi jt − xilt)′β ]

)
,

where Bi jt = {l : yi jt + yilt = 1} for each j = 1, . . . ,N2. Essentially this estimator
is the same as before except that it is computationally more demanding since the
individual- j dimension is usually greater than the number of time periods, T � N2.

As seen, the fixed effects can be easily eliminated by deriving a simple sufficient
statistic. In particular, the sufficient statistic we need to condition for becomes the
sum of the dependent variable along the dimension in which the fixed effect pa-
rameter is invariant. Keeping this in mind, we skip the derivations on how to obtain
sufficient statistics for models (6.3)–(6.6). We use the same approach to extend the
method of conditional likelihood techniques, and get a function to be maximized
over the parameter space of β .

Let us now continue with the conditional likelihood for model (6.3). As we allow
for multiple fixed effects, we extend this logic following Charbonneau (2012), who
introduced the approach in a two-dimensional setting with multiple fixed effects for
different distributional assumptions on the disturbance terms (logit, poisson, nega-
tive binomial and gamma). First, let us note that model (6.3) can in fact be viewed
as a sequence of two-dimensional models over time, for which in every period the
modeling equation must be satisfied. To eliminate one of the fixed effects αkt for
all k = 1, . . . ,N1, we write up the conditional probability of the dependent variable
yk jt = 1 conditional on the sufficient statistic derived above, that is we consider the
summation over the individual- j dimension. Therefore,

P(yk jt = 1 | {xk jt}k jt ,{αkt}kt ,{α∗jt} jt ,yk jt + yklt = 1)

= Λ
[
(α∗jt −α

∗
lt)+(xk jt − xklt)

′
β
]
,

which does not depend on αkt . As this relationship holds for any k = 1, . . . ,N1, hence
for i as well,

P(yi jt = 1 | {xi jt}i jt ,{αit}it ,{α∗jt} jt ,yi jt + yilt = 1)

= Λ
[
(α∗jt −α

∗
lt)+(xi jt − xilt)

′
β
]
.

Because these conditional probabilities still depend on the other fixed effect param-
eters α∗jt , we need to make sure we eliminate them as well. Note that now we have
a binary choice logit model on the explanatory variables xi jt − xilt and fixed effect
parameters α∗jt −α∗lt . Thus, applying the usual trick will wipe out the fixed effects.
Let

C := {yk jt + yklt = 1,yi jt + yilt = 1}.

Let us augment the set of criteria C we are conditioning upon with one more element.
Then we can write up the conditional probability as
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P(yk jt = 1 | {xk jt}k jt ,{αkt}kt ,{α∗jt} jt ,C,yi jt + yk jt = 1)

= Λ

([
(xk jt − xklt)− (xi jt − xilt)

]′
β

)
,

which does not depend on α∗jt , hence we are able to estimate the slope parameters
by maximizing the following function

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

∑
(k,l)∈Bi jt

ln

(
exp
[
(xk jt − xklt)− (xi jt − xilt)

]′
β

1+ exp
[
(xk jt − xklt)− (xi jt − xilt)

]′
β

)
,

where Bi jt = {(k, l) : yk jt + yklt = 1,yi jt + yilt = 1,yi jt + yk jt = 1} for each i =
1, . . . ,N1 and j = 1, . . . ,N2.

Let us now consider model (6.4), which is really two-dimensional and as such
its estimation function is derived by Charbonneau (2012). When we eliminate the
individual-i j fixed effects γi j by conditioning on the sum of the outcome variable
across time, and time effects λt by conditioning on the sum of the outcome variable
across the unified individual dimension (i j) just like we did before, we get

∑
(i j)

T

∑
t=1

∑
((i j)′,s)∈B(i j)t

ln

 exp
([

(x(i j)′t − x(i j)′s)− (x(i j)t − x(i j)s)
]′

β

)
1+ exp

([
(x(i j)′t − x(i j)′s)− (x(i j)t − x(i j)s)

]′
β

)
 ,

where B(i j)t = {((i j)′,s) : y(i j)′t +y(i j)′s = 1,y(i j)t +y(i j)s = 1,y(i j)t +y(i j)s = 1}, (i j)
runs through the pairs and t = 1, . . . ,T .

In the next model (6.5), we cannot exploit the additive nature of the individuals-i,
individuals- j and the time effects, hence we end up getting exactly the same result
as before in model (6.3). This is because once we condition on the sum of the depen-
dent variable across one of the dimensions, it eliminates two kinds of fixed effects.

P(yk jt = 1 | {xk jt}k jt ,{αk}k,{γ j} j,{λt}t ,yk jt + yklt = 1)

= Λ
[
(γ j− γl)+(xk jt − xklt)

′
β
]

for all k = 1, . . . ,N1 and similarly holds for i as well

P(yi jt = 1 | {xi jt}i jt ,{αi}i,{γ j} j,{λt}t ,yi jt + yilt = 1)

= Λ
[
(γ j− γl)+(xi jt − xilt)

′
β
]
,

thus

P(yk jt = 1 | {xk jt}k jt ,{αk}k,{γ j} j,{λt}t ,C,yi jt + yk jt = 1)

= Λ

([
(xk jt − xklt)− (xi jt − xilt)

]′
β

)
,

where C = {yk jt + yklt = 1,yi jt + yilt = 1} as before. Therefore, we have the same
function for maximization as in the case of model (6.3).



6 Discrete Response Models 175

Alternatively for convenience, symmetric conditional likelihood functions can
be derived depending on the data structure available. We will summarize later what
kind of data one should have in order to apply these estimation techniques. Since
there are two ways for eliminating each of the fixed effects in this model (6.5),
one might consider removing the fixed effects by conditioning on the sum of the
outcome variable across the other free dimension. For example, eliminating αi is
possible not just by conditioning on the sum of the outcome over individual- j, but
by conditioning for the sum of the outcome over time t. However, we end up having
eliminated two sorts of fixed effects in the same step, just like before. Proceeding
further, the function to be maximized can be derived similarly as above.

The derivation of the Conditional Maximum Likelihood Estimator for model
(6.6) is based on the same logic as seen before. Since the model contains multiple
fixed effects, we proceed with their elimination one by one. The sufficient statistic
for the time varying individual-i fixed effect αit is the sum of the dependent variable
over the individual- j dimension. We condition for it and get

P(yk js = 1 | {xk js}k js,{α}ks,{α}k j,yk js + ykls = 1)

= Λ
[
(α∗js−α

∗
ls)+(γk j− γkl)+(xk js− xkls)

′
β
]
,

which is independent of αks for all k = 1, . . . ,N1 and for all s = 1, . . . ,T . Similarly,
the conditional probability also holds for i

P(yi js = 1 | {xi js}i js,{α}is,{α}i j,yi js + yils = 1)

= Λ
[
(α∗js−α

∗
ls)+(γi j− γil)+(xi js− xils)

′
β
]
.

Let Cs denote a similar conditioning set Cs = {yk js + ykls = 1,yi js + yils = 1} as
before. In the second step, we condition on the sufficient statistic for the fixed effects
α js to eliminate them

P(yk js = 1 | {xk js}k js,{α}ks,{α∗js} js,{γk j}k j,Cs,yi js + yk js = 1)

= Λ

[
(γk j− γkl)+(γi j− γil)+

[
(xk js− xkls)− (xi js− xils)

]′
β

]
,

which holds for every s = 1, . . . ,T , in particular, for t as well

P(yk jt = 1 | {xk jt}k jt ,{α}kt ,{α∗jt} jt ,{γk j}k j,Ct ,yi jt + yk jt = 1)

= Λ

[
(γk j− γkl)+(γi j− γil)+

[
(xk jt − xklt)− (xi jt − xilt)

]′
β

]
.

Eventually, we are able to make the following conditional probability independent
of all the fixed effects

P(yk js = 1 | {xk js}k js,{αks}ks,{α∗js} js,{γk j}k j,Cs,Ct ,

yi js + yk js = 1,yi jt + yk jt = 1,yk jt + yk js = 1)

= Λ

[(
(xk js− xkls)− (xi js− xils)− (xk jt − xklt)− (xi jt − xilt)

)′
β

]
.
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Therefore, the function to be maximized can be written as

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

∑
(k,l,s)∈Bi jt

lnΛ

[(
(xk js− xkls)− (xi js− xils)− (xk jt − xklt)− (xi jt − xilt)

)′
β

]
,

where Bi jt = {(k, l,s) : yk js + ykls = 1,yi js + yils = 1,yk jt + yklt = 1,yi jt + yilt =
1,yi js + yk js = 1,yi jt + yk jt = 1,yk jt + yk js = 1}, i = 1, . . . ,N1, j = 1, . . . ,N2 and
t = 1, . . . ,T .

As a result of the conditional likelihood approach, from the maximization of
the above functions, all the estimation results can be interpreted in relative terms,
namely with the log of the odds ratios. The log of odds ratios can easily be derived,
for instance, in the case of model (6.1) it is given by

ln

(
P(y(i j)t = 1 | γ(i j),β ,x(i j)t)

P(y(i j)t = 0 | γ(i j),β ,x(i j)t)

/
P(y(i j)t = 1 | γ(i j),β ,x(i j)′t)

P(y(i j)t = 0 | γ(i j),β ,x(i j)′t)

)
=(x(i j)t−x(i j)′t)

′
β ,

which is due to the functional form of the logistic distribution. The interpretation
is that the odds of an individual with characteristics x(i j)t over the odds of another
individual with characteristics x(i j)′t is calculated from exp

(
(x(i j)t − x(i j)′t)

′β
)
.

6.2.4 Caveats of the Procedure

There are some issues with the conditional likelihood approach that need special
attention. These problems have already been briefly noted, but now they can be
seen from the functions that enable us to obtain the estimations of the slope param-
eters. First, one needs to take into account the identifying variation in data. Note
that whenever there is no variation in the covariates in the desired dimensions deter-
mined by the fixed effects, the numerical maximization would not converge, since
the log-likelihood will be −∞ (the difference in characteristics vanishes inside the
logarithm). However, a more detailed database (higher dimensional data) might help
overcome the problem. In this case, one might use the extra free dimension available
for eliminating some fixed effects in the equations to be estimated.

A key problem with the estimation functions derived above, however, is that they
are formed over just a set of observations represented by Bi jt . Therefore, one loses
some information when excluding observations from the procedure, similarly to the
linear model case with the orthogonal projections.

Table 6.1 summarizes what variation one needs for both the dependent and inde-
pendent variables across dimensions to implement the estimation procedure outlined
above.
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Table 6.1 Variation needed in three-dimensional data to use the conditional likelihood techniques

Model Fixed effects Conditioning set Bi jt Required variation in covari-
ates

(6.1) γi j {s : yi jt + yi js = 1} ∀t across time t

(6.2) αit {l : yi jt + yilt = 1} ∀ j across individual- j

(6.3) αit +α∗jt {(k, l) : yk jt + yklt = 1,yi jt + yilt = 1,yi jt + yk jt =
1} ∀i, j

across individual-i and j

(6.4) γi j +λt {((i j)′,s) : y(i j)′t + y(i j)′s = 1,y(i j)t + y(i j)s =
1,y(i j)t + y(i j)s = 1} ∀i, j, t

across individual-(i j) and time
t

(6.5) αi + γ j +λt {(k, l) : yk jt + yklt = 1,yi jt + yilt = 1,yi jt + yk jt =
1} ∀i, j or {(k,s) : yk jt + yk js = 1,yi jt + yi js =
1,yi jt + yk jt = 1} ∀i, t or {(l,s) : yilt + yils =
1,yi jt + yi js = 1,yi jt + yilt = 1} ∀i, t

(across individual-i and j) or
(across individual-i and time t)
or (across individual- j and time
t)

(6.6) αit +α∗jt + γi j Bi jt = {(k, l,s) : yk js+ykls = 1,yi js+yils = 1,yk jt +
yklt = 1,yi jt + yilt = 1,yi js + yk js = 1,yi jt + yk jt =
1,yk jt + yk js = 1} ∀i, j, t

across individual-i and j and
time t

One additional drawback of the conditional likelihood approach is that neither
the partial effect of the pth covariate ∂P(yi jt = 1 | γi j,β ,xi jt)/∂xp

i jt nor the average
partial effect of the pth covariate E(∂P(yi jt = 1 | γi j,β ,xi jt)/∂xp

i jt) can be given
because the fixed effects have not been estimated and their distribution has not been
specified. For simplicity, let us consider the first model (6.1), where the partial effect
is given by

∂P(yi jt = 1 | γi j,β ,xi jt)

∂xp
i jt

= Λ
′(γi jt + x′i jtβ )β

p ,

which contains the fixed effect parameter. However, we are at least able to tell the
direction of the effect, since Λ ′ > 0, therefore, the sign of the coefficient β p will
indicate it.

One could also worry about the computational feasibility of implementing the
conditional likelihood approach. This is because the index set Bi jt in the formula of
the conditional likelihood functions enumerates all the coordinates (index triplets)
that are relevant to the estimation procedure. It can be quite large and grows with
the size of the dimension for which the sufficient statistics are calculated. However,
Pforr (2014) used a recursive algorithm to overcome the problem in a time-efficient
way in two-dimensional panel models, which can be generalized to higher dimen-
sions.
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6.2.5 Unbalanced Panels

The conditional likelihood approach is a very convenient tool to deal with unbal-
anced panels. This is due to the form of the function to be maximized as it compares
the characteristics of an individual in certain dimensions, and whenever some obser-
vations are missing (at random), they are simply disregarded during the procedure.
They just restrict the sample for which the estimation is carried out. Therefore, the
researcher needs not to worry about the data at hand being unbalanced.

6.3 Selection Bias

Let us turn now to a useful application of the binary choice models in empirical
problems. One is often faced with data affected by non-random selectivity (for a
survey, see Vella, 1998). This phenomenon leads to the well-known selection bias
problem, which causes unreliable and inconsistent estimators if left untreated. Heck-
man (1979) came up with a remedy for this issue in cross-sectional data and showed
how to correct for selection bias. Although sample selection bias is frequently en-
countered in cross sectional models, controlling for unobserved heterogeneity in
panel models may not eliminate all the selection bias (like the Within transforma-
tion for the fixed effects in higher-dimensional panel models discussed in Chap. 1),
see Verbeek and Nijman (1996) and Honore et al. (2008). Attrition may also result
in selectivity, as seen in many empirical instances.

When estimating such models the main problem is the selection mechanism.
The selection comes up as an unknown non-linear function of the observed and
unobserved time-varying regressors in the model one would like to estimate. As the
selection effect is time-varying, it would not disappear by simply taking the first
differences or using any similar trick.

The general setup is the following in the spirit of bilateral individual fixed effects:
One would like to estimate a model (called the primary or structural equation) tak-
ing into account the selection mechanism described by a different equation (called
the selection or control equation). We assume a linear relationship between the de-
pendent variable and the explanatory variables in the structural equation, just like
we did in Chap. 1, and include fixed effect parameters γ̃i j controlling for the het-
erogeneity. The sample selection rule is assumed to follow a binary response, in
which these effects are taken into account. The disturbance terms ε̃i jt and ηi jt of
these equations are likely to be dependent of each other (E(ε̃i jt | ηi jt) 6= 0). Thus,
the structural equation and the selection equation can be given as

yi jt = (γ̃i j + x̃′i jtβ + ε̃i jt) ·di jt structural equation

di jt = 1{γs
i j +w′i jtθ +ηi jt ≥ 0} selection equation,

where we might have common explanatory variables in x̃i jt and wi jt . Variables with
tilde denote the latent variable counterpart of the observables. γ̃i j and γs

i j are bilat-
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eral individual effects. The dependent variable yi jt is observable to the researcher
only if the binary indicator variable takes 1, di jt = 1. The researcher would like
to obtain parameter estimates for β and θ based on the explanatory variables
ξi j = {{wi jt}t ,{x̃i jt}t , γ̃i j,γi j} treating the individual effects as nuisance parameters.
The basic idea is that, in this form of the sample selection mechanism, we are able to
control for both the bilateral individual and time-varying selection effects through
a control function estimated from the selection equation. To see the time-varying
nature of the selection, one could rewrite the structural equation in the form of

yi jt = (γ̃i j + x̃′i jtβ + ε̃i jt) ·di jt = γi jt + x′i jtβ + εi jt .

When one is concerned about omitting some other form of unobserved heterogene-
ity as proposed in Chap. 1 and Sect. 6.2, the procedures described below can be
carried out in a similar way, though they may be complicated depending on the
structure of the fixed effects.

We further assume that the disturbance terms in the selection equation follow a
logistic distribution in accordance with the rest of this chapter for the fixed effect
estimation procedure derived above to be implementable. Thereafter, the parame-
ters of the structural equation are estimated by a fixed effect approach discussed in
Chap. 1. However, this naive estimator of β ignores sample selectivity, therefore it
is inconsistent as well (see Jensen et al., 2002).

The sample selection model above might be estimated by the full information
Maximum Likelihood method. The general form of the likelihood function is given
by

L = ∏
(i j)

∏
t

(∫ −γs
i j−w′i jt θ

−∞

fη(η)dη

)1−d(i j)t
(∫

∞

−γs
i j−w′i jt θ

fε̃,η(ε̃,η)dε̃dη

)d(i j)t

,

where fη denotes the (arbitrary) probability distribution function of the disturbance
terms in the selection equation η and fε̃,η stands for the (arbitrary) joint probability
distribution function of the two disturbance terms. To implement this approach, the
researcher needs to specify the distribution functions. In fact, if we were to allow
for joint normality, we would get back Heckman’s standard estimator. However,
the bivariate normal assumption often proves to be a very restrictive and violated
in empirical applications, which leads to serious inconsistency problems. Hasebe
and Vijverberg (2012) studied several practical settings where the joint normality
assumption was not satisfied.

The estimation procedure we are going to discuss is in contrast with previous
works in the fixed effect framework carried out on the basis of the joint normal-
ity assumption (see, for instance, Wooldridge, 1995; Verbeek and Nijman, 1992;
Honore et al., 2008).

To overcome the shortcomings of the restrictive joint normality assumption, we
discuss a parametric and a semi-parametric approach to deal with selection issues
with alternative joint distributions and briefly mention a non-parametric method at
the end of the section.
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6.3.1 Parametric Approach

The bivariate normality assumption of the disturbance terms ε̃i jt and ηi jt signifi-
cantly simplifies the treatment of selection bias. This is because of a special prop-
erty of the joint distribution: its marginal distributions are also normal as usually
assumed in the structural and selection equations. As a departure from the bivari-
ate normality assumption, in contrast, when one would like to relax this assumption
and has a strong view about what the marginal distribution of the disturbance terms
could be, the researcher often has to deal with copula functions. In our specific case,
the disturbance term ηi jt in the selection equation follows a logistic, while the distur-
bance term ε̃i jt in the structural equation follows a normal distribution (marginally).

We assume that

• both di jt and wi jt are observable – this is the sample selection;
• (ε̃i jt ,ηi jt)⊥ x̃i jt with zero means – in other words, that the characteristics x̃i jt are

exogenously given in the population;
• εi jt follows a standard normal distribution, while ηi jt follows a standard logistic

distribution;
• γi j and γs

i j are nuisance parameters;
• the conditional expectation E(ε̃i jt | ηi jt) can be given with a copula representa-

tion.

We are interested in what the conditional expectation of the outcome variable is

E(yi jt | x̃i jt ,di jt = 1).

Let us begin with

E(yi jt | wi jt ,γ
s
i j,ηi jt ,θ) = γ̃i j + x̃′i jtβ +E(ε̃i jt | wi jt ,γ

s
i j,ηi jt ,θ)

= γ̃i j + x̃′i jtβ +E(ε̃i jt | ηi jt).

If the last term is zero, we do not need to worry about sample selection and can
proceed to the fixed effect estimation procedures as discussed in Chap. 1. How-
ever, if the last term is non-zero, the researcher faces non-random sample selection.
Applying the law of iterated expectation to the equation of interest

E(yi jt | x̃i jt ,di jt = 1) = E [E(yi jt | x̃i jt ,ηi jt) | x̃i jt ,di jt = 1]
= E[γ̃i j + x̃′i jtβ +E(ε̃i jt | ηi jt) | x̃i jt ,di jt = 1]

= γ̃i j + x̃′i jtβ +E[ε̃i jt | ηi jt , x̃i jt ,di jt = 1],

where the last term represents the sample selectivity. If we assume bivariate normal-
ity and linear dependency E(ε̃i jt | ηi jt) = δηi jt with the measure of co-movement δ

between the disturbance terms, then the previous expression would take the follow-
ing form

E(yi jt | x̃i jt ,di jt = 1) = γ̃i jt + x̃′i jtβ +δh(xi jt),
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where E(ηi jt | xi jt) = h(xi jt) is the Heckman correction factor, in fact the inverse
Mills ratio. Under bivariate normality, this equation is estimated in two steps: first,
the Heckman correction factor is calculated, and then the primary equation, com-
plemented with the Heckman correction factor, is estimated by an appropriate fixed
effect estimator as discussed in Chap. 1.

In the case of our logistic and normal marginal distributions, the joint distribution
and the dependence structure of the disturbance terms is no longer that simple:

E(ε̃ | η) =
∫

∞

−∞

ε̃
f (ε̃,η)

λ (η)
dε̃

=
∫

∞

−∞

ε̃ cυ(Φ(ε̃),Λ(η))φ(ε̃)dε̃,

where f (ε̃,η) is the joint probability density function (pdf), λ (η) is the pdf cor-
responding to the logistic distribution, Φ(ε̃) is the cumulative distribution function
(cdf) of the standard normal distribution, Λ(η) is the cdf of the standard logistic
distribution, and φ(ε̃) is the pdf of the standard normal distribution. cυ denotes the
density of the copula Cυ . Since the joint distribution can be represented as

F(ε̃,η) =Cυ(Φ(ε̃),Λ(η)) ,

the joint pdf is
f (ε̃,η) = cυ(Φ(ε̃),Λ(η))φ(ε̃)λ (η),

where cυ(Φ(ε̃),Λ(η)) = ∂ 2Cυ (Φ(ε̃),Λ(η))
∂Φ(ε̃)∂Λ(η) . The parameter υ governs the dependency

between the two disturbance terms, which should be estimated similarly to the orig-
inal Heckman approach. The Appendix of this chapter briefly overviews the basic
concepts with copulas.

6.3.2 Semi-Parametric Approach

Next, we propose an extension of the modeling framework analyzed by Ahn and
Powell (1993) and Kyriazidou (1997) to higher dimensional panel data models while
continuing to assume the model introduced at the beginning of this section. The esti-
mation procedure involves two steps. First, one consistently estimates the unknown
coefficients of the selection equation. In the second step, these are used to estimate
the structural equation with weighted least squares. These weights are dependent
on the magnitude of the sample selection bias, observations with less selection bias
get larger weights, while observations more affected by selection bias get smaller
weights. Parameter estimates from the first step help construct these weights. For
tractability, we assume a simple structure of the fixed effects γi j and let T = 2 for
now. Then the sample selection can be expressed as
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λi jt = E(ε̃i jt | di j1 = 1,di j2 = 1,ξi j)

= E(ε̃i jt | ηi j1 ≤ γ
s
i j +w′i j1θ ,ηi j2 ≤ γ

s
i j +w′i j2θ ,ξi j)

= l
(
γ

s
i j +w′i j1θ ,γs

i j +w′i j2θ ;Fi jt(ε̃i jt ,ηi j1,ηi j2 | ξi j)
)

= li jt(γ
s
i j +w′i j1θ ,γs

i j +w′i j2θ ,ξi j).

In other words, under weak distributional assumptions, we allow the selection effect
li jt to vary across bilateral individuals; so we require neither the disturbance terms
(ε̃i jt ,ηi jt) be i.i.d. nor independent of the explanatory variables ξi j.

Therefore, the structural equation can be written as a partially linear regression

yi jt = γ̃i jt + x′i jtβ +λi jt + vi jt ,

where vi jt = εi jt − λi jt is a new disturbance term by construction satisfying
E(vi jt | di j1 = 1,di j2 = 1,ξi j) = 0. The idea is to get rid of the nuisance terms γ̃i jt
and λi jt by differencing them out. (The appropriate Within transformation should be
used for models with more sophisticated fixed effects structures.)

Under the conditional exchangeability assumption

F(ε̃i j1, ε̃i j2,ηi j1,ηi j2 | ξi j) = F(ε̃i j2, ε̃i j1,ηi j2,ηi j1 | ξi j) ,

the sample selection effect is the same across the free dimension of the fixed effect
parameter γi j, λi j1 = λi j2 for those bilateral individuals who have w′i j1θ = w′i j2θ

λi j1 = E(ε̃i j1 | ηi j1 ≤ γ
s
i j +w′i j1θ ,ηi j2 ≤ γ

s
i j +w′i j2θ ,ξi j)

= E(ε̃i j2 | ηi j2 ≤ γ
s
i j +w′i j1θ ,ηi j1 ≤ γ

s
i j +w′i j2θ ,ξi j)

= λi j2.

Now we have two components missing from the procedure. (i) θ should be found
to assure (ii) selection on observations for which the rest of the estimation is carried
out. The first step, finding the estimate for θ in the binary choice equation can be
resolved by, for example, the conditional likelihood approach discussed earlier in
this chapter. For the second step, Kyriazidou (1997) proposes that one should weight
those individuals which are relatively close to each other in terms of w′i jt θ̂ and w′i jsθ̂

and thus obtain the (infeasible) estimator for general T

β̂ =

[
∑
(i j)

1
Ti j−1 ∑

s<t
ψ̂i j∆

′
ts(x
′
i j)∆ts(x′i j)di jtdi js

]−1

×

[
∑
(i j)

1
Ti j−1 ∑

s<t
ψ̂i j∆

′
ts(x
′
i j)∆ts(yi j)di jtdi js

]

with a kernel weight ψ̂i j decreasing to zero as |w′i jtθ −w′i jsθ | increases and where
∆ts denotes the difference operator between the tth and sth observation of the given
variable (based on the free dimension of the fixed effect γi j). This operation in fact
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corresponds to the ordinal first-differencing in a linear equation. The kernel weights
are given by

ψ̂i jts =
1
h

K

(
∆ts(w′i j)θ̂

h

)
,

where K is a kernel density and h is a bandwidth parameter, both of them being the
researcher’s choice and therefore the parameters of the approach.

Kyriazidou (1997) also showed how to obtain a consistent estimator ˆ̂
β . Letting

β̂ be an estimator with bandwidth h = #(i j)−1/(2(r+1)+1), the −1/(2(r+ 1)+ 1)th
order of the number of bilateral individuals #(i j) and β̂δ another estimator with
bandwidth hδ = #(i j)−δ/(2(r+1)+1) and δ ∈ (0,1), we define

ˆ̂
β =

β̂ −#(i j)−(1−δ )(r+1)/(2(r+1)+1)β̂δ

1−#(i j)−(1−δ )(r+1)/(2(r+1)+1) ,

where r stands for an r-times continuously differentiability condition on the density
of the index function W = ∆w′θ . This estimator is consistent in the number of bilat-
eral individuals (and, clearly, in T as well) and asymptotically normally distributed.

6.3.3 Non-Parametric Approach

Fernandez-Val and Francis (2011) propose a two-step analytical large-T bias cor-
rection procedure for the sample selection model that can be written in higher di-
mensional panels as

yi jt = f (di jt ,γi j,xi jt ,λi jt ;β )+ εi jt structural equation
di jt = g(γs

i j,wi jt ;θ)+ηi jt selection equation,

where f and g are known functions up to the finite dimensional parameters β and
θ , λi jt represents the control variable underlying the selection of di jt in the struc-
tural equation. The estimation procedure consists of two steps. First the selection
equation should be estimated non-parametrically, from which the researcher can
construct the control function λi jt in the same manner as Heckman (1979) suggests.
We then account for the selection in the structural equation by including the control
function in the equation. For more details, the reader is redirected to the paper cited.
The authors show that the two-step bias correction method leads to reasonably low
bias even in relatively short panels with T = 6.
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6.4 Fixed Effects Multinomial Choice Models

Next, let us briefly show how to deal with multinomial choice models following
Chamberlain (1980). In a multinomial choice setup, individuals are given a set of
options denoted by 0,1,2, . . . ,C from which they can form their decision. Choices
are not assumed to follow any specific order. Let us remark here that the choice
set may potentially be quite large in some instances, as in the case of menu-choices,
etc. Just like in binary choice models, for notational convenience, we denote the first
option with 0. As we have seen in Sect. 6.2, one of the choices should be treated as
a reference point.

As in the binary choice case, we model the choice probabilities where one would
like to control for heterogeneity characterized by

P(yi jt = c | {FEi jtc}i jtc,β ,{xi jtc}i jtc) = F(FEi jtc+x′i jtcβ ), c = 0,1, . . . ,C,

which is in fact the strict exogeneity assumption, where the multiple choice coun-
terparts of the fixed effects (6.1)–(6.6) are described as

FEi jtc = γi jc (6.7)
FEi jtc = αitc (6.8)
FEi jtc = αitc +α

∗
jtc (6.9)

FEi jtc = γi jc +λtc (6.10)
FEi jtc = αic + γ jc +λtc (6.11)
FEi jtc = αitc +α

∗
jtc + γi jc (6.12)

for c = 0,1, . . . ,C and F(u) = Λ(u).
For the corresponding models, we require exactly the same conditional indepen-

dence assumptions as in the case of the binary choice models.
Each of the multinomial choice problems can be broken down into a set of binary

choice problems. Each possible combination of choices should be considered over
the free dimension of the fixed effect parameters over which we form the sufficient
statistic that eliminates them. This simply adds an additional layer (an additional
dimension in fact) to the function from which we calculate the estimation of β . Let
us introduce a new variable wi jtc for individual-i, individual- j in period t choosing
option c, in other words wi jtc = 1 if yi jt = c and wi jtc = 0 otherwise.

For a moment, let us consider the T = 2 case. Then the conditional probability of
exactly observing options a and b over time from the choice set {0,1, . . . ,C} in the
case of multinomial choice model (6.7) conditional on the number of occurrences is

P
(
(wi j1a,wi j2b) | (wi j1a,wi j2b) or (wi j1b,wi j2a),{γi jc}i jc,β ,{xi jtc}i jtc

)
= Λ

([
(xi j2b− xi j2a)− (xi j1b− xi j1a)

]′
β

)
.
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Therefore, we have a binary choice logit model with (wi j1a,wi j2b) and (wi j1b,wi j2a)
as two alternatives and (xi j2b− xi j2a)− (xi j1b− xi j1a) as the explanatory variable.
Similar conditional probabilities can be written for any two elements in the choice
set. From this formula one could write up the Conditional Maximum Likelihood
function.

The probability of observing a choice c conditional on the sufficient statistic is
given by

P(yi jt = c | {γi jc}i jc,β ,{xi jtc}i jtc,wi jtc +wi jsc = 1)
= P(wi jtc = 1 | {γi jc}i jc,β ,{xi jtc}i jtc,wi jtc +wi jsc = 1)

= Λ
[
(xi jtc− xi jsc)

′
β
]
.

It follows that for general T , the function to be maximized composed of cell proba-
bilities is written as

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

C

∑
c=0

∑
s∈Bi jtc

ln
(

exp [(xi jtc− xi jsc)
′β ]

1+ exp [(xi jtc− xi jsc)′β ]

)
,

where Bi jtc = {s : wi jtc +wi jsc = 1} for each t = 1, . . . ,T and c = 0,1, . . . ,C.
The Conditional Likelihood function for the other models can be given similarly.
For the multinomial choice model (6.8), the function to be maximized is as fol-

lows
N1

∑
i=1

N2

∑
j=1

T

∑
t=1

C

∑
c=0

∑
l∈Bi jtc

ln
(

exp [(xi jtc− xiltc)
′β ]

1+ exp [(xi jtc− xiltc)′β ]

)
,

where Bi jtc = {l : wi jtc+wiltc = 1} for each j = 1, . . . ,N2 and c = 0,1, . . . ,C. This is
derived from the probabilities conditional on the number of a certain choice c made
on the individual- j dimension.

Model (6.9) requires conditioning along two dimensions of the data. Once we
eliminate the bilateral fixed effect αit by conditioning on the number of occurrences
of different choices c on the individual- j dimension, then we eliminate the other
bilateral fixed effect α∗jt by conditioning on the number of occurrences when choice
c was chosen along the individual-i dimension. Therefore, the function to be maxi-
mized is

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

C

∑
c=0

∑
(k,l)∈Bi jtc

ln

(
exp
[
(xk jtc− xkltc)− (xi jtc− xiltc)

]′
β

1+ exp
[
(xk jtc− xkltc)− (xi jtc− xiltc)

]′
β

)
,

where Bi jtc = {(k, l) : wk jtc +wkltc = 1,wi jtc +wiltc = 1,wi jtc +wk jtc = 1} for each
i = 1, . . . ,N1, j = 1, . . . ,N2 and c = 0,1, . . . ,C.

Similarly to the binary choice model (6.4), after calculating the corresponding
conditional probabilities, the function in the case of the multinomial choice model
(6.10) can be written as
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∑
(i j)

T

∑
t=1

C

∑
c=0

∑
((i j)′,s)∈B(i j)tc

ln

 exp
([

(x(i j)′tc− x(i j)′sc)− (x(i j)tc− x(i j)sc)
]′

β

)
1+ exp

([
(x(i j)′tc− x(i j)′sc)− (x(i j)tc− x(i j)sc)

]′
β

)
 ,

where B(i j)tc = {((i j)′,s) : w(i j)′tc+w(i j)′sc = 1,w(i j)tc+w(i j)sc = 1,w(i j)tc+w(i j)sc =
1}, (i j) runs through the pairs, t = 1, . . . ,T and c = 0,1, . . . ,C.

Just like in the binary choice case, we cannot exploit the structure of the fixed
effects in model (6.11). As a result, we obtain the same function for maximization
as in the case of model (6.9).

Turning to the last specification of the fixed effects (6.12), due to the repeated
elimination of the fixed effects by conditioning on the number of observed choices
along the corresponding free dimensions, we obtain the following function to be
maximized

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

C

∑
c=0

∑
(k,l,s)∈Bi jtc

lnΛ

[(
(xk jsc− xklsc)− (xi jsc− xilsc)− (xk jtc− xkltc)− (xi jtc− xiltc)

)′
β

]
,

where Bi jtc = {(k, l,s) : wk jsc +wklsc = 1,wi jsc +wilsc = 1,wk jtc +wkltc = 1,wi jtc +
wiltc = 1,wi jsc +wk jsc = 1,wi jtc +wk jtc = 1,wk jtc +wk jsc = 1}, i = 1, . . . ,N1, j =
1, . . . ,N2, t = 1, . . . ,T and c = 0,1, . . . ,C.

A stark issue arising from the Conditional Maximum Likelihood approach stems
from its assumptions crucial in multinomial choice setting. We assumed the inde-
pendence of the outcomes between and across groups. This is equivalent to the
independence of irrelevant alternatives assumption, which often fails in empirical
applications. The researcher needs to pay special attention to this assumption, since
if it is not satisfied, it invalidates the estimation results.
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Appendix

Here, we briefly introduce the essential properties of copulas, for a deeper treatment
the reader is referred to Nelsen (2006), Joe (1993, 1997) and Trivedi and Zimmer
(2007). Developing estimation procedures using generalized distributional assump-
tions has been initiated by Lee (1982, 1983), further analyzed by Smith (2003) and
Trivedi and Zimmer (2006). Lee relaxes the joint normality assumption, while Smith
introduces the copula approach to selection mechanisms, which is in fact the gener-
alized case of Lee’s solution allowing for more flexible model specification.

The copula approach is a modelling tool and provides a successful method when
one would like to model non-linear dependencies with alternative marginal distri-
butions. In this procedure, the researcher needs to specify the desired marginal dis-
tribution functions and a function that binds them together, called a copula. The
copula function describes the complex dependency structure between the random
variables. The key property of this approach is that it does not just encapsulates the
multivariate normal distribution, but can be applied to any specific distributions. The
theoretical foundation is given by Sklar’s theorem (see Sklar, 1959; Nelsen, 2006).

Definition 2. Let X = (X1, . . . ,Xn) be a random vector with distribution function
F and with marginal distribution functions Fi, Xi ∼ Fi, i = 1, . . . ,n. A distribution
function C with marginals on [0,1] is called a copula of X if

F =C(F1, . . . ,Fn).

Theorem 2. Let F ∈F (F1, . . . ,Fn) be an n-dimensional distribution function with
marginals F1, . . . ,Fn. Then there exists a copula C such that the n-dimensional joint
distribution function can be represented as

F(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn)).

Moreover, the representation is unique whenever the marginal distributions are con-
tinuous. Intuitively, Sklar’s theorem above states that there exists a copula function
C which represents the joint cumulative distribution function F of the random vec-
tor X in terms of their underlying marginal distributions Fi, i = 1, . . . ,n, which is
given exogenously by the researcher. One might, for example, write up the copula
representation for uniform random variables Ui, i = 1, . . . ,n, using the probability
integral transformation

F(x1, . . . ,xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn)

= P(U1 ≤ F1(x1), . . . ,Un ≤ Fn(xn))

=C(u1 = F1(x1), . . . ,un = Fn(xn)).

Hence, copulas can be easily generated by the inversion method, assuming that the
joint and marginal distributions are given

C(u1, . . . ,un) = F(x1 = F−1
1 (u1), . . . ,xn = F−1

n (un)).
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Note that, implicitly in the representation equation in Sklar’s theorem for the
bivariate case, C(u,v) = 0 if either or both u and v are zero, and C(1,v) = v as well
as C(u,1) = u, where (u,v) ∈ [0,1]2. In our case with a structural and a selection
equation, the copula function is a two-dimensional object.

For statistical purposes, it is reasonable to parametrize a copula function in a way
that it captures the level of association between the underlying random variables of
interest. Let these parameters be denoted by υ for the bivariate distribution. In such
a case, we can write a copula in the following form

Cυ(u,v).

This notation represents a family of copulas. Provided that the marginal distribu-
tions F1 and F2 do not depend on υ , the representation in the theorem holds for all
members of the family.

We have three copulas of special importance, which are

Π = uv, product copula
W = max{u+ v−1,0}, Fréchet lower bound
M = min{u,v}, Fréchet upper bound

where (u,v) ∈ [0,1]2. The product copula corresponds to the stochastic indepen-
dence, that is if two random variables X and Y are independent, then Π is the cop-
ula of their joint distribution, Π = uv= FX (x)FY (y) = FX ,Y (x,y). The closed interval
[W,M] contains all the bivariate copulas, so for all C on [0,1]2 we have

W ≤C ≤M.

Fréchet bounds determine the coverage of a given family of copulas. A family of
copulas is said to be comprehensive if that family includes all three special copulas
amongst its members at least in the limiting case.

It is worth mentioning that statisticians characterize dependence with another
measure than the traditional Pearson’s product moment correlation coefficient ρ ∈
[−1,1]. This is because of its limitation, ρ = 0 does not necessarily imply inde-
pendence between two random variables. Therefore, we rely on the notion of con-
cordance (discordance), which means that large values of one random variable are
associated with large (small) values of the other random variable and small values of
one random variable are associated with small (large) values of the other. This con-
cept leads to two measures of dependence generally used in the literature, Kendall’s
τ and Spearman’s ρS. For independent pairs of (Xi,Yi), i = 1,2,3, which are copies
of (X ,Y ), they are defined as

τ = P((X1−X2)(Y1−Y2)> 0)−P((X1−X2)(Y1−Y2)< 0) ,

intuitively, the probability of concordance minus the probability of discordance,
while
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ρS = 3 [P((X1−X2)(Y1−Y3)> 0)−P((X1−X2)(Y1−Y3)< 0)] .

Both τ and ρS are bounded between [−1,1] and both are equal to −1 at W , 0 at Π

(hence indicates independence) and 1 at M. If (X ,Y ) are a pair of continuous random
variables, that is F(x,y) = Cυ(u = FX (x),v = FY (y)), these concordance measures
simplify to

τ = 4
∫∫

[0,1]2
C(u,v)dC(u,v)−1 = 4E(C(U,V ))−1

ρS = 12
∫∫

[0,1]2
uvdC(u,v)−3 = 12E(UV )−3,

where U ∼U [0,1] and V ∼U [0,1] random variables with joint cdf C.
With these notions in mind, we turn back to the econometric estimation of the

structural equation affected by selectivity. Let the joint distribution of the latent vari-
ables ỹi jt = γ̃i j + x̃′i jtβ + ε̃i jt and d̃i jt = γs

i j +w′i jtθ +ηi jt be denoted by F(d̃i jt , ỹi jt),
and the marginals be denoted by Fỹ(ỹ) and Fd̃(d̃). Amemiya (1985) showed that the
likelihood for the selection model is given by

L = ∏
i jt:di jt=0

P(d̃i jt) ∏
i jt:di jt=1

fỹ|d̃(yi jt | d̃i jt ≥ 0)P(d̃i jt ≥ 0),

where fỹ|d̃ denotes the probability density function of ỹi jt given its observability,
that is d̃i jt ≥ 0. Dropping the indices for convenience, this conditional density in the
formula can be rewritten as

fỹ|d̃(y | d̃ ≥ 0) =
1

1−Fd̃(0)
∂

∂y
(Fỹ(y)−F(0,y))

=
1

1−Fd̃(0)

(
fỹ(y)−

∂

∂y
F(0,y)

)
,

where Fd̃(0) = P(d̃ < 0) = P(d = 0). After substituting back into the likelihood
function, we get

L = ∏
d=0

Fd̃(0)∏
d=1

(
fỹ(y)−

∂

∂y
F(0,y)

)
. (6.13)

Note that, if ỹ and d̃ were independent of each other, then we would obtain
∂

∂y F(0,y) = Fd̃(0) fỹ(y), and thus the likelihood could be separated as

L =

(
∏
d=0

Fd̃(0)∏
d=1

(1−Fd̃(0))

)
×

(
∏
d=1

fỹ(y)

)

However, the most difficult part in the likelihood function (6.13) is the partial deriva-
tive of the joint distribution ∂

∂y F(0,y) that contains the complicated relationship be-



192 Balazs Kertesz

tween the underlying variables ỹ and d̃, which leads to selection bias if the researcher
is unaware of it. We give a solution to this issue below.

Here we display a non-comprehensive list of popular copulas employed in em-
pirical studies along with their basic properties. For an extensive list of available
copulas and their defining properties, see Nelsen (2006).

Table 6.2 Dependence parameter υ and Kendall’s τ of alternative copulas

Copula name Range of υ Kendall’s τ(υ) Range of τ

Gaussian −1≤ υ ≤ 1 2sin−1(υ)/π −1≤ τ ≤ 1

FGM −1≤ υ ≤ 1 2υ/9 −2/9≤ τ ≤ 2/9

Archimedean class

Frank −∞ < υ < ∞ 1−4[1−D1(υ)]/υ −1 < τ < 1

Clayton 0≤ υ < ∞ υ/(υ +2) 0≤ τ < 1

Gumbel 1≤ υ < ∞ (υ−1)/υ 0≤ τ < 1

Joe 1≤ υ < ∞ 0≤ τ < 1

Note that D1(υ) is the Debye function, D1(υ) =
1
υ

∫
υ

0
t

et−1 dt, for Joe, there is no
closed form of Kendall’s τ .

We highlight some additional properties for the copulas included in the Table
6.2. The Gaussian family assumes radial symmetry and asymptotic independence
between the random variables, because tail events are rare. FGM assumes the same
as the Gaussian family, though its formulation is simpler, but can capture only a
limited concordance between the random variables, Kendall’s τ cannot be bigger
than 2/9 in absolute terms. Therefore, it is not a comprehensive family of copulas
either. Frank copula in turn offers a full range of concordance, though it is useful
if the researcher would like to capture the central dependency of random variables
in a radially symmetric way, as on the tails, the dependency is low (lower than in
the case of the Gaussian family). Clayton, Gumbel and Joe families imply radial
asymmetry and fat tailed distributions, hence are not comprehensive. Clayton has
a strong left tail and weak right tail dependence as opposed to Gumbel and Joe,
which have a weak left tail and strong right tail dependence (stronger right tail de-
pendence in the case of Joe). The researcher should have a firm intuition about the
sign of the concordance (negativity of the Kendall’s τ measure is easily achieved by
reparametrization of the disturbance term εi jt =−ε∗i jt ). Therefore, the researcher can
select from a wide range of distributional properties (dependency structure, compre-
hensiveness, radial (a)symmetry, asymptotic tail (in)dependence) to be captured by
the model in a flexible way. Hasebe and Vijverberg (2012) propose the GLT-copula,
that is also flexible.

Based on these properties, the researcher can select the desired copula formula-
tion, but there is a particularly elegant treatment of the joint probability distribution
addressed by the Archimedean class of copulas. Common to all the members of this
class is that there is an additive generator function ϕ : [0,1]→ [0,∞] (the range of
ϕ is the extended version of the non-negative part of the real line), which is a con-
tinuous, convex and decreasing function, with terminal ϕ(1) = 0. The copula C is
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assumed to be generated according to the following relationship:

ϕ(C(u,v)) = ϕ(u)+ϕ(v).

From this characterization, it can be seen that the class is particularly useful in the
case of limited dependent variable models, because of the ability to reduce the di-
mensionality of the econometric problem at hand. Generator functions are summa-
rized in table 6.3.

Whenever the terminal ϕ(0) = ∞, we say that the generator ϕ is termed strict,
and its inverse ϕ−1 exists, so

C(u,v) = ϕ
−1(ϕ(u)+ϕ(v)),

ora pseudo-inverse function should be introduced. A relevant result for Archime-
dean copulas in our modeling framework is that its derivative can be given by

∂

∂v
Cυ(u,v) =

ϕ ′(v)
ϕ ′(Cυ(u,v))

,

which makes this class so popular in empirical work. This partial derivative can be
found in Table 6.3 for various Archimedean copulas.

For Archimedean copulas, the partial derivative in the likelihood function (6.13)
can be derived as follows

∂

∂y
F(0,y) =

∂

∂v
Cυ(Fd̃(0),v)

∣∣∣∣
v→Fỹ(y)

×
∂Fỹ(y)

∂y

=
ϕ ′(Fỹ(y))
ϕ ′(Cυ)

× fỹ(y),

where Cυ denotes Cυ(Fd̃ ,Fỹ) =Cυ(Fd̃(0),Fỹ(y)), which is obtained from the inverse
of the generator ϕ−1(ϕ(Fd̃(0))+ϕ(Fỹ(y))). Since the functional form of the deriva-
tive of the generator function ϕ is generally easy to derive, the likelihood estimation
can also be implemented, and the likelihood function (6.13) becomes

L = ∏
d=0

Fd̃(0)∏
d=1

(
1−

ϕ ′(Fỹ(y))
ϕ ′(Cυ)

)
fỹ(y). (6.14)

Finally, this function can be maximized by standard quasi-Newton procedures.
Although the likelihood formulation of the copula estimation procedure (6.14) is

quite attractive, there are some drawbacks the researcher needs to face. The com-
putation of the Hessian of this function is troublesome, so the second derivatives
should be numerically approximated in order to use the Newton-Raphson algorithm.
The researcher should also pay attention to the possibility of multiple maxima. An-
other issue is also connected to the Hessian: distributional assumptions become hard
to test in the absence of the information matrix. As a result, the practitioner can only
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Table 6.3 Generator function ϕ(t) and the expression for ∂Cυ (u,v)
∂v for Archimedean class of copu-

las

Copula name Generator ϕ(t) Expression for ∂Cυ (u,v)
∂v

Frank − ln e−υt−1
e−υ−1 [1− eυCυ (u,v)](1− eυv)−1

Clayton 1
υ
(t−υ −1) v−(υ+1)(u−υ + v−υ −1)−

1+υ
υ

Gumbel (− ln t)υ v−1(− lnv)υ−1Cυ (u,v)[(− lnu)υ +(− lnv)υ ]
1
υ
−1

Joe − ln(1− (1− t)υ ) (1− v)υ−1(1− (1−u)υ )[(1−u)υ +(1− v)υ − (1−u)υ (1− v)υ ]
1
υ
−1

rely on pairwise comparison of models based, for example, on standard information
criteria (AIC, BIC).



Chapter 7
Nonparametric Models with Random Effects

Yiguo Sun, Wei Lin, and Qi Li

Abstract This chapter considers the three-dimensional nonparametric models with
random effects, and proposes pooled local linear and two-step estimators for them.
We find that the pooled local linear estimator can be inconsistent when the sum
of all the error term covariances in absolute values diverges to infinity too quickly.
When the pooled local linear estimator is consistent, the optimal convergence rate of
the estimator, its corresponding optimal bandwidth and asymptotic variance depend
on the number of regressors and the limit of certain sample indices ratio; and we
propose an asymptotically more efficient two-step estimator along the line of Su
et al. (2013). Some extensions on nonparametric models with fixed effects, mixed
effects, and higher dimensions are also discussed.

7.1 Introduction

In past few decades, panel data analysis techniques have become part of classical
econometric data analysis skills that every applied economist must grasp due to
their promising and powerful capability to handle complex social economic data as
compared to pure cross-sectional or time-series data analysis techniques. Sun et al.
(2015) have recently reviewed estimation of nonparametric panel models, and this
chapter extends Sun et al.’s (2015) work to the estimation of high-dimensional panel
data models in a nonparametric regression framework.

Specifically, this chapter considers a three-dimensional nonparametric panel data
model with random effects
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yi jt = m(xi jt)+ui jt , (7.1)

for i = 1, . . . ,N1, j = 1, . . . ,N2, and t = 1, . . . ,T , where index t refers to time peri-
ods, indexes i and j denote cross-sectional units, xi jt is a (k×1) strictly exogenous
vector of continuous variables, both yi jt and ui jt are scalar, ui jt is a random error
with zero mean, and m(x) = E(yi jt |xi jt = x) is a smooth unknown function to be
estimated. The error terms

{
ui jt
}

may exhibit weak cross-sectional dependence and
weak dependence across time.

To the best of our knowledge, there is no existing literature working on three-
dimensional nonparametric panel data models. Therefore, this chapter contains
brand new material in nonparametric estimation of three-dimensional nonparamet-
ric panel data models with random effects. This is the reason why we cannot cover
as many topics as Sun et al. (2015), who provide a survey for nonparametric esti-
mation of two-dimensional nonparametric panel data models.

The rest of the chapter is organized as follows. We propose a pooled local linear
estimator of model (7.1) for a general error structure in Sect. 7.2. Then, in Sect. 7.3,
we introduce an asymptotically more efficient two-step estimator to take into ac-
count possible cross-sectional dependence and serial correlation in error terms. In
Sect. 7.4, focusing on a pairwise random-effects error structure, we discuss the con-
sistency condition and the asymptotic properties of the pooled local linear estimator
and mixed fixed and random effects modelling. In Sect. 7.5, we give a very brief
discussion on possible extensions of our proposed estimation method to panel data
models with four or higher dimensions. Section 7.6 concludes. We provide a brief
mathematical proof in the Appendix.

We first introduce some notation frequently used throughout this chapter. (i) For
a k-dimensional variable x, g( j) (x) denotes the jth order derivative of g(x) with
respect to x, for example, g(1) (x) = ∂g(x)/∂x is a (k× 1) vector of first derivative
functions, g(2) (x) = ∂g(x)/∂x∂x′ is a (k×k) matrix of second derivative functions;
(ii) M denotes a generic positive constant that may take different values at different
places; (iii) we denote

N= N1N2T, Nmax = max(N1,N2,T ) , ∑
i jt

=
N1

∑
i=1

N2

∑
j=1

T

∑
t=1

,

(i jt)l = il jltl , and (i jt)′l = i′l j′lt
′
l for any positive integer l; (iv) let In, ιn and 0n

denote an (n×n) identify matrix, an (n×1) vector of ones, and an (n×1) vector of
zeros, respectively; (v) an = Oe(1) means that an = Op(1) but an is not op(1); (vi)
An ≈ Bn means that An = Bn(1+op(1)); (vii) An � Bn means that c1Bn ≤ An ≤ c2Bn
(or let the probability of this event approaches one as n→ ∞) for some constant
0 < c1 < c2 < ∞; (viii) ‖·‖ refers to the Euclidean norm.
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7.2 The Pooled Local Linear Estimator

We denote

y =
[
y′1, ...,y

′
N1

]′
, yi =

[
y′i1, ...,y

′
iN2

]′
, yi j =

[
yi j1, ...,yi jT

]′
,

X =
[
x′1, ...,x

′
N1

]′
, xi =

[
x′i1, ...,x

′
iN2

]′
, and xi j =

[
xi j1, ...,xi jT

]′
,

where y is an (N×1) vector, yi’s are (N2T ×1) vectors, yi j’s are (T ×1) vectors, X
is an (N× k) matrix, xi’s are (N2T × k) matrices, and xi j’s are (T × k) matrices. In
addition, u and m(X) stack up

{
ui jt
}

and
{

m(xi jt)
}

, respectively, into an (N× 1)
vector conforming to y. To sum up, the panel data is recorded in the following
ascending order; index i first, index j second and index t third. Rewriting model
(7.1) in matrix form gives

y = m(X)+u, (7.2)

where E(u|X) = 0N, and Ωu = Var(u|X) is an (N×N) variance-covariance matrix
in a general form.

We are interested in estimating m(x0) at an interior point, x0 =
[
x1,0, ...,xk,0

]′. In
doing so, we assume that both m(·) and fi jt (·) are twice continuously differentiable
in the neighborhood of x0 for all i, j, and t and that

f̄0 (x0) = lim
N→∞

N−1
∑
i jt

fi jt (x0)> c0 > 0

for some finite constant c0, where fi jt (x) is the probability density function of xi jt
evaluated at xi jt = x. In addition, denoting

f̄ (x) = N−1
∑
i jt

fi jt (x) and f̄ ( j) (x) = N−1
∑
i jt

f ( j)
i jt (x)

for j = 1,2, we assume that f̄ (x), f̄ (1) (x) and f̄ (2) (x) are all bounded in the neigh-
borhood of x0. Moreover, denoting f(i jt)1(i jt)2

(x1,x2) to be the joint probability den-
sity function of

(
xi1 j1t1 ,xi2 j2t2

)
evaluated at

(
xi1 j1t1 ,xi2 j2t2

)
= (x1,x2), we assume

that f(i jt)1(i jt)2
(x1,x2) is twice continuously differentiable and uniformly bounded

in the neighborhood of (x0,x0) across all (i jt)1 6= (i jt)2.
Below, we first propose a pooled local linear estimator of m(x0) under the “work-

ing independence”condition, which ignores cross-sectional dependence and serial
correlation in the error terms. For two-dimensional nonparametric panel data models
with random effects, the literature has shown that the estimator based on the “work-
ing independence” condition is not asymptotically efficient. We therefore propose
a two-step estimator that takes into account the non-diagonal structure of Ωu, and
show that the two-step estimator is asymptotically more efficient than the simple
pooled local linear estimator in Sect. 7.3.

Applying the Taylor’s expansion to m(xi jt) at the interior point x0 gives
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m(xi jt) = m(x0)+m(1) (x0)
′ (xi jt −x0)+(xi jt −x0)

′m(2) (x̄i jt)(xi jt −x0)/2 ,

where x̄i jt lies between xi jt and x0. We can approximate model (7.2) by

y = m(x0) ιN +
(
X−x′0⊗ ιN

)
m(1) (x0)+Re(X,x0)+u

≡ αιN +
(
X−x′0⊗ ιN

)
β +Re(X,x0)+u, (7.3)

where Re(X,x0) = m(X)−m(x0) ιN − (X−x′0⊗ ιN )m(1) (x0). When
∥∥xi jt −x0

∥∥
is close to zero for all i, j, t, one can ignore the term Re(X,x0) and treat model (7.3)
as a linear regression model, which is achieved by multiplying (7.3) by a kernel
weight function. This (local) linear model provides a good approximation of nonlin-
ear (and nonparametric) model (7.2) for a sufficiently large number of observations.
Taking ιN and X− (x′0⊗ ιN) as the regressors, one can estimate α(≡ m(x0)) and
β (≡ m(1) (x0)) by weighted least squares method. This is the so-called local linear
regression estimation method in the nonparametric econometrics literature.

To obtain the consistent estimator of α and β , we introduce a kernel function to
select index (i, j, t) satisfying

∥∥xi jt −x0
∥∥= o(1). Specifically, we define an (N×N)

diagonal kernel function KH (x0) with a typical diagonal element equal to

K
(
H−1 (xi jt −x0)

)
, where K (u) =

k

∏
l=1

k (ul)

and k (u) is a symmetric probability density function over interval [−1,1]. Thus,
K
(
H−1 (xi jt −x0)

)
gives a positive value only if∥∥H−1 (xi jt −x0)

∥∥
max ≤ 1

and zero otherwise, where for a (k×1) vector

a = [a1, ...,ak]
′ , ‖a‖max = max

1≤i≤k
|ak| .

In addition, H = diag{h1, . . . ,hk} is a (k× k) diagonal bandwidth matrix used to
control the size of the neighborhood of x0 as we can see that

∥∥xi jt −x0
∥∥= o(1) for

∥∥H−1 (xi jt −x0)
∥∥

max ≤ 1 if ‖H‖= o(1) , where ‖H‖=

√√√√ k

∑
l=1

h2
l .

Now, we estimate α and β by minimizing the following kernel weighted least
squares objective function

γ̂ = argmin
γ

(y−X γ)′KH (x0)(y−X γ) ,

where we denote γ = [α,β ′]′, γ̂ =
[
α̂, β̂ ′

]′
, and
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X =
[
ιN,X−x′0⊗ ιN

]
. (7.4)

The pooled local linear estimator of γ is given by

γ̂ =
[
X ′KH(x0)X

]−1
X ′KH(x0)y , (7.5)

where m̂(x0) = α̂ and m̂(1) (x0) = β̂ estimate m(x0) and m(1) (x0), respectively. Let
Π (x̄) be an (N×1) vector conformable to y with a typical element equal to

Πi jt = (xi jt −x0)
′m(2) (x̄i jt)(xi jt −x0) .

With (7.2) and (7.5) we have

γ̂− γ =
[
X ′KH(x0)X

]−1
X ′KH(x0) [Π (x̄)/2+u]≡A −1 (B/2+C ) ,

where we denote

A = X ′KH (x0)X , B = X ′KH(x0)Π(x̄), and C = X ′KH(x0)u .

Here, A −1B/2 and A −1C are referred to as the bias term and variance term of γ̂ ,
respectively.

Applying simple algebra gives

X ′KH(x0)X =

[
∑i jt Ki jt ∑i jt Ki jt (xi jt −x0)

′

∑i jt Ki jt (xi jt −x0) ∑i jt Ki jt (xi jt −x0)(xi jt −x0)
′

]
and

X ′KH(x0)z = ∑
i jt

Ki jtzi jt
[

1 (xi jt −x0)
′ ]′

for any (N× 1) vector z, where we denote Ki jt ≡ K
(
H−1 (xi jt −x0)

)
for notation

simplicity.
To derive the consistency of the pooled local linear estimator, we assume that

‖H‖→ 0 and N |H|→∞ as N→∞ in the rest of this section, where |H|= h1h2 . . .hk.
Then, straightforward calculations lead to

|H|−1 E(Ki jt) = fi jt (x0)+κ12tr
{

H f (2)i jt (x0)H
}
(1+o(1))

|H|−1 E
(
K2

i jt
)
= ν0 fi jt (x0)+κ22tr

{
H f (2)i jt (x0)H

}
(1+o(1))

uniformly over i, j,t, where we denote κl1l2 =
∫

kl1 (u)ul2du and ν0 =
∫

K2 (u)du
and tr(A) defines the trace of matrix A. Furthermore, we have

Var

(
∑
i jt

Ki jt

)
= ∑

i jt
Var(Ki jt)+Rn ,

where
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Rn = ∑
i jt

∑
t ′ 6=t

Cov
(
Ki jt ,Ki jt ′

)
+∑

i jt
∑
j′ 6= j

Cov
(
Ki jt ,Ki j′t

)
+∑

i jt
∑
i′ 6=i

Cov
(
Ki jt ,Ki′ jt

)
+∑

i jt
∑
j′ 6= j

∑
t ′ 6=t

Cov
(
Ki jt ,Ki j′t ′

)
+∑

i jt
∑
i′ 6=i

∑
t ′ 6=t

Cov
(
Ki jt ,Ki′ jt ′

)
+∑

i jt
∑
i′ 6=i

∑
j′ 6= j

Cov
(
Ki jt ,Ki′ j′t

)
+∑

i jt
∑

i′ j′t ′ 6=i jt
Cov

(
Ki jt ,Ki′ j′t ′

)
, (7.6)

i.e., Rn contains all the covariance terms. It is straightforward to obtain

∑
i jt

Var(Ki jt)≈ N |H|ν0 f̄ (x0) = O(N|H|) ,

where the notation An ≈ Bn means that An = Bn(1+ o(1)). Assuming that
{

xi jt
}

is weakly dependent across three indices such that Rn is asymptotically negligible
relative to ∑i jt Var(Ki jt), i.e.,

Rn = o

(
∑
i jt

Var(Ki jt)

)
, (7.7)

we obtain

Var

(
1

N|H|∑i jt
Ki jt

)
= O

(
(N|H|)−1) ,

and then

1
N |H|∑i jt

Ki jt = f̄ (x0)+ k1,2tr
{

H f̄ (2) (x0)H
}
+op

(
‖H‖2

)
+Op

(
(N |H|)−1/2

)
.

Similarly, we obtain

1
N |H|∑i jt

Ki jtH−1 (xi jt −x0) = Hκ12 f̄ (1) (x0)+op

(
‖H‖2

)
+Op

(
(N |H|)−1/2

)
and

1
N|H| ∑i jt Ki jtH−1 (xi jt −x0)(xi jt −x0)

′H−1

= κ12 f̄ (x0)Ik +Op

(
‖H‖2 +(N |H|)−1/2

)
.

Hence, denoting
Dn = diag{1,H}= diag{1,h1, ...,hk} ,

a ((k+1)× (k+1)) diagonal matrix, we have

D−1
n A

N |H|
p→ f̄0 (x0)

[
1 0′k
0k κ12Ik

]
(7.8)

and



7 Nonparametric Models with Random Effects 201

D−1
n B

2N |H|
=

κ12

2

[
tr
{

Hm(2) (x0)H
}

f̄ (x0)

0k

]
+op

(
‖H‖2

)
. (7.9)

Note that condition (7.7) is a high level assumption ensuring the validity of the
conventional results (7.8) and (7.9). Evidently, condition (7.7) holds if

{
xi jt
}

is
uncorrelated across all three indexes. Additionally, (7.7) can also hold with Propo-
sition 2 in El Machkouri et al. (2013) if

{
xi jt
}

is a stationary random field satis-
fying xi jt = g

(
εi jt−i′ j′t ′

)
and 2-stable, where

{
εi jt
}

is a sequence of i.i.d. random
variables with εi jt−i′ j′t ′ = ε(i−i′)( j− j′)(t−t ′), g(·) is a measurable function. (Please
refer to definition 2 in El Machkouri et al. (2013) for 2-stable.) For illustration pur-
poses, if g(·) is a linear function or xi jt = ∑i′ j′t ′ ai′ j′t ′εi jt−i′ j′t ′ ,

{
xi jt
}

is 2-stable if
∑i′ j′t ′

∣∣ai′ j′t ′
∣∣< ∞. In addition, Tran (1990) shows that condition (7.7) holds if

{
xi jt
}

is a sequence of strong mixing random fields with mixing coefficients, {ϕi}, satis-
fying

∞

∑
i=1

i2ϕ
a
i < M < ∞

for some a ∈ (0,1/2), and∣∣∣ f(i jt),(i jt)′ (x1,x2)− fi jt (x1) fi′ j′t ′ (x2)
∣∣∣≤M < ∞

for all (x1,x2), i, j, t, and i′, j′, t ′. Recently, Jenish (2012) has verified (7.8) and (7.9)
for the cases when

{
xi jt
}

is a sequence of near-epoch dependent random fields on a
strong mixing input process.

Now, we consider C , for which we have E
[
D−1

n X ′KH(x0)u
]
= 0k+1 and

Var
[
D−1

n X ′KH(x0)u
]
= D−1

n E
[
X ′KH(x0)ΩuKH(x0)X

]
D−1

n .

Before deriving the asymptotic results for C , we assume:

(i) The conditional variance of ui jt satisfies that

E(u2
i jt |X) = E(u2

i jt |xi jt)≡ σ
2
i jt(xi jt) ,

and the conditional covariance is

E(ui1 j1t1ui2 j2t2 |x(i jt)1
,x(i jt)2

) = σ(i jt)1(i jt)2(x(i jt)1
,x(i jt)2

)

for all (i jt)1 6= (i jt)2;
(ii) fi jt (·) and f(i jt)1(i jt)2

(·, ·) are twice continuously differentiable in the neighbor-
hood of x0 and (x0,x0), respectively;

(iii) σ2
i jt (x) and its first- and second-order derivatives are uniformly bounded across

all i, j, t in the neighborhood of x0, and σ(i jt)1(i jt)2(x(i jt)1
,x(i jt)2

) is uniformly
bounded for all (i jt)1 6= (i jt)2 in the neighborhood of (x0,x0).

Under these conditions, we obtain
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(N |H|)−1 E
[
ι ′NKH(x0)ΩuKH(x0)ιN

]
= 1

N|H| ∑i1 j1t1 ∑i2 j2t2 E
[
σ(i jt)1(i jt)2(x0,x0)Ki1 j1t1Ki2 j2t2

]
≈ ν0N−1

∑i jt σ2
i jt (x0) fi jt (x0)

+N−1 |H|∑(i jt)1 ∑(i jt)2 6=(i jt)1
σ(i jt)1(i jt)2(x0,x0) f(i jt)1(i jt)2

(x0,x0) ,
(7.10)

(N |H|)−1 E
[
H−1 (X−x′0⊗ ιN )′KH(x0)ΩuKH(x0)ιN

]
= (N |H|)−1

∑i1 j1t1 ∑i2 j2t2 E
[
σ(i jt)1(i jt)2(x0,x0)Ki1 j1t1Ki2 j2t2H−1×

×(xi2 j2t2 −x0)]

≈ κ22N−1H∑i jt σ2
i jt (x0) f (1)i jt (x0)

+κ12N−1 |H|∑i1 j1t1 ∑(i jt)2 6=(i jt)1
σ(i jt)1(i jt)2(x0,x0)H

∂ f(i jt)1(i jt)2
(x0,x0)

∂x(i jt)2
,

(7.11)
and

(N |H|)−1 H−1E
[
(X−x′0⊗ ιN )′KH(x0)ΩuKH(x0)(X−x0

′⊗ ιN )
]

H−1

= (N |H|)−1
∑i1 j1t1 ∑i2 j2t2 E

[
σ(i jt)1(i jt)2(x0,x0)Ki1 j1t1Ki2 j2t2

×H−1 (xi1 j1t1 −x0)(xi2 j2t2 −x0)
′H−1

]
≈ κ22IkN−1

∑i jt σ2
i jt (x0) fi jt (x0)+κ2

12N−1 |H|×

×∑i1 j1t1 ∑(i jt)2 6=(i jt)1
σ(i jt)1(i jt)2(x0,x0)H

∂ 2 f(i jt)1(i jt)2
(x0,x0)

∂x
(i jt)1

∂x′
(i jt)2

H .

(7.12)

We then obtain the conventional result

Var

(
D−1

n C√
N |H|

)
≈ Σ (x0)

[
ν0 0′k
0k κ22Ik

]
, (7.13)

where we denote
Σ (x0) = lim

N→∞
N−1

∑
i jt

σ
2
i jt (x0) fi jt (x0) , (7.14)

if the following assumption holds true,

N−1 |H| ∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

∣∣σ(i jt)1(i jt)2(x0,x0)
∣∣= o(1) , (7.15)

in the neighborhood of (x0,x0). Then, taking (7.8), (7.9) and (7.13) together, we
obtain

m̂(x0)−m(x0) = Op

(
‖H‖2 +(N |H|)−1/2

)
, (7.16)

so that the optimal bandwidth will be hl = clN−1/(4+k) for l = 1, . . . ,k, where cl’s
are positive constants. It follows that m̂(x0) is a consistent estimator of m(x0)

with an asymptotic bias of order Op

(
‖H‖2

)
and an asymptotic variance of order

Op

(
(N |H|)−1

)
provided that ‖H‖→ 0 and N|H| → ∞ as N→ ∞.
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The result in (7.16) is well expected from the nonparametric literature. However,
this result crucially depends on condition (7.15) — another high level assumption
which restricts the order of sample size N, bandwidth H, and the degree of de-
pendence in error terms. This condition holds trivially if

{
ui jt
}

is neither serial
nor cross-sectional dependence in all three indices. For another example, if ui jt is
weakly dependent across all three indices in the sense that

∑
(i jt)′ 6=(i jt)

|σ(i jt)(i jt)′(x0,x0)|< M < ∞

for all i, j, t, then we have

∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

|σ(i jt)1(i jt)2(x0,x0)|= O(N) ,

and condition (7.15) still holds. In fact, condition (7.15) allows the sum of absolute
covariances approaches to infinity slightly faster than N but slower than N|H|−1.
However, condition (7.15) can fail to hold in many cases. For the pairwise random-
effects error structure (7.24), which is discussed in detail in Sect. 7.4, we show that

N−1 |H| ∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

∣∣σ(i jt)1(i jt)2(x0,x0)
∣∣= O(max(N1,N2,T )|H|),

which may converge to zero or a positive finite number, or even diverge to infinity.
Naturally, (7.16) may not hold when condition (7.15) is violated, and we will delay
our discussion on this issue to Sect. 7.4.

For now, we obtain (7.8), (7.9), (7.13), and (7.16). We conjecture that under some
regularity conditions, a central limit theorem applies to a weighted average of ui jt
so that

(N |H|)−1/2 D−1
n X ′KH(x0)u

d→N

(
0k+1,Σ (x0)

[
ν0 0′k
0k κ22Ik

])
, (7.17)

which gives

√
N |H|Dn

(
γ̂− γ−

[
κ12tr

{
Hm(2) (x0)H

}
/2

0k

])
d→N

(
0k+1,

Σ (x0)

f̄ 2
0 (x0)

[
ν0 0′k
0k κ

−2
12 κ22Ik

])
and√

N |H|
(

m̂(x0)−m(x0)−κ12tr
{

Hm(2) (x0)H
}
/2
)

d→N
(
0,ν0 f̄−2

0 (x0)Σ (x0)
)

(7.18)
under the assumption that
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lim
N→∞

N |H|‖H‖4 = c > 0 ,

which is a finite constant. The validity of the asymptotic result in (7.17) depends on
the error structure of

{
ui jt
}

. If
{

ui jt
}

is independent across all three indexes, (7.17)
holds by Liapounov’s central limit theorem and the Cramér-Wold device if

E
(∣∣ui jt

∣∣2+δ
)
< M < ∞ for some δ > 0 .

If
{

ui jt
}

exhibits weak dependence over one or more indexes, one has to apply a
proper central limit theorem for arrays of random fields here; e.g., Dedecker (1998),
Jenish and Prucha (2009) and El Machkouri et al. (2013) for strong mixing random
fields, and Jenish (2012) for near-epoch dependent random fields.

7.3 Two-step Local Linear Estimator

In this section, we state that the pooled local linear estimator is asymptotically inef-
ficient if ui jt in model (7.1) is weakly dependent cross sections and/or across times
even if the estimator is consistent, because the pooled local linear estimator ignores
the non-zero covariances in the error term. For panel data with two dimensions, Lin
and Carroll (2000), Ruckstuhl et al. (2000), Henderson and Ullah (2005), Martins-
Filho and Yao (2009), Su and Ullah (2007), Su et al. (2013), Yao and Li (2013),
among others, have attempted to improve upon the pooled local linear estimator.
These papers all consider panel data with a sufficiently large number of cross sec-
tional units and a finite number of time periods. To summarize the existing literature,
we divide these papers into three groups in terms of different estimation methodolo-
gies used.

(i). A weighted local linear estimator that is defined as

γ̃ = argmin
γ

(y−X γ)′WH (x0)(y−X γ) ,

where X is defined in (7.4),

WH (x0) = Ω
−1/2
u KH (x0)Ω

−1/2
u

in Henderson and Ullah (2005),

WH (x0) = Ω
−1
u KH (x0) and WH (x0) =

√
KH (x0)Ω

−1
u

√
KH (x0)

in Lin and Carroll (2000). Lin and Carroll (2000) demonstrate that the weighted
local linear estimator is less efficient than the pooled local linear estimator and sug-
gest the “working independence” approach, which ignores the correlation structure
within clusters.
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(ii). Su and Ullah (2007) propose a two-step estimator via the pre-whitening
method introduced in Ruckstuhl et al. (2000) for nonparametric two-dimensional
panel data models with individual specific random effects, and show that the pro-
posed estimator achieves asymptotic improvement over the pooled local linear es-
timator. In addition, Su et al. (2013) propose a two-step estimator improved upon
Martins-Filho and Yao (2009). The four two-step estimators are shown to have the
same asymptotic bias term, but smaller asymptotic variances up to a constant scale
than the pooled local linear estimator. According to Su and Ullah (2007), the two-
step estimators given in Su et al. (2013) and Martins-Filho and Yao (2009) may be
less efficient than that given in Su and Ullah (2007), as the latter uses an optimal
scale in transformed data. However, the asymptotic good performance of Su and
Ullah’s (2007) estimator with the optimal scale over the two-step estimator given in
Su et al. (2013) may not be easily realized for data with moderate sample sizes as
it requires a three-step estimation methodology with an estimated optimal scale that
relies on estimated m(2) (x0).

(iii). Yao and Li (2013) apply Cholesky decomposition and profile least squares
techniques to estimate the correlation structure of the error term and the unknown
regression function simultaneously, assuming the error term is i.i.d. across clusters
and correlated within each cluster. Yao and Li (2013) show that their proposed esti-
mator is asymptotically more efficient than Lin and Carroll’s (2000) weighted local
linear estimators and is as asymptotically efficient as if the true covariance matrix
were known. Note that all of the methods listed above require the error covariance
matrix to be unknown up to a finite number of unknown parameters.

To the best of our knowledge, there are no research results that introduce mod-
ified local linear estimators improving upon the pooled local linear estimator for
a general error covariance matrix with an infinite number of unknown parame-
ters. Therefore, we will discuss how to construct a two-step estimator improv-
ing upon the pooled local linear estimator for the random-effects model when
Ωu = Ωu(ξ ) = Var(u|X) is determined by a finite number of unknown parameters
ξ . As Yao and Li’s (2013) estimation method is not applicable if T is sufficiently
large and the estimators given in category (ii) are more efficient than the pooled
local linear estimator, below we will propose a two-step estimator built upon Su
et al.’s (2013) estimation methodology. We will not follow Su and Ullah’s (2007)
estimation methodology as the incremental improvement of Su and Ullah’s (2007)
estimator over Su et al.’s (2013) estimator may not be realized in samples of a rela-
tively moderate size as explained above. Without loss of generality, we assume that
Ωu = E(uu′|X) = E(uu′). This simplicity is aimed to shorten our equations below.

7.3.1 Weighted Local Linear Estimator

In this section, we will explain why the weighted kernel estimator with the weight-
ing matrix WH (x0) = Ω

−1/2
u KH (x0)Ω

−1/2
u is not preferable. We first transform the

data matrix by multiplying Ω
−1/2
u , and then apply the local linear regression to the
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transformed data. The weighted local linear estimator of γ is given by

γ̌ =
[
X ′

Ω
−1/2
u KH(x0)Ω

−1/2
u X

]−1
X ′

Ω
−1/2
u KH(x0)Ω

−1/2
u y (7.19)

so that

γ̌− γ =
[
X ′

Ω
−1/2
u KH(x0)Ω

−1/2
u X

]−1
X ′

Ω
−1/2
u KH(x0)Ω

−1/2
u [Π (x̄)/2+u]

≡ A−1 (B+C) ,

where we denote

A = X ′
Ω
−1/2
u KH (x0)Ω

−1/2
u X ,

B = X ′
Ω
−1/2
u KH(x0)Ω

−1/2
u Π(x̄),

C = X ′
Ω
−1/2
u KH(x0)Ω

−1/2
u u.

Denoting the typical element of Ω
−1/2
u by v(i jt)1(i jt)2

and applying simple algebra,
we obtain

A = ∑
(i jt)1

∑
(i jt)2

∑
(i jt)3

K
(

H−1
(

x(i jt)1
−x0

))
v(i jt)2(i jt)1

v(i jt)3,(i jt)1
×

×

 1
(

x(i jt)2
−x0

)′
x(i jt)3

−x0

(
x(i jt)3

−x0

)(
x(i jt)2

−x0

)′


and

B = ∑
(i jt)1

∑
(i jt)2

∑
(i jt)3

K
(

H−1
(

x(i jt)1
−x0

))
v(i jt)2(i jt)1

v(i jt)3(i jt)1
×

×
[

1
x(i jt)3

−x0

](
x(i jt)2

−x0

)′
m(2)

(
x̄(i jt)2

)(
x(i jt)2

−x0

)′
/2.

It is evident that this estimation method may be inconsistent due to the non-
negligible bias term, A−1B, that results from the non-zero off-diagonal elements
in Ω

−1/2
u when

{
ui jt
}

exhibits weak dependence in cross sections and/or time
periods. On the other hand, this estimation methodology may work for the local
constant estimation method. However, compared with the local linear estimation
method, the local constant kernel estimator is not adaptive to the distribution of{

xi jt
}

and suffers a boundary problem. Therefore, we prefer the two-step estimation
methods used in Su and Ullah (2007), Su et al. (2013) and Martins-Filho and Yao
(2009), which move the off-diagonal terms of Ω

−1/2
u to the left-side of the regression

model, so that the terms with summations ∑(i jt)1 ∑(i jt)2 6=(i jt)1
, ∑(i jt)1 ∑(i jt)3 6=(i jt)1

and
∑(i jt)1 ∑(i jt)2 6=(i jt)1 ∑(i jt)3 6=(i jt)1

are removed from A and B. Consequently, the non-
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zero asymptotic center is removed from the estimator. We will give our proposed
two-step estimator in the next section.

7.3.2 Two-step Estimator

Now, we explain our proposed two-step estimator. In the first step, we obtain the
pooled local linear estimator m̂(X) defined in Sect. 7.2. The second step is described
as follows: Let P be a square matrix of size N satisfying Ωu = PP′, where p(i jt)1(i jt)2

and v(i jt)1(i jt)2
are the typical elements of P and P−1, respectively. Additionally, we

denote the diagonal element of matrix P−1 by vi jt . Then, we denote

Z≡ P−1y+
(
H −1−P−1)m(X) = H −1m(X)+P−1u , (7.20)

where H −1 = diag
{

P−1
}

equals the diagonal element of matrix P−1. Note that the
off-diagonal effect of multiplying P−1 on m(X), i.e.,

(
H −1−P−1

)
m(X) is moved

to the left-side of the equation and included in Z, which follows Su and Ullah (2007),
Su et al. (2013) and Martins-Filho and Yao (2009). The second-step estimator based
on (7.20) is the minimizer of the following objective function

γ̃ = argmin
γ

(
Ẑ−H −1X γ

)′KH0 (x0)
(
Ẑ−H −1X γ

)
,

and can be written as

γ̃ =
[
X ′H −1KH0(x0)H

−1X
]−1

H −1X ′KH0(x0)Ẑ, (7.21)

where Ẑ =P−1y+
(
H −1−P−1

)
m̂(X), and m̂(X) is the pooled local linear estimate

of m(X), and the bandwidth matrix H0 = diag
{

h1,0, ...,hk,0
}

used in the second step
is different from the bandwidth matrix H used to obtain m̂(X) in the first step.

The weighted local linear estimator γ̌ defined in (7.19) and the two-step estima-
tor γ̃ defined in (7.21) are closely related to each other. Both estimators transfer
model (7.2) into another model with uncorrelated errors. However, the estimator de-
fined in (7.19) with WH (x0) = Ω

−1/2
u KH (x0)Ω

−1/2
u estimates γ from the following

transformed model

P−1y = P−1m(X)+P−1u , P−1 = Ω
−1/2
u ,

while the estimator defined in (7.21) estimates γ from a differently transformed
model (7.20), where the off-diagonal part of P−1 times m(X) is moved to the left-
hand side of the regression model. Section 7.3.1 explains that the weighted local
linear estimator defined in (7.19) may be inconsistent in the presence of weakly
dependent errors, ui jt . Below, we will derive the limiting results for γ̃ defined in
(7.21).

First, since Ẑ can be written as



208 Yiguo Sun, Wei Lin, and Qi Li

Ẑ = H −1m(X)+
(
H −1−P−1) [m̂(X)−m(X)]+P−1u ,

we have γ̃− γ = A−1 (B1 +B2 +C), where we denote K0i jt = K
(
H−1

0 (xi jt −x0)
)
,

A = X ′H −1KH0(x0)H
−1X

= ∑
i jt

K0i jtv2
i jt

[
1 (xi jt −x0)

′

xi jt −x0 (xi jt −x0)(xi jt −x0)
′

]
,

B1 = H −1X ′KH0(x0)H
−1

Π (x̄)/2

= 2−1
∑
i jt

K0i jtv2
i jt (xi jt −x0)

′m(2) (x̄i jt)(xi jt −x0)
′ ,

B2 = X ′H −1KH0(x0)
(
H −1−P−1) [m̂(X)−m(X)]

= − ∑
i1 j1t1

K0i1 j1t1v(i jt)1

[
1

xi jt −x0

]′
∑

(i jt)2 6=(i jt)1

v(i jt)1(i jt)2
e′1A

−1
(

x(i jt)2

)
×

×
[
B
(

x(i jt)2

)
+C

(
x(i jt)2

)]
,

where A (x)=X ′KH (x)X , B (x)=X ′KH(x)Π(x̄)/2, and C (x)=X ′KH(x)u,
and e1 is the first column of the identify matrix Ik+1, and

C = X ′H −1KH0(x0)P−1u.

Denote Dn0 = diag{1,H0}. Again, we derive the limit results, assuming that
‖H0‖ → 0, Nc |H0| → ∞, and limNc→∞Nc |H0|‖H0‖4 = M > 0 as Nc → ∞, where
Nc, for c = 1,2, . . . ,7 is defined in (7.27). It is readily seen that

E
(
(Nc |H0|)−1 D−1

n0 A
)

=
1

Nc |H0|∑i jt
E
{

K0i jtv2
i jt

[
1 (xi jt −x0)

′H−1
0

H−1
0 (xi jt −x0) H−1

0 (xi jt −x0)(xi jt −x0)
′H−1

0

]}
= N−1

c ∑
i jt

v2
i jt fi jt (x0)

[
1 0′k
0′k κ12Ik

]
(1+o(1)) ,

and

Var

(
D−1

n0 A
Nc |H0|

)
=

1

(Nc |H0|)2 ×

×Var

{
∑
i jt

K0i jtv2
i jt

[
1 (xi jt −x0)

′H−1
0

H−1
0 (xi jt −x0) H−1

0 (xi jt −x0)(xi jt −x0)
′H−1

0

]}
.

To save space, we illustrate the calculation of Var
(
(Nc |H0|)−1 D−1

n0 A
)

using its
(1,1)th element. That is, we have



7 Nonparametric Models with Random Effects 209

Var

{
∑
i jt

K0i jtv2
i jt

}
= ∑

i jt
Var
(
K0i jtv2

i jt
)
+Rn ,

where

Rn = ∑
i jt

∑
t ′ 6=t

Cov
(

K0i jtv2
i jt ,K0i jt ′v

2
i jt ′

)
+∑

i jt
∑
j′ 6= j

Cov
(

K0i jtv2
i jt ,K0i j′tv

2
i j′t

)
+∑

i jt
∑
i′ 6=i

Cov
(

K0i jtv2
i jt ,K0i′ jtv

2
i′ jt

)
+∑

i jt
∑
j′ 6= j

∑
t ′ 6=t

Cov
(

K0i jtv2
i jt ,K0i j′t ′v

2
i j′t ′

)
+∑

i jt
∑
i′ 6=i

∑
t ′ 6=t

Cov
(

K0i jtv2
i jt ,K0i′ jt ′v

2
i′ jt ′

)
+∑

i jt
∑
i′ 6=i

∑
j′ 6= j

Cov
(

K0i jtv2
i jt ,K0i′ j′tv

2
i′ j′t

)
+∑

i jt
∑

i′ j′t ′ 6=i jt
Cov

(
K0i jtv2

i jt ,K0i′ j′t ′v
2
i′ jt ′

)
i.e., Rn contains all the covariance terms. It is straightforward to obtain

∑
i jt

Var
(
K0i jtv2

i jt
)
≈ ν0 |H0|∑

i jt
v4

i jt fi jt (x0)

and

|H0|−2 Rn ≈∑
i jt

∑
t ′ 6=t

v2
i jtv

2
i jt ′
[

f(i jt)(i jt ′) (x0,x0)− fi jt (x0) fi jt ′ (x0)
]

+∑
i jt

∑
j′ 6= j

v2
i jtv

2
i j′t
[

f(i jt)(i j′t) (x0,x0)− fi jt (x0) fi j′t (x0)
]

+∑
i jt

∑
i′ 6=i

v2
i jtv

2
i′ jt
[

f(i jt)(i jt ′) (x0,x0)− fi jt (x0) fi jt ′ (x0)
]

+∑
i jt

∑
j′ 6= j

∑
t ′ 6=t

v2
i jtv

2
i j′t ′
[

f(i jt)(i j′t ′) (x0,x0)− fi jt (x0) fi j′t ′ (x0)
]

+∑
i jt

∑
i′ 6=i

∑
t ′ 6=t

v2
i jtv

2
i′ jt ′
[

f(i jt)(i′ jt ′) (x0,x0)− fi jt (x0) fi′ jt ′ (x0)
]

+∑
i jt

∑
i′ 6=i

∑
j′ 6= j

v2
i jtv

2
i′ j′t
[

f(i jt)(i′ j′t) (x0,x0)− fi jt (x0) fi′ j′t (x0)
]

+∑
i jt

∑
i′ j′t ′ 6=i jt

v2
i jtv

2
i′ j′t ′

[
f(i jt)(i jt)′ (x0,x0)− fi jt (x0) fi′ j′t ′ (x0)

]
.

Under the same weak dependent condition imposed on
{

xi jt
}

as in Sect. 7.2 and
assuming maxi, j,t v2

i jt ≤M < ∞, we show that |H0|−2 Rn is asymptotically negligible

relative to ∑i jtVar
(

K0i jtv2
i jt

)
. Therefore, we have
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Var
(
(Nc |H0|)−1 D−1

n0 A
)

≈ 1
N2

c |H0|∑i jt
v4
(i, j,t),(i, j,t) fi, j,t (x0)

[
ν0 0′k
0k
∫

K2 (u)u′H2
0uH0uu′Hdu

]
= O

(
1

Nc |H0|

)
.

Taking together the results above, we have

D−1
n0 A

Nc |H0|
= N−1

c ∑
i jt

v2
i jt fi jt (x0)

[
1 0′k
0′k κ12Ik

]
+op (1) .

Similarly, we obtain

D−1
n0 B1

Nc |H0|
=

κ12

2Nc
∑
i jt

v2
i jt fi jt(x0)

[
tr
{

H0m(2)(x0)H0

}
0k

]
(1+op (1))

and

Var
(
(Nc |H0|)−1/2 D−1

n0 C
)

=
1

Nc |H0|
E
[
D−1

n X ′H −1K2
H(x0)H

−1X D−1
n
]

=
1
Nc

∑
i jt

v2
i jt fi jt (x0)

[
ν0 0′k
0′k κ22Ik

]
(1+o(1)) .

Assuming that the random variable, xi jt , takes value from a compact subset,
Sx ⊂ Rk, and the kernel function satisfies |k (u)− k (v)| ≤M |u− v| for any u, v ∈ R,
closely following the proof given in Masry (1996), we have

sup
x0∈Sx

∣∣∣∣D−1
n A (x0)

Nc |H|
− f̄c (x0)

[
1 0′k
0k κ12Ik

]∣∣∣∣= Op

(
‖H‖2 +

√
lnNc/(Nc |H|)

)
,

sup
x0∈Sx

∣∣∣∣∣D−1
n B (x0)

2Nc |H|
−κ12

[
tr
{

Hm(2) (x0)H
}

f̄ (x0)/2
0k

]∣∣∣∣∣
= Op

(
‖H‖4 +‖H‖2√lnNc/(Nc |H|)

)
,

where we denote f̄c (x0) = limNc→∞N−1
c ∑i jt v2

i jt fi jt (x0). It then follows that if the
bandwidth matrices in two steps satisfy that

‖H‖= o(‖H0‖) , ‖H‖4 /
(
Nc |H0|‖H0‖4

)
= o(1) , Nc |H|‖H0‖2→ ∞ ,

and Nc ‖H0‖4→ ∞, as Nc→ ∞, we have
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D−1
n0 B2

Nc |H|
≈ −∆1−∆2 = Op

(
‖H‖2

)
+Op

(
‖H‖2√
Nc |H|

)
+Op

(
1

Nc |H|
+

1√
Nc

)
= op

(
‖H0‖2

)
,

where

∆1 =
κ12

2Nc |H0| ∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

v(i jt)1
v(i jt)1(i jt)2

tr
{

Hm(2)
(

x(i jt)2

)
H
}

×K0i1 j1t1

[
1
(

x(i jt)1
−x0

)′
H−1

0

]
=

κ12

2Nc
∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

v(i jt)1
v(i jt)1(i jt)2

f(i jt)1
(x0)

×E
[
tr
{

Hm(2)
(

x(i jt)2

)
H
}
|x(i jt)1

= x0

][
1,0′k

]
+
[
Op

(
‖H‖2 ‖H0‖2

)
,Op

(
‖H‖2 ‖H0‖4

)]
+Op

(
‖H‖2√
Nc |H0|

)

= Op

(
‖H‖2

)
+Op

(
‖H‖2√
Nc |H0|

)

if N−1
c ∑i1 j1t1 ∑(i jt)2 6=(i jt)1

∣∣∣v(i jt)1(i jt)2

∣∣∣≤M, and

∆2 =
1

N2
c |H0| |H| ∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

v(i jt)1
v(i jt)1(i jt)2

f̄−1
c

(
x(i jt)2

)
K0i1 j1t1

×
[

1
(

x(i jt)1
−x0

)′
H−1

0

]
e′1D−1

n X ′KH(x(i jt)2
)u

= Op

(
1

Nc |H|
+

1√
Nc

)
,

as we have E(∆2) = 0′k and



212 Yiguo Sun, Wei Lin, and Qi Li

Var(∆2)

=
1

N4
c |H0|2 |H|2

∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

∑
(i jt)3

∑
(i jt)4 6=(i jt)3

v(i jt)1
v(i jt)1(i jt)2

v(i jt)3
v(i jt)3(i jt)4

×E
{

f̄−1
c

(
x(i jt)2

)
f̄−1
c

(
x(i jt)4

)
K0i1 j1t1K0i3 j3t3

×e′1D−1
n X ′KH

(
x(i jt)1

)
ΩuKH

(
x(i jt)3

)
X D−1

n e1

×

 1
(

x(i jt)1
−x0

)′
H−1

0

H−1
0

(
x(i jt)3

−x0

)
H−1

0

(
x(i jt)3

−x0

)(
x(i jt)1

−x0

)′
H−1

0


≈ 1

N4
c |H0|2 |H|2

∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

∑
(i jt)3 6=(i jt)1

∑
(i jt)4 6=(i jt)3

∑
i1 j1t1

∑
(i jt)′3

v(i jt)1
v(i jt)1(i jt)2

v(i jt)3

×v(i jt)3(i jt)4
σ(i jt)′1(i jt)′3

E
{

f̄−1
(

x(i jt)2

)
f̄−1
(

x(i jt)4

)
K0i1 j1t1K0i3 j3t3

×K
(

H−1
(

x(i jt)′1
−x(i jt)1

))
K
(

H−1
(

x
(i jt)′3
−x(i jt)3

))
 1

(
x(i jt)1

−x0

)′
H−1

0

H−1
0

(
x(i jt)3

−x0

)
H−1

0

(
x(i jt)3

−x0

)(
x(i jt)1

−x0

)′
H−1

0


= O

(
1

N2
c |H|

2 +
1
Nc

)
.

In addition, we obtain

Var
(
(Nc |H0|)−1/2 D−1

n0 C
)

=
1

Nc |H0|
D−1

n0 E
[
X ′H −1K2

H0
(x0)H

−1X
]

D−1
n0

=
1

Nc |H0|∑i jt
E
{

v2
i jtK

2
0i jt

[
1 (xi jt −x0)

′H−1
0

H−1
0 (xi jt −x0) H−1

0 (xi jt −x0)(xi jt −x0)
′H−1

0

]}
≈ 1

Nc
∑
i jt

v2
i jt fi jt (x0)

[
ν0 0′k
0k κ22Ik

]
.

As ν = P−1u has a zero mean and variance of identity matrix, applying the mar-
tingale central limit theorem gives

(Nc |H0|)−1/2 D−1
n0 C d→N

(
0k+1, f̄c (x0)

[
ν0 0′k
0k κ22Ik

])
,

if maxi jt E
(∥∥υi jt

∥∥2+δ
)
<M where υi jt is the (i, j, t)th element of the (N×1) vector

υ . Taking all the results above gives
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√
Nc |H0|Dn0

(
γ̃− γ− κ12

2

[
tr
{

H0m(2)(x0)H0

}
0k

])
d→N

(
0k+1, f̄−1

c (x0)

[
ν0 0′k
0k κ22κ

−2
12 Ik

])
(7.22)

so that √
Nc |H0|

(
m̃(x0)−m(x0)−

κ12

2
tr
{

H0m(2)(x0)H0

})
d→N

(
0k+1,ν0 f̄−1

c (x0)
)

. (7.23)

From (7.18) and (7.23), we observe that m̂(x0) and m̃(x0) have the same asymptotic
bias term, but m̃(x0) has a smaller asymptotic variance term if both steps use the
same bandwidth, i.e., H = H0, because applying Cauchy-Schwarz inequality gives

1
N−1

c ∑i jt v2
i jt fi jt (x0)

≤
N−1

c ∑i jt v−2
i jt fi jt (x0)[

N−1
c ∑i jt fi jt (x0)

]2
and v−2

i jt ≤ σ2
i jt for all i, j, and t.

The current estimator is not feasible as the true covariance matrix Ωu is unknown.
Assume that there exists Ω̂u ≡ Ωu(ξ̂ ), an estimate of Ωu = Ωu (ξ ), with the finite
dimensional parameters ξ consistently estimated by ξ̂ satisfying

∥∥∥ξ̂ −ξ

∥∥∥= op (1).

Let m(x0) equal m̃(x0) with Ωu replaced with Ω̂u. We can show that the limit dis-
tribution result given in (7.23) also holds for m(x0). For the error structure given in
(7.24), the two-step estimator applies to cases (iv)-(vii) defined in Sect. 7.4 below.

7.4 Pairwise Random Effects

Sections 7.2 and 7.3 prove the consistency of the pooled local linear estimator and
the two-step estimator without specifying the error structure of ui jt other than con-
dition (7.15). In this section, we will further explore the asymptotic properties of the
pooled local linear estimator under a specific error structure considered in Chap. 2
in this book, where the authors consider a pairwise random-effects error structure as
follows

ui jt = µi j + vit +ζ jt + εi jt . (7.24)

In (7.24), µi j, vit , and ζ jt represent three unobserved pairwise random effects, εi jt is
an i.i.d. error, and

{
µi j
}

, {vit},
{

ζ jt
}

and
{

ui jt
}

are all uncorrelated with
{

xi jt
}

. In
addition, (i) µi j, vit , ζ jt , and εi jt all have zero mean and are mutually uncorrelated
with each other; (ii) εi jt ∼ i.i.d.

(
0,σ2

ε

)
; (iii) E

(
µi jµi′ j′

)
= σ2

µ if (i, j) = (i′, j′) and 0
otherwise; (iv) E(vitvi′t ′) = σ2

v if (i, t) = (i′, t ′) and 0 otherwise; (v) E
(
ζ jtζ j′t ′

)
= σ2

ζ

if ( j, t) = ( j′, t ′) and 0 otherwise. Although this particular type of error structure
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nests several popularly used error structures in empirical applications, conditions
(i)-(v) imposed here can be restrictive in empirical works.

The pairwise random-effects error structure defined above implies

Ωu = σ
2
µ(IN1N2 ⊗JT )+σ

2
v (IN1 ⊗JN2 ⊗ IT )+σ

2
ζ
(JN1 ⊗ IN2T )+σ

2
ε IN , (7.25)

where Jn = ιnι ′n denotes an (n×n) matrix of ones and “⊗” is the Kronecker product
operator. Furthermore, we have E(ui jt |X) = σ2

µ +σ2
v +σ2

ζ
+σ2

ε for all (i, j, t) and

N−1
∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

∣∣E(ui1 j1t1ui2 j2t2)
∣∣= σ

2
µ (T −1)+σ

2
v (N2−1)+σ

2
ζ
(N1−1) .

(7.26)
Such a pairwise random-effects error structure may lead to the violation of the key
assumption

N−1 |H| ∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

∣∣σ(i jt)1(i jt)2(x0,x0)
∣∣= o(1) ,

which is used to derive the asymptotic properties for the pooled local linear esti-
mator in Sect. 7.2 and the two-step estimator in Sect. 7.3. We show that the pooled
local linear estimator can be inconsistent under the error structure (7.26).

Given the specific error structure, we are able to explicitly discuss and derive
the consistency results of our proposed local linear estimator for seven cases listed
below in the following three subsections.

(i) N1→ ∞, and N2 and T are fixed, N1 = N1;
(ii) N2→ ∞, and N1 and T are fixed, N2 = N2;
(iii) T → ∞, and N1 and N2 are fixed, N3 = T ;
(iv) N1→ ∞, N2→ ∞, and T is fixed, N4 = N1N2;
(v) N1→ ∞ and T → ∞, and N2 is fixed, N5 = N1T ;
(vi) N2→ ∞ and T → ∞, and N1 is fixed, N6 = N2T ;
(vii) N1→ ∞, N2→ ∞, and T → ∞, N7 = N= N1N2T .

(7.27)

In Sect. 7.4.1, we show that the proposed local linear estimator is inconsistent
for cases (i)-(iii) since the variance term of γ̂ is asymptotically non-negligible. It is
easy to show that the assumption in (7.15) fails to hold for these three cases. For
cases (iv)-(vii), Sects. 7.4.2 and 7.4.3 show that the pooled local linear estimator
is consistent with an asymptotic bias of order Op(‖H‖2); however, the asymptotic
variance of the pooled estimator may be different from Op((Nc |H|)−1) as derived in
Sect. 7.2 where Nc, for c = 1,2, . . . ,7, is defined in (7.27), because condition (7.15)
may fail under the pairwise random-effects structure. For example, we find that, un-
der case (iv) with N1 ≥N2, the optimal MSE rate of the local linear estimator and its
corresponding optimal bandwidth rate depend on the number of regressors k and the
limit of a sample index ratio N1/Nk/4

2 ; under case (vii) with N1 = max(N1, N2,T ),
the optimal rate depends on k and N1/(N2T )k/4. The results for other cases can be
derived similarly. Intuitively, the optimal bandwidth will balance the trade-off ef-
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fects of the bandwidth on the magnitude of the asymptotic squared bias and the
asymptotic variance of the estimator. For three-dimensional nonparametric panel
data models, the optimal bandwidth will balance the asymptotic squared bias of or-
der Op(‖H‖4) and the asymptotic variance of different orders under different con-
ditions for N−1 |H|∑i1 j1t1 ∑(i jt)2 6=(i jt)1

|σ(i jt)1(i jt)2(x0,x0)|. For nonparametric cross-
sectional, time series and traditional two-dimensional panel data models, the covari-
ances of the error terms are asymptotically negligible if they are weakly dependent
across either cross sections or time series (see, e.g., Cai et al., 2000; Robinson,
2012), and the negligibility of the covariance terms has nothing to do with the band-
width. However, for error structure (7.24), the non-explosiveness of the covariance
terms relies on the error structure, the bandwidth, and the sum of absolute values
of covariances for the error term, as indicated in (7.15). For convenience, we in-
clude the bandwidth requirement in Table 7.1 for cases (iv)-(vii) here, and we will
then discuss and derive the optimal MSE rate of the local linear estimator and its
corresponding optimal bandwidth rate for each case. Note that the following three
subsections focus on the limit results of the variance term of the pooled local linear
estimator.

Table 7.1 Bandwidth requirement

Case Bandwidth conditions

(iv) ‖H‖→ 0 and N1N2 |H| → ∞ as min(N1,N2)→ ∞

(v) ‖H‖→ 0 and N1T |H| → ∞ as min(N1,T )→ ∞

(vi) ‖H‖→ 0 and N2T |H| → ∞ as min(N2,T )→ ∞

(vii) ‖H‖→ 0 and N1N2T |H| → ∞ as min(N1,N2,T )→ ∞

7.4.1 Cases (i)–(iii): The Sample Size Increases in One Index Only

In cases (i)–(iii), only one of the three sample indices approaches to infinity. Without
loss of generality, we consider case (i) under which N1 = N1→ ∞ and N2, T fixed.
The results for cases (ii) and (iii) can be derived in the same way. Note that

N−1
1 |H| ∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

∣∣E(ui1 j1t1ui2 j2t2)
∣∣

= |H|
[
σ

2
µ N2T (T −1)+σ

2
v N2 (N2−1)T +σ

2
ζ
(N1−1)N2T

]
= O(N1 |H|) ,

which does not approach to 0 as N1 → ∞ and therefore violates the assumption in
(7.15).

Applying (7.25) to (7.10), (7.11), and (7.12) gives
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(N1 |H|)−2 E
[
ι
′
NKH(x0)ΩuKH(x0)ιN

]
≈
(

σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε

)
ν0

N2
1 |H|

∑
i jt

fi jt (x0)+
σ2

µ

N2
1

∑
i jt

∑
t ′ 6=t

f(i jt)(i jt ′)(x0,x0)

+
σ2

v

N2
1

∑
i jt

∑
j′ 6= j

f(i jt)(i j′t)(x0,x0)+
σ2

ζ

N2
1

∑
i jt

∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0)

=
σ2

ζ

N2
1

∑
i jt

∑
i′ 6=i

f((i jt)(i′ jt)(x0,x0)+O((N1|H|)−1 +N−1
1 )

= σ
2
ζ
C1(x0)+o(1), (7.28)

(N1 |H|)−2 E
[
H−1 (X−x′0⊗ ιN

)′KH(x0)ΩuKH(x0)ιN

]
=

σ2
ζ

κ12

N2
1

∑
i jt

∑
i′ 6=i

H
∂ f(i jt)(i′ jt) (x0,x0)

∂xi′ jt
+O

(
‖H‖

(
(N1|H|)−1 +N−1

1
))

= O(‖H‖) ,

and

(N1 |H|)−2 H−1E
[(

X−x′0⊗ ιN
)′KH(x0)ΩuKH(x0)

(
X−x0

′⊗ ιN
)]

H−1

≈
σ2

ζ
κ2

12

N2
1

∑
i jt

∑
i′ 6=i

H
∂ f(i jt)(i′ jt) (x0,x0)

∂xi jt∂x′i′ jt
H+O

(
‖H‖2 ((N1|H|)−1 +N−1

1
))

= O
(
‖H‖2

)
,

if ‖H‖→ 0 and N1 |H| → ∞ as N1→ ∞, where

C1(x0) = lim
N1→∞

N−2
1 ∑

i jt
∑
i′ 6=i

f(i, j,t),(i′, j,t)(x0,x0).

It follows that

Var
(

D−1
n C

N1 |H|

)
≈
[

C1(x0) O(‖H‖)
O(‖H‖) O(‖H‖2)

]
.

In addition, from the proofs given in Sect. 7.2, we have

D−1
n A

N1 |H|
p→ f̄1 (x0)

[
1 0′k
0k κ12Ik

]
and

D−1
n B

2N1 |H|
=

κ12

2

[
tr
{

Hm(2) (x0)H
}

f̄1 (x0)

0k

]
+op

(
‖H‖2

)
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if ‖H‖→ 0 as N1→ ∞, where we denote f̄1(x0) = limN1→∞ N−1
1 ∑i jt fi jt (x0). Com-

bining all the results above gives

m̂(x0)−m(x0) ≈ κ12tr
{

Hm(2) (x0)H
}
/2+ f̄−2

1 (x0)
ι ′NKH(x0)u

N1|H|
= Op(‖H‖2)+Oe(1) (7.29)

if ‖H‖ → 0 and N1 |H| → ∞ as N1 → ∞, where the second term on the RHS of
equation (7.29) is of order Oe(1) since it has a finite positive variance, i.e.,

Var[(N1|H|)−1
ι
′
NKH(x0)u] = (N1 |H|)−2 E

[
ι
′
NKH(x0)ΩuKH(x0)ιN

]
= Oe(1)

by the result in (7.28). Therefore, the pooled local linear estimator m̂(x0) is not
a consistent estimator of m(x0) due to the large variance term. Because N1 |H| →
∞ as N1 → ∞, condition (7.15) is violated and m̂(x0) fails to converge to m(x0).
Evidently, if σ2

ζ
= 0, i.e., the error term ui jt does not contain an index i-invariant

random effects, ζ jt , we would have

m̂(x0)−m(x0) = Op

(
‖H‖2 +(N1 |H|)−1/2

)
so that m̂(x0) is a consistent estimator of m(x0). As both N2 and T are finite, one
can estimate model (7.1)-(7.24) by taking ζ j,t ’s as parameters to be estimated. That
is, we take ζ jt as index i-invariant fixed effects in model

yi jt = m(xi jt)+ζ jt +µi j + vit + εi jt

and µi j + vit + εi jt is the composite error. We will not provide further details along
this line of research as it is beyond the scope of this chapter.

For cases (ii) and (iii), similar results hold: The pooled local linear estimator is
inconsistent as its asymptotic variance term is of order Oe(1). However,

m̂(x0)−m(x0) = Op(‖H‖2 +(Nc |H|)−1/2)

would hold if σ2
v = 0, i.e., the error term ui jt does not contain an index j-invariant

random effects, vit , under case (ii); and if σ2
µ = 0, i.e., the error term ui jt does not

contain an index t-invariant random effects, µi j, under case (iii). In Table 7.2, we
summarize the asymptotic results of the pooled local linear estimators for cases (i)-
(iii).
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Table 7.2 Asymptotics of the estimators for cases (i) – (iii)

Case Condition Leading bias term Leading variance term

N1→ ∞

(i) ‖H‖→ 0 κ1,2tr
{

Hm(2) (x0)H
}
/2

1′N1N2T KH (x0)ζ

f 1(x0)N1|H|
= Oe(1)

N1 |H| → ∞

N2→ ∞

(ii) ‖H‖→ 0 κ1,2tr
{

Hm(2) (x0)H
}
/2

1′N1N2T KH (x0)υ

f 2(x0)N2|H|
= Oe(1) a

N2 |H| → ∞

T → ∞

(iii) ‖H‖→ 0 κ1,2tr
{

Hm(2) (x0)H
}
/2

1′N1N2T KH (x0)µ

f 3(x0)T |H|
= Oe(1) b

T |H| → ∞

a f 2(x0) = limN2→∞ N−1
2 ∑i, j,t fi, j,t (x0).

b f 3(x0) = limT→∞ T−1
∑i, j,t fi, j,t (x0).

7.4.2 Cases (iv)-(vi): The Sample Size Increases in Two out of the
Three Indices

For cases (iv)–(vi), in which two of the three sample indices go to infinity, we first
consider case (iv) in which N1→ ∞ and N2→ ∞ with T fixed and N4 = N1N2, and
the results for cases (v) and (vi) can be derived in the same way. In addition to the
bandwidth condition given in Table 7.1 for case (iv) that ‖H‖→ 0 and N1N2|H|→∞

as N1 and N2 go to infinity, we further assume that N1 ≥ N2 without loss of general-
ity.

From (7.26), we have

RN4 = N−1
4 |H| ∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

∣∣E(ui1 j1t1ui2 j2t2)
∣∣= O(max(N1,N2) |H|) ,

which may approach to 0, a positive finite number, or infinity when max(N1,N2) |H|
approaches to 0, a positive finite number, or infinity, respectively. Under the three
different limit arrangements, it turns out that the asymptotic results of the local linear
estimator are different.

Under the first limit arrangement, max(N1,N2) |H|= N1|H| → 0, so that RN4 →
0. Hence, the covariance terms in (7.10), (7.11) and (7.12) are ignorable under the
error structure defined in (7.24), and we have

Var

(
D−1

n C√
N4 |H|

)
≈ Σ4(x0)

(
ν0 0′k
0k κ22Ik(σ

2
µ +σ2

ν +σ2
ζ
+σ2

ε ) f̄4(x0)

)
,

where
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Σ4(x0) = (σ2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) f̄4(x0) and f̄4 (x0) = lim

N4→∞
N−1

4 ∑
i jt

fi jt(x0) .

Under some regularity conditions, the limiting distribution of the pooled local linear
estimator for case (iv) becomes√

N4 |H|
(

m̂(x0)−m(x0)−κ12tr
{

Hm(2)(x0)H
}
/2
)

d→ N
(

0,ν0(σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε )/ f̄4(x0)

)
, (7.30)

if ‖H‖ → 0, N4 |H| → ∞, N1 |H| → 0 as N2→ ∞. The convergence rate of the esti-
mator is

m̂(x0)−m(x0) = Op

(
‖H‖2 +(N4 |H|)−1/2

)
.

Next, under the second limit arrangement, when N1 |H| → c1 ∈ (0,∞) and
N2 |H| → c2 ∈ [0,c1] with N1 ≥ N2, we have RN4 = O(1). As in Sect. 7.2, we need
to calculate (7.10), (7.11) and (7.12) under the error structure defined in (7.24).
Straightforward calculation gives

(N4 |H|)−1E
[
1′N KH(x0)ΩuKH(x0)ιN

]
≈ ν0(σ

2
µ +σ

2
v +σ

2
ζ
+σ

2
ε )

1
N4

∑
i jt

fi jt (x0)+N1 |H|
σ2

ζ

N2
1 N2

∑
i jt

∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0)

+N2 |H|
σ2

v

N1N2
2

∑
i jt

∑
j′ 6= j

f(i jt)(i j′t)(x0,x0)+ |H|
σ2

µ

N1N2
∑
i jt

∑
t ′ 6=t

f(i jt)(i jt ′)(x0,x0) ,

where the first three terms are positive and bounded from above and the last term is
of order O(|H|). Denoting

C4(x0) = ν0(σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) f̄4(x0)+ c1σ

2
ζ

f̄4,ζ (x0,x0)+ c2σ
2
v f̄4,v(x0,x0)

with

f̄4,ζ (x0,x0) = lim
N4→∞

1
N2

1 N2
∑
i jt

∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0)

f̄4,v(x0,x0) = lim
N4→∞

1
N1N2

2
∑
i jt

∑
j′ 6= j

f(i jt)(i j′t)(x0,x0),

we can show that

Var

(
D−1

n C√
N4 |H|

)
≈
(

C4(x0) O(‖H‖)
O(‖H‖) κ22Ik(σ

2
µ +σ2

ν +σ2
ζ
+σ2

ε ) f̄4(x0)

)
. (7.31)

Therefore, A −1C = Op((N4|H|)−1/2) and then
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m̂(x0)−m(x0) = Op(‖H‖2 +(N4 |H|)−1/2) .

Under some regularity conditions, we have√
N4 |H|

(
m̂(x0)−m(x0)−κ12tr

{
Hm(2) (x0)H

}
/2
)

(7.32)

d→ N

(
0,ν0

σ2
µ +σ2

v +σ2
ζ
+σ2

ε

f̄4 (x0)
+ c1

σ2
ζ

f̄4,ζ (x0,x0)

f̄ 2
4 (x0)

+ c2
σ2

v f̄4,v(x0,x0)

f̄ 2
4 (x0)

)

if ‖H‖→ 0, N4 |H| →∞, N1 |H| → c1 ∈ (0,∞), and N2 |H| → c2 ∈ [0,c1] as N2→∞

and N1 ≥ N2.
Finally, under the third limit arrangement, when N1 |H| →∞ and N2/N1→ r2,1 ∈

[0,1], we have RN4 → ∞. It is clear that, when N1|H| → ∞, (7.10) is explosive due

to large covariance terms. For the (1,1)th element of Var
(
C /
√
N4 |H|N1 |H|

)
, we

obtain

(N4 |H|)−1 (N1 |H|)−1E
[
ι
′
N KH(x0)ΩuKH(x0)ιN

]
≈ ν0

N1 |H|
(σ2

µ +σ
2
v +σ

2
ζ
+σ

2
ε )

1
N4

∑
i jt

fi jt (x0)+
σ2

ζ

N2
1 N2

∑
i jt

∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0)

+σ
2
v

N2

N1

1
N1N2

2
∑
i jt

∑
j′ 6= j

f(i jt)(i j′t)(x0,x0)+
σ2

µ

N1

1
N1N2

∑
i jt

∑
t ′2 6=t

f(i jt)(i jt ′)(x0,x0)

→ C4,3(x0) ,

where C4,3(x0) = σ2
ζ

f̄4,ζ (x0,x0)+ r2,1σ2
v f̄4,v(x0,x0), and

Var

(
D−1

n C√
N4 |H|

√
N1 |H|

)
≈

(
C4,3(x0) O(‖H‖)
O(‖H‖) O

(
‖H‖2 +(N1 |H|)−1

)) .

Therefore,we have

A −1C =

√
N1 |H|√
N4 |H|

(
D−1

n A

N4 |H|

)−1
(

D−1
n C√

N4 |H|
√

N1 |H|

)
= Op

(
1√
N2

)
.

This implies m̂(x0)−m(x0) = Op(‖H‖2 +1/
√

N2). Similarly, under some suitable
regularity conditions, we obtain the limiting distribution of the estimator

√
N2

(
m̂(x0)−m(x0)−κ12tr

{
Hm(2) (x0)H

}
/2
)

d→ N

(
0,

σ2
ζ

f̄4,ζ (x0,x0)

f̄ 2
4 (x0)

+ r2,1
σ2

v f̄4,v(x0,x0)

f̄ 2
4 (x0)

)
(7.33)

if ‖H‖→ 0, N4 |H|→∞, N1≥N2, N2/N1→ r2,1 ∈ [0,1], and N1 |H|→∞ as N2→∞.
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Now we discuss the optimal convergence rate and the optimal bandwidth choice
of the local linear estimator m̂(x0) under the three different limit arrangements. The
stochastic leading bias and variance term of the estimator are these:

Bias term ≡ A −1B = Op(‖H‖2)

Variance term ≡ A −1C =

{
Op((N1N2|H|)−1/2), if N1|H| → c ∈ [0,+∞),
Op(N

−1/2
2 ), if N1|H| →+∞.

Evidently, the asymptotic variance of m̂(x0) is never smaller than order O(N−1
2 ) no

matter how large k is if N1|H| → +∞. As in the conventional nonparametric litera-
ture, the optimal bandwidth is set to balance the asymptotic squared bias term and
the asymptotic variance term of m̂(x0) and the optimal convergence rate of m̂(x0)
in MSE is the convergence rate reached when the optimal bandwidth is used for
calculation. Let Hopt be the optimal bandwidth. Below, we discuss how the choice
of Hopt is affected by N1, N2 and k, and delay the detailed proof to Sect. 7.6. With-
out loss of generality, we assume that H = hIk (i.e., the bandwidths for all the k
regressors are the same) and N1 ≥ N2.

• When 1 ≤ k ≤ 3, we have N1/Nk/4
2 → ∞ as N1 ≥ N2→ ∞. It can be shown that

the optimal MSE rate of the pooled local linear estimator is always Oe
(
N−1

2

)
.

However, there is a range for h to achieve the optimal MSE rate. A simple
choice for h is that hopt = coptN

−1/k
1 for some finite constant copt > 0, we have

N1|Hopt | → c > 0 with asymptotic variance of the estimator given in (7.32). (For
other choices of optimal bandwidth, please refer to the technical Appendix at the
end of this chapter.)

• When k = 4, the ratio, N1/Nk/4
2 = N1/N2, can approach to either ∞ or a finite

positive constant c > 0. It can be shown that the optimal MSE rate of the pooled
local linear estimator is always Oe

(
N−1

2

)
, which can be obtained by setting the

rate of the optimal bandwidth as follows:

– If N1/N2→∞ and the optimal bandwidth satisfies hopt = Oe(N
−1/4
2 ), we have

N1|Hopt | → ∞ with the asymptotic variance of the estimator given in (7.33).
– If N1/N2 → ∞ and the optimal bandwidth satisfies hopt = Oe(N

−1/4
1 ), we

have N1|Hopt | → c > 0 with the asymptotic variance of the estimator given
in (7.32).

– If N1/N2→ c ≥ 1 and the optimal bandwidth satisfies hopt = Oe(N
−1/4
1 ), we

have N1|Hopt | → c > 0 with the asymptotic variance of the estimator given in
(7.32).

• When k≥ 5, the ratio N1/Nk/4
2 can approach to 0, a positive finite number c, or ∞.

It can be shown that the optimal MSE rate of the pooled local linear estimator is
either Oe((N1N2)

−4/(k+4)) or Oe(N−1
2 ) if N1/Nk/4

2 → 0 or N1/Nk/4
2 → c ∈ (0,∞],

respectively. More specifically,



222 Yiguo Sun, Wei Lin, and Qi Li

– If N1/Nk/4
2 → 0, the optimal MSE rate is Oe((N1N2)

−4/(k+4)) with the optimal
bandwidth hopt = Oe((N1N2)

−1/(k+4)), which corresponds to N1|H| → 0 with
the asymptotic variance of the estimator given in (7.30).

– If N1/Nk/4
2 → c ∈ (0,∞), the optimal MSE rate is Oe(N−1

2 ) with the optimal
bandwidth hopt = Oe(N

−1/4
2 ), which corresponds to N1|H| → c ∈ (0,∞) with

the asymptotic variance of the estimator given in (7.32).
– If N1/Nk/4

2 →∞, the optimal MSE rate is Oe(N−1
2 ) with the optimal bandwidth

hopt = Oe(N
−1/4
2 ), which corresponds to N1|H| →∞ with the asymptotic vari-

ance of the estimator given in (7.33).

We clearly see that the optimal MSE of m̂(x0) depends on k and the ratio of
N1/Nk/4

2 . When the number of regressors, k, is less than or equal to 4, the optimal
MSE of m̂(x0) is always Oe

(
N−1

2

)
, which does not depend on k. When k ≥ 5 and

N1/Nk/4
2 → 0 hold, the optimal MSE of m̂(x0) is Oe

(
(N1N2)

−4/(k+4)
)

. Moreover,

if k ≥ 5 and Nk/4
2 /N1→ c ≥ 0, the optimal MSE of m̂(x0) continues to be of order

Oe
(
N−1

2

)
.

We give two examples on determining the optimal convergence rate. For the first
example, when k = 5 and N2 = N1/2

1 , it is easy to check that

N1

Nk/4
2

=
N2

2

N5/4
2

= N3/4
2 → ∞,

which means that the optimal MSE rate of the estimator is Oe(N−1
2 ). For the second

example, when k = 5 and N2 = N1, it is easy to check that

N1

Nk/4
2

=
N2

N5/4
2

= N−1/4
2 → 0,

which means that the optimal bandwidth rate is

hopt = O((N1N2)
−1/9) = O(N−2/9

2 )

and the optimal MSE rate of the estimator is

O((N1N2)
−4/9) = O(N−8/9

2 ) .

Table 7.3 summarizes the asymptotic results of the pooled local linear estimators
for cases (iv) under four sets of different conditions on the sample indices and or-
ders. Due to space limitation, we only report their asymptotic results for case (v) and
(vi) in Table 7.4 and 7.5 respectively, and omit their derivations and the discussion
about the optimal convergence rate of the estimator.
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Table 7.3 Asymptotics of the estimators for case (iv): N1, N2 → ∞ with T fixed
(N1 ≥ N2)

Condition Bias term rate Variance term rate Asymptotic variance

‖H‖→ 0

N4 |H| → ∞ a Op(‖H‖2) Op((N4 |H|)−1/2) ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄4(x0)
b

max(N1,N2) |H| → 0

‖H‖→ 0 ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄4(x0)

N4 |H| → ∞ Op(‖H‖2) Op((N4 |H|)−1/2) +c1
σ2

ζ
f̄4,ζ (x0,x0)

f̄ 2
4 (x0)

c

N1 |H| → c1 ∈ (0,∞) +c2
σ2

v f̄4,v(x0,x0)

f̄ 2
4 (x0)

d

N2 |H| → c2 ∈ [0,c1]

‖H‖→ 0

N4 |H| → ∞
σ2

ζ
f̄4,ζ (x0,x0)

f̄ 2
4 (x0)

N2/N1→ r2,1 ∈ [0,1] Op(‖H‖2) Op((N2)
−1/2) +r2,1

σ2
v f̄4,v(x0,x0)

f̄ 2
4 (x0)

N1 |H| → ∞

a N4 = N1N2.
b f̄4(x0) = limN4→∞N−1

4 ∑i, j,t fi jt(x0).
c f̄4,ζ (x0,x0) = limN4→∞

1
N1N4

∑i, j,t ∑i′ 6=i f(i, j,t),(i′, j,t)(x0,x0).
d f̄4,v(x0,x0) = limN4→∞

1
N2N4

∑i, j,t ∑ j′ 6= j f(i, j,t),(i, j′,t)(x0,x0).

7.4.3 Case (vii): The Sample Size Increases in All Three Indices

For case (vii), in which all three sample indices approach to infinity, we derive
the asymptotics of the pairwise random effects local linear estimator under the
general sample and bandwidth condition given in Table 7.1 that ‖H‖ → ∞ and
N1N2T‖H‖ → ∞ as min(N1,N2,T )→ ∞. Without loss of generality, we further as-
sume that N1 ≥ N2 and N1 ≥ T with N2/N1→ r2,1 ∈ [0,1] and T/N1→ rT,1 ∈ [0,1],
and let N≡ N1N2T .

Similarly to cases (iv)-(vi),

RN = N−1 |H| ∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

∣∣E(ui1 j1t1 ui2 j2t2)
∣∣

may approach to 0, a positive finite number, or infinity when max(N1,N2,T )|H| =
N1|H| approaches to 0, a positive finite number, or infinity, respectively. Under the
three limit arrangements, it turns out that the asymptotic results of the local linear
estimator are different.

Under the first limit arrangement, when max(N1,N2,T ) |H| = N1|H| → 0, we
have RN→ 0. Like the benchmark model that we consider in Sect. 7.2, we obtain

m̂(x0)−m(x0) = Op

(
‖H‖2 +(N |H|)−1/2

)
.
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Table 7.4 Asymptotics of the estimators for case (v): N1, T → ∞ with N2 fixed

Condition Bias term rate Variance term rate Asymptotic variance

‖H‖→ 0

N5 |H| → ∞ a Op(‖H‖2) Op((N5 |H|)−1/2) ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄5(x0)
b

max(N1,N2) |H| → 0

‖H‖→ 0 ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄5(x0)

N5 |H| → ∞ Op(‖H‖2) Op((N5 |H|)−1/2) +c1
σ2

ζ
f̄5,ζ (x0,x0)

f̄ 2
5 (x0)

c

N1 |H| → c1 ∈ [0,∞) +cT
σ2

µ f̄5,µ (x0,x0)

f̄ 2
5 (x0)

d

T |H| → cT ∈ [0,∞)

‖H‖→ 0
N5 |H| → ∞

N1 ≥ T Op(‖H‖2) Op((T )−1/2)
σ2

ζ
f̄5,ζ (x0,x0)

f̄ 2
5 (x0)

T/N1→ rT,1 ∈ [0,1] +rT,1
σ2

µ f̄5,µ (x0,x0)

f̄ 2
5 (x0)

N1 |H| → ∞

‖H‖→ 0
N5 |H| → ∞

N1 < T Op(‖H‖2) Op((N1)
−1/2) r1,T

σ2
ζ

f̄5,ζ (x0,x0)

f̄ 2
5 (x0)

N1/T → r1,T ∈ [0,1] +
σ2

µ f̄5,µ (x0,x0)

f̄ 2
5 (x0)

T |H| → ∞

Notes: the results for both sample index order, N1 ≥ T and N1 < T , are included.
a N5 = N1T .
b f̄5(x0) = limN5→∞N−1

5 ∑i, j,t fi jt(x0).
c f̄5,ζ (x0,x0) = limN5→∞

1
N1N5

∑i, j,t ∑i′ 6=i f(i, j,t),(i′, j,t)(x0,x0).
d f̄5,µ (x0,x0) = limN5→∞

1
TN5

∑i, j,t ∑t ′ 6=t f(i, j,t),(i, j,t ′)(x0,x0).

Under some regularity conditions, we conjecture that the limiting distribution of the
pooled local linear estimator is√

N |H|
(

m̂(x0)−m(x0)−κ12tr
{

Hm(2)(x0)H
}
/2
)

d→ N
(

0,ν0(σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε )/ f̄7(x0)

)
(7.34)

if ‖H‖→ 0, N |H| → ∞, N1 |H| → 0 holds, where

f̄7 (x0) = lim
N→∞

N−1
∑
i jt

fi jt(x0) and Σ7(x0) = (σ2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) f̄7(x0) .

Next, under the second limit arrangement, when max(N1,N2,T ) |H| = N1|H| →
c ∈ (0,∞), we have RN = Oe(1). We consider a general scenario in which N1 |H| →
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Table 7.5 Asymptotics of the estimators for case (vi): N2, T → ∞ with N1 fixed

Condition Bias term rate Variance term rate Asymptotic variance

‖H‖→ 0

N6 |H| → ∞ a Op(‖H‖2) Op((N6 |H|)−1/2) ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄6(x0)
b

max(N2,T ) |H| → 0

‖H‖→ 0 ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄6(x0)

N6 |H| → ∞ +c2
σ2

v f̄6,v(x0,x0)

f̄ 2
6 (x0)

c

N2 |H| → c2 ∈ [0,∞) Op(‖H‖2) Op((N6 |H|)−1/2) +cT
σ2

µ f̄6,µ (x0,x0)

f̄ 2
6 (x0)

d

T |H| → cT ∈ [0,∞)

‖H‖→ 0
N6 |H| → ∞

N2 ≥ T Op(‖H‖2) Op((T )−1/2)
σ2

v f̄6,v(x0,x0)

f̄ 2
6 (x0)

T/N2→ rT,2 ∈ [0,1] +rT,2
σ2

µ f̄6,µ (x0,x0)

f̄ 2
6 (x0)

N2 |H| → ∞

‖H‖→ 0
N6 |H| → ∞

N2 < T Op(‖H‖2) Op((N2)
−1/2) r2,T

σ2
v f̄6,v(x0,x0)

f̄ 2
6 (x0)

N2/T → r2,T ∈ [0,1] +
σ2

µ f̄6,µ (x0,x0)

f̄ 2
6 (x0)

T |H| → ∞

Notes: the results for both sample index order, N2 ≥ T and N2 < T , are included.
a N6 = N2T .
b f̄6(x0) = limN6→∞N−1

6 ∑i, j,t fi jt(x0).
c f̄6,v(x0,x0) = limN6→∞

1
N2N6

∑i, j,t ∑ j′ 6= j f(i, j,t),(i, j′,t)(x0,x0).
d f̄6 µ (x0,x0) = limN6→∞

1
TN6

∑i, j,t ∑t ′ 6=t f(i, j,t),(i, j,t ′)(x0,x0).

c1 ∈ (0,∞), N2 |H|→ c2 ∈ [0,c1], and T |H|→ cT ∈ [0,c1] with N1 ≥N2 and N1 ≥ T ,
and find that

Var

(
D−1

n C√
N |H|

)
≈
(

C7,2(x0) O(‖H‖)
O(‖H‖) κ22Ik(σ

2
µ +σ2

v +σ2
ζ
+σ2

ε ) f 7(x0)

)
, (7.35)

where

C7,2(x0) = ν0(σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) f̄7(x0)

+c1σ
2
ζ

f̄7,ζ (x0,x0)+ c2σ
2
v f̄7,v(x0,x0)+ cT σ

2
µ f̄7,µ(x0,x0),

in which we assume the existence of the following limits
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f̄7,ζ (x0,x0) ≡ lim
N→∞

1
N1N ∑

i jt
∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0),

f̄7,v(x0,x0) ≡ lim
N→∞

1
N2N ∑

i jt
∑
j′ 6= j

f(i jt)(i j′t)(x0,x0),

f̄7,µ(x0,x0) ≡ lim
N→∞

1
TN ∑

i jt
∑
t ′ 6=t

f(i jt)(i jt ′)(x0,x0).

Therefore, the variance term A −1C is still of the order Op((N|H|)−1/2).
Now we show that (7.35) holds by calculating (7.10), (7.11) and (7.12) for current

case. First, we have

(N |H|)−1 E
[
ι
′
N KH(x0)ΩuKH(x0)ιN

]
≈ ν0(σ

2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) lim

N→∞

1
N ∑

i jt
fi jt (x0)

+N1 |H|σ2
ζ

lim
N→∞

1
N2

1 N2T ∑
i jt

∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0)

+N2 |H|σ2
v lim
N→∞

1
N1N2

2 T ∑
i jt

∑
j′ 6= j

f(i jt)(i j′t)(x0,x0)

+T |H|σ2
µ lim
N→∞

1
N1N2T 2 ∑

i jt
∑
t ′ 6=t

f(i jt)(i jt ′)(x0,x0)

= ν0(σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) f̄7(x0)

+c1σ
2
ζ

f̄7,ζ (x0,x0)+ c2σ
2
v f̄7,v(x0,x0)+ cT σ

2
µ f̄7,µ(x0,x0),

where the four terms above are of the order O(1), O(N1|H|), O(N2|H|), and O(T |H|)
respectively. Second, it is easy to see

(N |H|)−1 E
[
H−1 (X−x′0⊗ ιN

)′KH(x0)ΩuKH(x0)ιN

]
= O(‖H‖)

and

(N |H|)−1 H−1E
[(

X−x′0⊗ ιN
)′KH(x0)ΩuKH(x0)

(
X−x0

′⊗ ιN
)]

H−1

≈ κ22Ik(σ
2
µ +σ

2
v +σ

2
ζ
+σ

2
ε ) f 7(x0).

Under some suitable regularity conditions, we conjecture that the limiting distri-
bution of the estimator is given by
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N |H|

(
m̂(x0)−m(x0)−κ12tr

{
Hm(2) (x0)H

}
/2
)

d→ N

(
0,ν0

σ2
µ +σ2

v +σ2
ζ
+σ2

ε

f̄7 (x0)
+ c1

σ2
ζ

f̄7,ζ (x0,x0)

f̄ 2
7 (x0)

+c2
σ2

v f̄7,v(x0,x0)

f̄ 2
7 (x0)

+ cT
σ2

µ f̄7,µ(x0,x0)

f̄ 2
7 (x0)

)
(7.36)

if ‖H‖ → 0, N |H| → ∞, and N1 |H| → c1 ∈ (0,∞), N2 |H| → c2 ∈ [0,c1], and
T |H| → cT ∈ [0,c1] with N1 ≥ N2 and N1 ≥ T as N→ ∞. The convergence rate
of the estimator is

m̂(x0)−m(x0) = Op(‖H‖2 +(N |H|)−1/2) .

Finally, under the third limit arrangement, when max(N1,N2,T ) |H| = N1|H| →
∞, we have RN→ ∞. Similarly to case (iv), to have a bounded variance for D−1

n C ,
the normalizing term now should be 1/(

√
N |H|

√
N1 |H|) so that

Var

(
D−1

n C√
N |H|

√
N1 |H|

)
≈
(

C7,3(x0) O(‖H‖)
O(‖H‖) O((N1 |H|)−1 +‖H‖2)

)
, (7.37)

where

C7,3(x0) = σ
2
ζ

f̄7,ζ (x0,x0)+ r2,1σ
2
v f̄7,v(x0,x0)+ rT,1σ

2
µ f̄7,µ(x0,x0) .

Therefore, the variance term A −1C is of the order Op((N2T )−1/2) by

A −1C =

√
N1 |H|√
N |H|

(
D−1

n A

N |H|

)−1
(

D−1
n C√

N |H|
√

N1 |H|

)
= Op

(
1√
N2T

)
.

Now we show that equation (7.37) holds by checking on (7.10), (7.11) and (7.12)
under the current condition. First, we have

(N |H|)−1 (N1 |H|)−1E
[
ι
′
N KH(x0)ΩuKH(x0)ιN

]
≈ O((N1|H|)−1)+σ

2
ζ

lim
N→∞

1
N2

1 N2T ∑
i jt

∑
i′ 6=i

f(i jt)(i′ jt)(x0,x0)

+
N2

N1
σ

2
v lim
N→∞

1
N1N2

2 T ∑
i jt

∑
j′ 6= j

f(i jt)(i j′t)(x0,x0)

+
T
N1

σ
2
µ lim
N→∞

1
N1N2T 2 ∑

i jt
∑
t ′ 6=t

f(i jt)(i jt ′)(x0,x0)

→ σ
2
ζ

f̄7,ζ (x0,x0)+ r2,1σ
2
v f̄7,v(x0,x0)+ rT,1σ

2
µ f̄7,µ(x0,x0).

Second, it is readily seen that
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(N |H|)−1 (N1 |H|)−1E
[
H−1 (X−x′0⊗ ιN

)′KH(x0)ΩuKH(x0)ιN

]
= (N1|H|)−1

κ22N−1H∑
i jt

σ
2
i jt (x0) f (1)i jt (x0)(1+o(1))

+κ12(N1|H|)−1N−1|H| ∑
i1 j1t1

∑
(i jt)2 6=(i jt)1

σ(i jt)1(i jt)2
(x0,x0)×

×H
∂ f(i jt)1(i jt)2

(x0,x0)

∂x(i jt)2

(1+o(1))

= O((N1|H|)−1 ‖H‖)+O(‖H‖) = O(‖H‖)

and

(N |H|)−1 (N1 |H|)−1H−1E
[(

X−x′0⊗ ιN
)′KH(x0)Ωu×

×KH(x0)
(
X−x0

′⊗ ιN
)]

H−1

= κ22Ik(N1 |H|)−1N−1
∑
i jt

σ
2
i jt (x0) fi jt (x0)(1+o(1))

+κ
2
12N−1

1 N−1
∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

σ(i jt)1(i jt)2
(x0,x0)×

×H
∂ 2 f(i jt)1(i jt)2

(x0,x0)

∂x
(i jt)1

∂x′
(i jt)2

H(1+o(1))

= O((N1 |H|)−1)+O(‖H‖2).

Under some suitable regularity conditions, we have the limiting distribution of
the local linear estimator

√
N2T

(
m̂(x0)−m(x0)−κ12tr

{
Hm(2) (x0)H

}
/2
)

(7.38)

d→ N

(
0,

σ2
ζ

f̄7,ζ (x0,x0)

f̄ 2
7 (x0)

+ r2,1
σ2

v f̄7,v(x0,x0)

f̄ 2
7 (x0)

+ rT,1
σ2

µ f̄7,µ(x0,x0)

f̄ 2
7 (x0)

)

if ‖H‖ → 0, N |H| → ∞, N1 ≥ N2, N1 ≥ T , N2/N1 → r2,1 ∈ [0,1], T/N1 → rT,1 ∈
[0,1], and N1 |H|→∞ as min(N1,N2,T )→∞. The convergence rate of the estimator
is

m̂(x0)−m(x0) = Op(‖H‖2 +(N2T )−1/2) .

Now we discuss the optimal convergence rate of the pooled local linear estimator
m̂(x0). The bias and variance term of the estimator are of the order:

Bias term ≡ A −1B = Op(‖H‖2)

Variance term ≡ A −1C =

{
Op((N|H|)−1/2), if N1|H| → c ∈ [0,+∞),
Op((N2T )−1/2), if N1|H| →+∞.
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Similarly to case (iv), the variance term of estimator m̂(x0) is never smaller than
O((N2T )−1/2). The optimal bandwidth is set to balance the squared bias and vari-
ance term of the estimator. Similarly to the result for case (iv), the limit of the ratio,

N1

(N2T )k/4 →


0,
c ∈ (0,∞),

∞,

and the number of regressors k determine the optimal MSE rate of the pooled local
linear estimator, its optimal bandwidth rate, and its asymptotic variance. Below, we
discuss how the optimal MSE rate of the estimator and its corresponding optimal
bandwidth rate are determined by N1, N2, T , and k. Without loss of generality, we
assume that H = hIk, N1 ≥ N2, and N1 ≥ T .

• When k = 1, we have N1/(N2T )1/4→ ∞. It can be shown that the optimal MSE
rate of the pooled local linear estimator is always Oe

(
(N2T )−1

)
. However, there

is a range for h to achieve the optimal MSE rate. A simple choice for h is that
hopt = Oe(N−1

1 ), we have N1|Hopt | → c > 0 with the asymptotic variance of the
estimator given in (7.36).

• When k = 2, the ratio N1/(N2T )1/2 can approach to either ∞ or c > 0. It
can be shown that the optimal MSE rate of local linear estimator is always
Oe
(
(N2T )−1

)
, which can be obtained by setting the rate of optimal bandwidth

as follows:

– If N1/(N2T )1/2→∞ and the optimal bandwidth satisfies hopt =Oe((N2T )−1/4),
we have N1|Hopt | → ∞ with the asymptotic variance of the estimator given in
(7.38).

– If N1/(N2T )1/2 → ∞ and the optimal bandwidth satisfies hopt = Oe(N
−1/2
1 ),

we have N1|Hopt | → c > 0 with the asymptotic variance of the estimator given
in (7.36).

– If N1/(N2T )1/2→ c≥ 1 and the optimal bandwidth satisfies hopt =Oe(N
−1/2
1 ),

we have N1|Hopt | → c > 0 with the asymptotic variance of the estimator given
in (7.36).

• When k≥ 3, the ratio N1/Nk/4
2 can approach to 0, a positive finite number c, or ∞.

It can be shown that the optimal MSE rate of local the linear estimator is either
O((N1N2T )−4/(k+4)) or O((N2T )−1) if N1/(N2T )k/4→ 0 or N1/(N2T )k/4→ c ∈
(0,∞], respectively. More specifically,

– If N1/(N2T )k/4→ 0, the optimal MSE rate is O((N1N2T )−4/(k+4)) with opti-
mal bandwidth hopt =Oe((N1N2T )−1/(k+4)), which corresponds to N1|H|→ 0
with the asymptotic variance of the estimator given in (7.34).

– If N1/(N2T )k/4 → c ∈ (0,∞), the optimal MSE rate is O((N2T )−1) with op-
timal bandwidth hopt = Oe((N2T )−1/4), which corresponds to N1|H| → c ∈
(0,∞) with the asymptotic variance of the estimator given in (7.36).
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– If N1/(N2T )k/4→ ∞, the optimal MSE rate Oe((N2T )−1) with optimal band-
width hopt = Oe((N2T )−1/4), which corresponds to N1|H| → ∞ with the
asymptotic variance of the estimator given in (7.38).

Table 7.6 summarizes the asymptotic results of the pooled local linear estimators
for case (vii) under five sets of different conditions on the sample indices and orders,
which includes the scenario that N1, N2, or T is the largest sample index.

7.5 Some Extensions

For three-dimensional nonparametric panel data models with random effects, our
proofs given in Sects. 7.2 and 7.4 indicate that the consistency and limiting distri-
bution of the local linear estimator depend on the error structure, the bandwidth,
and the relative sample sizes across different dimensions, and that the local linear
estimator for the random-effects model can fail to be consistent due to the non-
diminishing variance term. In this section, we briefly extend our review in three
directions. In Sect. 7.5.1, we explain how to obtain consistent estimation when the
local linear estimator fails to be consistent. In Sect. 7.5.2, we give a brief discussion
of estimating four and higher-order nonparametric panel data models with random
effects. Sect. 7.5.3 discusses nonparametric panel data models with fixed effects.

7.5.1 Mixed Fixed and Random Effects Models

For the pairwise error structure considered in Sect. 7.4, the local linear estimator
is inconsistent when the sample size increases in only one index. For this case, we
suggest readers should estimate model (7.1) with (7.24) as a mixed fixed and random
effects model.

For the purpose of illustration, we consider the case that N1→∞ and both N2 and
T are finite. Due to the existence of index i-invariant random effects, ζ jt , the local
linear estimator is inconsistent, as shown in Sect. 7.4.1. Rewriting model (7.1) gives

yi jt = ζ jt +m(xi jt)+υit , υit = µi j + vit + εi jt , (7.39)

where we will estimate m(·) as well as
{

ζ jt : j = 1, . . . ,N2, t = 1, . . . ,T
}

, and treat
υit as the composite error. Then, model (7.39) becomes a mixed fixed and random
effects model.

For two-dimensional panel data with a large number of cross sectional units and
finite time periods, two different methods are used to estimate the unknown func-
tion m(·) from a nonparametric fixed effects panel data model. One method is to
cancel out the unobserved time-invariant fixed effects before the estimation of m(·);
see, e.g., Henderson et al. (2008), Qian and Wang (2012), and Rodriguez-Poo and
Soberon (2015). The other method is to treat the unobserved fixed effects as parame-
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Table 7.6 Asymptotics of the estimators for case (vii): N1, N2, T → ∞

Condition Bias term rate Variance term rate Asymptotic variance

‖H‖→ 0

N |H| → ∞ a Op(‖H‖2) Op((N |H|)−1/2) ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄7(x0)
b

max(N1,N2,T ) |H| → 0

‖H‖→ 0 ν0
σ2

µ+σ2
v +σ2

ζ
+σ2

ε

f̄7(x0)

N |H| → ∞ +c1
σ2

ζ
f̄7,ζ (x0,x0)

f̄ 2
7 (x0)

c

N1 |H| → c1 ∈ [0,∞) Op(‖H‖2) Op((N |H|)−1/2) +c2
σ2

v f̄7,v(x0,x0)

f̄ 2
7 (x0)

d

N2 |H| → c2 ∈ [0,∞) +cT
σ2

µ f̄7,µ (x0,x0)

f̄ 2
7 (x0)

e

T |H| → cT ∈ [0,∞)

‖H‖→ 0
N |H| → ∞

N1 ≥ N2, N1 ≥ T
σ2

ζ
f̄7,ζ (x0,x0)

f̄ 2
7 (x0)

N2/N1→ r2,1 ∈ [0,1] Op(‖H‖2) Op((N2T )−1/2) +r2,1
σ2

v f̄7,v(x0,x0)

f̄ 2
7 (x0)

T/N1→ rT,1 ∈ [0,1] +rT,1
σ2

µ f̄7,µ (x0,x0)

f̄ 2
7 (x0)

N1 |H| → ∞

‖H‖→ 0
N |H| → ∞

N2 ≥ N1, N2 ≥ T r1,2
σ2

ζ
f̄7,ζ (x0,x0)

f̄ 2
7 (x0)

N1/N2→ r1,2 ∈ [0,1] Op(‖H‖2) Op((N1T )−1/2) +
σ2

v f̄7,v(x0,x0)

f̄ 2
7 (x0)

T/N2→ rT,2 ∈ [0,1] +rT,2
σ2

µ f̄7,µ (x0,x0)

f̄ 2
7 (x0)

N2 |H| → ∞

‖H‖→ 0
N |H| → ∞

T ≥ N1, T ≥ N2 r1,T
σ2

ζ
f̄7,ζ (x0,x0)

f̄ 2
7 (x0)

N1/T → r1,T ∈ [0,1] Op(‖H‖2) Op((N1N2)
−1/2) +r2,T

σ2
v f̄7,v(x0,x0)

f̄ 2
7 (x0)

N2/T → r2,T ∈ [0,1] +
σ2

µ f̄7,µ (x0,x0)

f̄ 2
7 (x0)

T |H| → ∞

a N= N1N2T .
b f̄7(x0) = limN→∞N−1

∑i, j,t fi jt(x0).
c f̄7,ζ (x0,x0) = limN→∞

1
N1N ∑i, j,t ∑i′ 6=i f(i, j,t),(i′, j,t)(x0,x0).

d f̄7,v(x0,x0) = limN→∞
1

N2N ∑i, j,t ∑ j′ 6= j f(i, j,t),(i, j′,t)(x0,x0).
e f̄7,µ (x0,x0) = limN→∞

1
TN ∑i, j,t ∑t ′ 6=t f(i, j,t),(i, j,t ′)(x0,x0).

ters to be estimated; see, e.g., Su and Ullah (2006), Sun et al. (2009), and Chen et al.
(2013). Su and Ullah (2006) and Chen et al. (2013) assumed that the unobserved
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fixed effects add up to zero for identification purposes, while Sun et al. (2009) as-
sumed that the unobserved fixed effects are i.i.d. with zero mean and finite variance.
For model (7.39) above, ζ jt is i.i.d. with zero mean and finite variance, so Sun et al.
(2009) setup is proper. Intuitively, applying the nonparametric least squares dummy
variable approach proposed in Sun et al. (2009), we can show the consistency of the
local linear estimator for m(·) as condition (7.15) holds true:

N−1
1 |H| ∑

i1 j1t1
∑

(i jt)2 6=(i jt)1

∣∣E(υi1 j1t1υi2 j2t2)
∣∣

= |H|
[
σ

2
µ N2T (T −1)+σ

2
v N2 (N2−1)T

]
= O(|H|) .

7.5.2 Four and Higher-dimensional Cases

We define an s-dimensional panel data model with random effects as follows

yi = m(xi)+ui , (7.40)

where i = (i1, i2, . . . , is) with 1 ≤ i j ≤ N j for all j and the total sample size is N =
N1 ·N2 · · ·Ns, xi is a (k×1) strictly exogenous vector of continuous variables, both
yi and ui are scalar, ui is a random error with zero mean, and m(x) = E (yi|xi = x)
is a smooth unknown function to be estimated. As in Sect. 7.2, without knowing
the specific structure of the error term and the data generating mechanism of the
regressor, one can derive the consistency of the local linear estimator of m(·) by
arguing that both {xi} and {ui} are well-behaved weakly dependent random fields
across all the indices with large samples. For example, the near-epoch dependence of
a random field is a valid measure of weak dependence for high-dimensional data as
defined in Jenish (2012). We expect that the argument on the more efficient two-step
estimator given in Sect. 7.3 is also applicable for model (7.40) with s≥ 4. However,
the concept of weakly dependent random fields can be too abstract to compete with
the pairwise error structure and/or its nested special cases in economic fields. If this
is the case, the consistency and the limiting distribution of the local linear estimator
will depend on the dimensionality of the panel data.

Chap. 2 in this handbook gives a brief discussion for a four-dimensional para-
metric panel data model with random effects, where the authors assume a pairwise
error structure ui jst = µi js+vist +ζ jst +λi jt +εi jst , where µi js,vist , ζ jst , λi jt , and εi jst
are mutually uncorrelated and self-uncorrelated across any indices with zero mean
and variances equal to σ2

µ , σ2
v , σ2

ζ
, σ2

λ
, and σ2

ε , respectively. For this error structure,
the covariance matrix becomes

Ωu = σ
2
µ

(
IN1N2N3 ⊗JT

)
+σ

2
v
(
IN1 ⊗JN2 ⊗ IN3T

)
+σ

2
ζ

(
JN1 ⊗ IN2N3T

)
+σ

2
λ

(
IN1N2 ⊗JN3 ⊗ IT

)
+σ

2
ε IN ,

where N=N1N2N3T is the sample size. In parallel to (7.26), we have
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N−1 |H| ∑
i1 j1s1t1

∑
(i jst)2 6=(i jst)1

∣∣E(ui1 j1s1t1ui2 j2s2t2)
∣∣

= |H|
[
σ

2
µ (T −1)+σ

2
v (N2−1)+σ

2
ζ
(N1−1)+σ

2
λ
(N3−1)

]
. (7.41)

Again, we can see that (7.41) can be explosive if only one index increases with the
sample size, so that the local linear estimator becomes inconsistent and the mixed
fixed and random effects modelling approach explained in Sect. 7.5.1 should be
applied. When two or more indices increase with the sample size, the local linear
estimator is expected to be consistent and approximately normally distributed at the
conventional convergence rate Op

(
‖H‖2 +

√
N |H|

)
if the term in (7.41) converges

to zero as the sample size increases. If the term in (7.41) converges to a positive
constant or is explosive as the sample size increases, one has to look into the rate
of the asymptotic variance term case by case; i.e., only two indices grow, or only
three indices grow, or all four indices grow. We will forgo the detailed results to save
space here.

To sum up, for the s-dimension panel data model (7.40) with a pairwise error
structure, ui = µ1 + . . .+ µs + εi, where the idiosyncratic error, εi, and the s error
terms µj are mutually uncorrelated and self-uncorrelated with zero mean and vari-
ance equal to σ2

ε and σ2
j , respectively, and removing j from s = (1,2, . . . ,s) gives j.

Then, (7.41) becomes

N−1 |H|∑
i1

∑
i2 6=i1

∣∣E(ui1ui2
)∣∣= |H| s−1

∑
l=1

σ
2
l (Nl−1) .

Again, the mixed fixed and random effects modelling approach is recommended if
s−1 indices are fixed and only one index increases with the sample size. If two or
more indices increase with sample size, the local linear estimator is always consis-
tent but its limiting distribution varies with respect to the dimension of the regres-
sors, the relative sample size across different indices and the bandwidth.

7.5.3 Fixed Effects Models

Consider a nonparametric fixed effects panel data model in matrix form,

y = m(X)+Dµ +u, (7.42)

where µ contains all unobserved fixed effects and D is the corresponding dummy
variable matrix, u is an (N× 1) vector of i.i.d. errors. If m(X) = Xθ is known
up to a finite number of unknown parameters θ , (7.42) becomes the parametric
fixed effects model considered in Chap. 1 in this volume, where the authors explain
that the traditional least squares dummy variable (or LSDV) estimator continues
to be an effective estimator as long as the modified dummy variables, D, and re-
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gressors, X, are linearly independent. Let MD = IN−D
(
DT D

)−1 DT and the LSDV

estimator is given by θ̂ =
(
XT MDX

)−1 XT MDy, where the LSDV estimator can es-
sentially be applied to two and higher-dimension fixed effects panel data models.
However, without concrete proofs, we are not sure whether the nonparametric es-
timation methods listed in Sect. 7.5.1 for two-dimensional panel data models will
work equally well for higher-dimensional panel data models.

Take the first estimation method, for example, where one cancels out the unob-
served fixed effects first before applying a nonparametric kernel estimation. Say that
we multiply with MD both sides of model (7.42), so that MDy = MDm(X)+MDu,
where the typical element of MDm(X) equals a linear combination of m(xi) for
all i, where i is defined in the same way as in Sect. 7.5.2. One direct consequence
of this method is that m(·) is not fully identified if m(X) = m1 (X)+m2 (X) and
MDm2 (X) = 0 for some non zero function m1 (·). In addition, the additive struc-
ture resulting from this method requires the usage of a backfitting algorithm or a
marginal integration method. It is well known that the performance of the backfit-
ting algorithm and the marginal integration method will deteriorate for correlated
regressors. Therefore, it is possible that this estimation method can perform worse
for higher-dimensional panel data models with fixed effects. On the other hand, the
limiting distribution of the nonparametric LSDV estimation method can be affected
by the relative sample size in each index or dimension, and we leave the theoretical
work to our future research.

On the last point, for two-dimensional parametric panel data models, the LSDV
estimator is asymptotically equivalent to the random effects estimator if the sample
size is large in both dimensions. It will be interesting to check whether this result
continues to hold for panel data models with three or more dimensions.

7.6 Conclusion

This chapter proposes a pooled local linear estimator for a three-dimensional non-
parametric panel data model with random effects. Our results indicate that the
pooled local linear estimator can be inconsistent when the unobserved random ef-
fects exhibit serial and/or cross dependence to the magnitude that the sum of all the
error term covariances in absolute values is explosive to infinity too quickly. In ad-
dition, when the pooled local linear estimator is consistent, the optimal convergence
rate of the estimator, its corresponding optimal bandwidth and asymptotic variance
depend on the number of regressors and the limit of certain sample indices ratio.
Therefore, one needs to examine the consistency of the pooled local linear estima-
tor and its asymptotic properties case by case. Furthermore, when the pooled local
linear estimator is consistent, we propose a two-step estimator along the lines of Su
et al. (2013) and show that this estimator is asymptotically more efficient than the
pooled local linear estimator.
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Appendix

In this section, we provide a sketchy proof for the results of the optimal MSE rate
of the pooled local linear estimator with N1 → ∞, N2 → ∞ and T fixed, which are
stated in Sect. 7.4.2. Without loss of generality, we set H = hIk and N1 ≥ N2.

First, we consider the case that 1≤ k ≤ 3:

• If we set H satisfying N1|H|→∞ as N2→∞, MSE(m̂(x0))= Op

(
‖H‖4 +N−1

2

)
.

Letting h� N−(1+ε)/4
2 for some small ε ∈ (0,4/k−1), we have N2 ‖H‖4 � N−ε

2

→ 0 while N1|H| � N1N−k(1+ε)/4
2 ≥ N1−k(1+ε)/4

2 → ∞. Hence,

MSE(m̂(x0)) = Oe
(
N−1

2
)

for any H satisfying N1|H| → ∞ as N2→ ∞.
• If we set H satisfying N1|H| → 0 as N2 → ∞, we see N1N2|H| = o(N2) and
‖H‖4 = o

(
N−1

2

)
as N2h4 ≤ N2hk ≤ N1hk→ 0. Hence,

MSE(m̂(x0)) = Op

(
(N1N2|H|)−1

)
is always larger when N1|H| → 0 than when N1|H| → ∞ and the optimal band-
width Hopt must not satisfy N1|Hopt |→ 0. It cannot be set that hopt = c(N1N2)

−1
k+4
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since N1|Hopt | = ck
(

N1/Nk/4
2

)4/(k+4)
≥ ckN(4−k)/(k+4)

2 → ∞ which contradicts
our assumption N1|Hopt | → 0.

• If we set H satisfying N1|H| → c > 0 as N2→∞, we have N1N2|H|= O(N2) and
h = c∗N

−1/k
1 for some finite c∗ > 0. Hence, MSE(m̂(x0)) = Op

(
N−4/k

1 +N−1
2

)
= Oe

(
N−1

2

)
as N4/k

1 N−1
2 ≥ N4/k−1

2 → ∞. Without knowing which is the bigger
between C4(x0) and C4,3(x0), we cannot compare MSE(m̂(x0)) under N1|H| →
c > 0 and N1|H| → ∞.

To sum up, minimizing the MSE of m̂(x0) depends on the values of N1, N2
and k. Specifically, the minimum of MSE(m̂(x0)) = Oe

(
N−1

2

)
with Hopt satisfying

N1|Hopt | → ∞ or N1|Hopt | → c > 0. Moreover, it is interesting to observe that the
optimal mean squared error of the pooled local linear estimator is always bounded
by Oe

(
N−1

2

)
for the three-dimensional panel data model with random effects when

two sample indices approach to infinity. The pooled local linear estimator does not
suffer the curse-of-dimensionality problem, which means that the asymptotic vari-
ance term vanishes at the same speed for k ∈ {1, 2, 3}.

Next, we consider the case that k = 4:

• If N1|H| → c > 0 as N2 → ∞, we have h � N−1/4
1 , so that MSE(m̂(x0)) =

Op
(
N−1

1 +N−1
2

)
= Oe

(
N−1

2

)
.

• If N1|H| → 0 as N2 → ∞, N1N2|H| = o(N2) and ‖H‖4 = o
(
N−1

2

)
as N2h4 ≤

N1h4 → 0. Hence, MSE(m̂(x0)) = Op

(
(N1N2|H|)−1

)
is always larger when

N1|H| → 0 than when N1|H| → c > 0 and the optimal bandwidth Hopt must not
satisfy N1|Hopt | → 0.

• If N1|H| → ∞ as N2→ ∞, MSE(m̂(x0))= Op

(
‖H‖4 +N−1

2

)
.

(i) If N1/N2 → ∞, setting h � N−1/4
2 , we have MSE(m̂(x0)) = Oe

(
N−1

2

)
and

N1|H| � N1N−1
2 → ∞.

(ii) If N1/N2→ c≥ 1 for some finite c, we have N2 ‖H‖4→∞ and MSE(m̂(x0))=

Oe

(
‖H‖4

)
is larger than Op

(
N−1

2

)
.

To sum up, the optimal MSE(m̂(x0)) = Oe
(
N−1

2

)
. If N1/N2 → ∞, the optimal

bandwidth satisfies either N1|Hopt | → c > 0 or N1|Hopt | → ∞ depending on the
relative size of C4(x0) and C4,3(x0); if N1/N2→ c≥ 1 holds, the optimal bandwidth
satisfies N1|Hopt | → c > 0 or hopt � N−1/4

1 .
Finally, we consider the case that k ≥ 5:

• If N1|H| →∞, MSE(m̂(x0))= Op
(
N−1

2

)
if ‖H‖4 N2→ c≥ 0 and MSE(m̂(x0))=

Op

(
‖H‖4

)
if ‖H‖4 N2→ ∞. If N1|H| → 0,

MSE(m̂(x0)) = Op

(
‖H‖4 +(N1N2|H|)−1

)
.
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If N1|H| → c > 0, we have MSE(m̂(x0))= Op
(
N−1

2

)
if Nk/4

2 /N1 → c ≥ 0 and

MSE(m̂(x0))= Oe

(
N−4/k

1

)
if Nk/4

2 /N1→ ∞.

• Assume that Nk/4
2 /N1→ ∞.

(i) Setting h� (N1N2)
−1/(k+4) gives N1|H| → 0 and

MSE(m̂(x0)) = Op

(
(N1N2)

−4/(k+4)
)
.

(ii) If ‖H‖4 N2→ c≥ 0, we have N1|H|=O
(

N1N−4/k
2

)
= o(1), so if N1|H|→∞,

we have

‖H‖4 N2→ ∞ and (N1N2)
4/(k+4) ‖H‖4 =

(
N1N2hk+4

)4/(k+4)
→ ∞ .

(iii) If N1|H| → c > 0,

N−4/k
1 (N1N2)

4/(k+4) =
(

Nk/4
2 /N1

)16/[k(k+4)]
→ ∞ .

Therefore, the optimal MSE(m̂(x0))= Op

(
(N1N2)

−4/(k+4)
)

with the optimal

bandwidth hopt � (N1N2)
−1/(k+4).

• Assume that Nk/4
2 /N1→ c≥ 0. We have MSE(m̂(x0))= Op

(
N−1

2

)
if H satisfies

h� N−1/4
2 and N1|H| → ∞ or if N1|H| → c > 0.

Hence, the optimal MSE of m̂(x0) is of order Op

(
(N1N2)

−4/(k+4)
)

if Nk/4
2 /N1→

∞ and is of order Op
(
N−1

2

)
if Nk/4

2 /N1→ c ∈ [0,∞).



Chapter 8
Multi-dimensional Panels in Quantile
Regression Models

Antonio F. Galvao and Gabriel V. Montes-Rojas

Abstract This chapter studies estimation and inference methods for multi-dimen-
sional quantile regression panel data models. First, we discuss the fixed effects
(FE) model. This model imposes a relatively restrictive asymptotic condition on the
growth of the time series dimension relative to the cross section dimension. Never-
theless, extending the FE to three or more dimensions allows for larger data avail-
ability, and might help to relax the stringent condition on the time series. We also
present a model for the smoothed FE quantile regression case. Second, we present
a random effects (RE) model. This model has the advantage of allowing for small
time-series dimension. Finally, we present a correlated RE model. In this case, the
unobservable individual-specific effects are modeled as a function of observables
and a disturbance.

8.1 Introduction

Standard panel data consisting of observations across time for different individuals
allow the possibility of controlling for unobserved individual heterogeneity. Such
heterogeneity can be an important phenomenon, and failure to control for it may
result in misleading inference. This problem is particularly severe when the unob-
served heterogeneity is correlated with explanatory variables. Recently, rich panel
data sets have become widely available and very popular. They provide a large num-
ber of data points, allow analysis of the dynamics of adjustment, as well as control
for individual specific heterogeneity.

Quantile regression (QR) models have provided a valuable tool in economics and
statistics as a way of capturing heterogeneous effects that covariates may have on the
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outcome of interest, exposing a wide variety of forms of conditional heterogeneity
under weak distributional assumptions. Koenker (2004) introduced a general ap-
proach to the estimation of QR for panel data models. The panel QR has attracted
considerable interest in both the theoretical and applied literatures. It allows one
to explore a range of conditional quantiles, thereby exposing a variety of forms of
conditional heterogeneity, and to control for unobserved individual-specific effects.
Controlling for individual heterogeneity, while exploring heterogeneous covariate
effects within the QR framework, offers a more flexible approach to the analysis of
panel data than that afforded by the classical fixed and random effects mean-based
estimation. QR panel data models are able to capture these two types of heterogene-
ity in a single framework.

The extension of the two-dimension to the three or higher-dimensional panel data
framework has implications for modeling, estimation and inference of conditional
quantile models. In turn, these depends on the nature of the multi-dimensional set-
ting, i.e., nested or non-nested, and the type of estimation and inference analyses to
be implemented. Moreover, whether the individual-specific effects are correlated or
not with the covariates, and at which level, are important elements for the analysis
of panel data QR. This chapter studies panel data QR models for multi-dimensional
panels and looks into three-dimensional (and higher-dimensional) settings. We con-
centrate on the standard linear models and discuss the multi-dimensional panels for
both fixed and random effects models, and also for correlated random-effects mod-
els.

First, we discuss the fixed effects (FE) QR model. The FE-QR allows for
individual-specific effects in which no parametric assumptions on the relationship
between the specific effects and the covariates are made. Unfortunately, the standard
FE-QR estimator is subject to the incidental parameters problem. In addition, there
is no general transformation that can suitably eliminate the specific effects in the
QR model. Thus, it has been customary to impose a relatively restrictive condition
on the growth of the time series dimension relative to the cross section dimension.
Nevertheless, extending the standard FE to three dimensions allows for larger data
availability, and might help to relax the stringent condition on the time series. In
this case, it is even possible that the time dimension is fixed, while the other two
dimensions satisfy alternative requirements for asymptotic analysis.

Second, we present the random effects (RE) QR model. The RE-QR model im-
poses that the specific components are independent of the regressors. In spite of this
restriction, in the RE-QR model the unobserved specific effects affect the unobserv-
able variable, which induces heterogeneity across the conditional quantile function
of the dependent variable. In addition, the RE-QR has the advantage of allowing
for time-invariant regressors, and allows the time-series dimension to be small and
fixed.

Finally, we briefly consider the correlated random effects (CRE) QR model. In
this case, the unobservable individual-specific effects are modeled as a function of
observables and a disturbance. In addition, we will suggest specific guidelines for
practitioners in applied work.
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The chapter is organized as follows. Section 8.2 describes the fixed effects mod-
els considering individual-specific heterogeneity in multi-dimensional panels and
analyzes these panel data structures. Section 8.3 studies random-effects models,
while Sect. 8.4 explores correlated random-effects frameworks. Finally, Sect. 8.5
summarizes some specific issues for practitioners.

8.2 Fixed Effects Models

In this section we consider a multi-dimensional FE-QR model. In particular, we
present a three-dimensional panel data set where the variables of the model are
observed along three indices given by the index set (i, j, t) where i ∈ {1, ...,N1},
j ∈ {1, ...,N2} and t ∈ {1, ...,T}, respectively. A FE-QR model with individual-
specific and time-specific effects can be written as

Qτ(yi jt |xi jt ,αi,γ j,λt) = xi jtβ (τ)+αi(τ)+ γ j(τ)+λt(τ), (8.1)

where yi jt is a dependent variable, xi jt is a p-dimensional vector of explanatory
variables, αi and γ j are the i-th and j-th individual-specific effects, respectively, λt
the time-specific effect, and Qτ(yi jt |xi jt ,αi,γ j,λt) is the conditional τ-quantile of yi jt
given (xi jt ,αi,γ j,λt). For future reference, we will define πi jt := (αi,γ j,λt), πi j :=
(αi,γ j), and N = N1 ·N2. This notation simplifies the discussion on the asymptotic
properties, since it implicitly allows us to write N→∞ when both N1 and N2 diverge
to infinity, or when one of these dimensions is fixed and the other grows to infinity.
In practice, it is often the case that only one individual dimension is large (e.g.,
firm-employee linked data when the number of employees is much larger than the
number of firms). Thus, one dimension, say N1, might be small or considered fixed,
while the other(s), say N2, is considered large. Therefore, given the specific model
of interest to establish the asymptotic properties of the desired estimator, one may
consider different scenarios:

(i) N1→ ∞ and N2 fixed, T → ∞, (8.2)
(ii) N1 fixed and N2→ ∞, T → ∞,

(iii) N1→ ∞ and N2→ ∞, T fixed,
(iv) N1→ ∞ and N2→ ∞, T → ∞.

Model (8.1) can be written as

yi jt = xi jtβ (τ)+αi(τ)+ γ j(τ)+λt(τ)+ εi jt(τ), (8.3)

where εi jt(τ) has a zero conditional τ-quantile given (xi jt ,α j,γ j,λt). In general,
each αi, γ j, λt and β can depend on τ , but we assume τ to be fixed throughout the
section and suppress such dependence for notational simplicity whenever there is
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no confusion. Model (8.3) assumes that each individual-specific i and j effect enters
additively in a linear model.

Koenker (2004) defines the conditional τ-quantile of interest for the dependent
variable y conditional on x, for τ ∈ (0,1). Two different models can be proposed
using this set-up depending on the interpretation of the individual-specific effects.
The first is a model in which individual effects do not vary across τ as in Koenker
(2004). In this case, the multi-dimensional effects have a pure location shift effect on
the conditional quantiles. In this case, the pair (i, j) contains intrinsic characteristics
which are assumed to be constant when studying conditional heterogeneity. Thus
covariate heterogeneity is analyzed at a different level to individual heterogeneity.
The second is a model in which individual effects are τ-specific as in Kato et al.
(2012). This is a more flexible approach in which (i, j) effects are allowed to vary
across the conditional heterogeneity. This is called the distributional shift model.
However, the QR restrictions on estimation and asymptotic properties reveal that
the large T requirement applies to both models, and the choice of each model is a
trade-off between flexibility and degrees of freedom (i.e., number of observations
with respect to the number of parameters, including the individual effects, to be
estimated).

The location conditional τ-quantile of interest for the dependent variable y con-
ditional on x is

Qτ(yi jt |xi jt) = β (τ)′xi jt +πi jt , (8.4)

in which π has a pure location shift effect on the conditional quantiles. This quantile
model assumes the restrictions Qτ1(yi jt |xi jt)−Qτ2(yi jt |xi jt) = (β (τ1)−β (τ2))

′xi jt
for all τ1,τ2 ∈ (0,1), that is, covariate heterogeneity is present only through changes
in the slope parameters β .

The distributional conditional τ-quantile of interest for the dependent variable y
conditional on x is

Qτ(yi jt |xi jt) = β (τ)′xi jt +πi jt(τ), (8.5)

in which π has a location-scale shift effect on the conditional quantiles. This quantile
model assumes that Qτ1(yi jt |xi jt)−Qτ2(yi jt |xi jt) = (β (τ1)−β (τ2))

′xi jt +πi jt(τ1)−
πi jt(τ2), for all τ1,τ2 ∈ (0,1), that is, covariate heterogeneity is present through
changes in the slope parameters β and i j-specific intercepts π .

For multi-dimensional panels, we can also consider a “mixed” model in which
some intercept parameters vary with τ , while others do not. The choice of the τ-
specific and τ-invariant components would depend on the nature of the covariate
heterogeneity to be studied.

It is generally assumed that the innovation term ε is independent across individ-
uals, which applied to our case means independence across i and j, but not identi-
cally distributed. If the disturbances are assumed to be identically distributed, then
β (τ) = β ,∀τ ∈ (0,1), i.e., the slope parameters are equal across quantiles, all the
conditional quantiles are parallel and they only change depending on the location. In
general, however, a more flexible model allows for ε to be dependent on the condi-
tioning set (x,α,γ,λ ), in which case β (τ) 6= β for some τ ∈ (0,1). A canonical ex-
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ample of this situation is the location-scale model in which β (τ) = β +g(x)F−1
ε (τ),

for some function g(·) of the covariates.
Now consider the FE-QR model, for which the conditional quantile model of

interest is τ-specific,

Qτ(yi jt |xit ,πi j(τ)) = β (τ)′xi jt +πi j(τ). (8.6)

It is standard in the panel QR literature to treat π as fixed by conditioning on it,
as in Hahn and Newey (2004), Fernandez-Val (2005), and Kato et al. (2012). Be-
low we consider the fixed effects estimation of β , which is implemented by treating
each individual-specific effect also as a parameter to be estimated. However, given
the required estimation of πi j, the FE-QR estimator is, unfortunately, subject to the
incidental parameters problem (see Neyman and Scott, 1948; Lancaster, 2000, for a
review) and will be inconsistent if the number of individual-specific effects diverges
to infinity while the number of time periods T is fixed. It is important to note that,
in contrast to mean regression there is no general transformation that can suitably
eliminate the specific effects in the QR model. This intrinsic difficulty was recog-
nized by Abrevaya and Dahl (2008), among others, and was clarified by Koenker
and Hallock (2000). They remarked that “Quantiles of convolutions of random vari-
ables are rather intractable objects, and preliminary differencing strategies familiar
from Gaussian models have sometimes unanticipated effects” (p.19).

Therefore, given these difficulties, in the QR panel data literature, it is usual to al-
low T to increase to infinity at a higher rate than N to achieve consistent estimators.
As a result, the standard FE-QR model given by equation (8.6) does not consider a
time-specific effect λt as a parameter to be estimated. In a multi-dimensional panel,
careful consideration of asymptotics of the relative dimensions should be consid-
ered. In addition, as we will discuss below, because of the incidental parameters
problem, one will be able to control for at most two out of the three specific effects
(α,γ,λ ). The allowed specific FE will also depend on the asymptotics considered,
as given in cases (i)− (iv) in (8.2) above.

Koenker (2004) and Kato et al. (2012) follow large (N,T ) asymptotics (for other
recent developments, see, e.g., Galvao, 2011; Galvao et al., 2013; Galvao and Wang,
2015). In the nonlinear and QR literatures, the large panel data asymptotics is used in
an attempt to cope with the incidental parameters problem. Canay (2011) proposed
a two-step estimator of the common parameters. The difference is that in his model,
no individual effect is allowed to change across quantiles, and requires an additional
restriction on the conditional average. Graham et al. (2009) show that when T = 2
and the explanatory variables are independent of the error term, the FE-QR estimator
does not suffer from the incidental parameters problem. However, their argument
does not seem to extend to general cases. Rosen (2012) addressed a set identification
problem of the common parameters when T is fixed. Chernozhukov et al. (2013)
considered identification and estimation of the quantile structural function defined in
Imbens and Newey (2009) of a non-separable panel model with discrete explanatory
variables. They studied the bounds of the quantile structural function when T is
fixed, and the asymptotic behavior of the bounds when T goes to infinity.
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In a multi-dimensional setting, the data structure determines the choice of the
individual effects that one is able to control for and determines the nature of the
model. In several cases, the researcher may be interested in exploring a particular
time-invariant covariate set (say across i but not across j). As such, one may choose
to explore heterogeneity across a certain dimension and not the other(s). In addition,
the FE quantile panel models will produce different models to index heterogeneity
depending on the conditional set. For instance, consider the model in equation (8.3).
If (α,γ,λ ) are controlled for, τ corresponds to an index of heterogeneity in the
conditional quantile function of y|(x,α,γ,λ ), which in fact depends on the quantiles
of ε . In addition, the choice of the conditional model may depend on the stringent
requirements on the time series encountered in the literature for asymptotic analysis.
In multi-dimensional panels, additional dimensions are available to the researcher.

8.2.1 Estimation and Implementation

Koenker (2004) and Kato et al. (2012) consider the estimation of the FE using stan-
dard QR for a given quantile-τ as follows

(
π̂, β̂

)
= argmin

π,β

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

ρτ(yi jt − x′i jtβ −d′i jtπ), (8.7)

where di jt is a set of dummy variables that identifies the individual FE for i and j
given by π , and ρτ(u) := u(τ − I(u < 0)) as in Koenker and Bassett (1978). Note
that the coefficients β correspond to the τ-quantile slopes β (τ). The estimation of
the regression parameters can be implemented through a QR estimation augmented
by the inclusion of the di jt dummy variables. Note that standard procedures for the
estimation of the variance-covariance matrix of this augmented dummy variables es-
timator are feasible, and then the inference procedures described in the next section
could follow from these estimation procedures.

The optimization for solving (8.7) can be very large depending on N1, N2 and
T . However, as Koenker (2004) observe, in typical applications, the design matrix
is very sparse. Standard sparse matrix storage schemes only require the space for
the non-zero elements and their indexing locations. This considerably reduces the
computational effort and memory requirements. Galvao and Wang (2015) address
the computational difficulties and implementation problems without sacrificing the
desirable asymptotic properties of the FE-QR strategy. They propose an efficient
minimum distance QR estimator, which is very simple to implement in practice.
This estimator is defined as the weighted average of the specific QR slope estima-
tors, with weights given by the inverses of the corresponding individual variance-
covariance matrices. Moreover, the implementation is not affected by the presence
of unbalanced data as the dummy variables strategy works for both balanced and
unbalanced panels.
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The work in Koenker (2004) also introduced an alternative approach to estimate
QR models for panel data with FE that may be subject to shrinkage by `1 regular-
ization methods. It is well known that the optimal estimator for the random effects
Gaussian model involves shrinking the individual effects toward a common value.
When there is an intercept in the model, this common value can be taken to be the
conditional central tendency of the response at a point determined by the centering
of the other covariates. In the QR model, this would be some corresponding condi-
tional quantile of the response. Particularly, when N is large relative to T , shrinkage
may be advantageous in controlling the variability introduced by the large number
of estimated individual-specific parameters. In this case, the model with shrinkage
is

(
π̂, β̂

)
= argmin

π,β

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

ρτ(yi jt − x′i jtβ −d′i jtπ)+η(
N1

∑
i=1
|αi|+

N2

∑
j=1
|γ j|) , (8.8)

where η ≥ 0 is a (scalar) penalty or regularization parameter. Note that for η → 0
we obtain the FE estimator described above, while as η → ∞ we obtain an estimate
of the model purged of the FE. In the multi-dimensional case, the penalty is allowed
to be different depending on the specific dimensions. For instance we could consider
(ηα ,ηγ), where the penalty parameter becomes ηα ∑

N1
i=1 |α j|+ηγ ∑

N2
j=1 |γ j|. In this

case, we could have different degrees of tolerance for shrinking in the different di-
mensions. Usually for the dimension in which we believe that only a few FE should
be non-zero is where η(·) should be the largest.

8.2.2 Inference Procedures

As stated above, in standard FE-QR models, the asymptotic analysis for both models
requires the time series dimension, T , to increase to infinity to achieve asymptoti-
cally unbiased estimators. In a standard two-dimension FE panel, Kato et al. (2012)
show that we are required to impose more restrictive conditions on T than that found
in the linear panel data FE literature. They show that a sufficient condition to prove
asymptotic normality is N2(logN)3/T → 0, which reflects the fact that the rate of
the remainder term of the Bahadur representation of the FE-QR estimator is of or-
der (T/ logN)−3/4. The slower convergence rate of the remainder term is due to the
non-smoothness of the scores. It is important to note that the growth condition on T
for establishing

√
NT -consistency of the FE-QR estimator (or other FE estimators

in general) is determined so that it “kills” the remainder term. Thus, the rate of the
remainder term is essential in the asymptotic analysis of the FE estimation when N
and T jointly go to infinity. This restriction requires the cross-sectional dimensions
to grow slower than the time-dimension.

In a multi-dimensional setting, asymptotic valid inference will depend on the
growth rate of the sample sizes described in equation (8.2). First, note that scenarios
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(i) and (ii) in (8.2) require the same conditions on the sample size as stated in Kato
et al. (2012). Nevertheless, although these models still require stringent conditions
on N relative to T , they allow the researcher to control for πi j because one of these
dimensions is finite. However, since scenarios (i) and (ii) require large T , one is not
allowed to control for λt .

Second, consider the case (iii) in (8.2). This case is also similar to that in Kato
et al. (2012) with two dimensions diverging, but the time series dimension is fixed.
In this case, one is able to control for only one individual specific effect, i or j,
and the requirements on the sample size growth are imposed on the two individual
dimensions relative to each other, such that one of the dimensions takes the role of
the time series. Note that in this case, since the time series is given, one is also able
to control for λt .

Finally, consider the case (iv) in (8.2). In this case, one is able to control for
the two individual effects, πi j, but note the time effect λt , as T diverges to infinity.
However, it is important to note that the number of parameters in {(αi,γ j)}N1,N2

i=1, j=1 is
N1 +N2, and this is in general considerably smaller than N1 ·N2. As the conditions
discussed are imposed on N (= N1 ·N2) relative to T , these requirements are more
stringent than those that would be required to estimate N1+N2 parameters. The main
intuition is that although the number of parameters to be estimated grows with the
sample size, in the three-dimension panel, the number of parameters to be estimated
(N1+N2) is smaller than the sample size (N = N1 ·N2). Another remark on case (iv)
is that, since there are three dimensions in the panel data, one is able to exchange the
roles of the indices (i, j, t) and estimate one of the individual effects and the time
effect, and hence impose the restriction on the remaining dimension to grow fast
relative to the other two.

In summary, in cases (i) and (ii) choosing λt to be excluded from model (8.6)
is based on the idea that in FE models one mainly wishes to control for individual
heterogeneity, which in this case is captured by πi j. In case (iii), we could, however,
exclude one component in πi j, say αi, and let its dimension, say N1, to increase at
a higher rate than the other dimensions, say N2. In this case, one is able to control
for λt because T is fixed. Finally, in case (iv), one is able to control for two effects
only. In this case, one might be able to control for one individual effect and the time
effect by exchanging the roles of the indices when considering the relative sample
size growth. Therefore, different asymptotic conditions arise depending on different
models. In all cases, we need one particular dimension to grow at a faster rate than
the number of parameters to be estimated.

In practice, the asymptotic variance of FE-QR estimators depends on the density
of the innovation term. For this estimation, different techniques have been suggested
and implemented in the literature to produce a consistent estimation of the variance-
covariance matrix.

Now we describe the asymptotic normality of β̂ for case (iv) in (8.2), which
can be obtained as in Kato et al. (2012). The other cases are parallel to the stan-
dard FE panel data in Kato et al. (2012). Under some regularity conditions, and
N2(logN)3/T → 0, we have that
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√
NT (β̂ −β )

d→ N{0,τ(1− τ)Γ−1VΓ
−1} .

Let

π̃i j := E[ fi j(0|xi j1)xi j1]/ fi j(0) and ΓN := N−1
N1

∑
i=1

N2

∑
j=1

E[ fi j(0|xi j1)xi j1(x′i j1− π̃
′
i j)] ,

and where fi j(u|x) is the density of ui jt = yi jt −πi j− x jitβ conditional on xi j1 and
fi j(u) is the marginal density of ui jt . Let ΓN be nonsingular for each N, and the limit
Γ := limN→∞ ΓN exists and is nonsingular; and let the limit

V := lim
N→∞

N−1
N1

∑
i=1

N2

∑
j=1

E[(xi j1−πi j)(xi j1−πi j)
′]

exist and be nonsingular.
Let ûi jt = yi jt − π̂i j− x′jit β̂ . Kato et al. (2012) propose a kernel estimation pro-

cedure of the variance of the slope parameters, Vβ (τ). Let K : R → R denote
a kernel function (probability density function). Let {hN} denote a sequence of
positive numbers (bandwidths) such that hN → 0 as N → ∞ and use the notation
KhN (u) = h−1

N K (u/hN). Assume that the kernel K is continuous, bounded and of
bounded variation on R, and that hN → 0 and logN/(T hN)→ 0 as N→ ∞.

Define

V̂1β :=
1

NT

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

Khn(ûi jt)xi jt(xi jt − π̂i j)
′,

V̂0β :=
1

NT

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

(xi jt − π̂i j)(xi jt − π̂i j)
′,

where

π̂i j :=
1

f̂i jT

T

∑
t=1

KhN (ûi jt)xi jt , f̂i j :=
1
T

T

∑
t=1

KhN (ûi jt).

Then, one can consistently estimate the variance-covariance matrix as

V̂β (τ) = τ(1− τ)V̂−1
1β

V̂0βV̂−1
1β

.

In practice, as noted above, the variance-covariance matrix can be implemented
from standard QR models with the inclusion of individual-specific dummy vari-
ables.
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8.2.3 Smoothed Quantile Regression Panel Data

A distinctive feature of FE-QR is that its objective function is not differentiable.
Nevertheless, the asymptotic analysis depends on the smoothness of objective func-
tions. Kato et al. (2012) formally established the asymptotic properties of the stan-
dard FE-QR estimator. However, they required a restrictive condition, such that T
grows faster than N2, to show the asymptotic normality of the estimator, and did not
succeed in deriving the bias. The difficulty in handling the standard QR estimator
in panel models is partly explained by the fact that the higher order stochastic ex-
pansion of the scores is an essential technical tool in the analysis (Hahn and Newey,
2004; Hahn and Kuersteiner, 2004) but such expansion is difficult to implement in
the QR case because the Taylor series method is not directly applicable. It is also
important to note that the higher order asymptotic behavior of QR estimators is
non-standard and rather complicated (Arcones, 1998; Knight, 1998).

An alternative method proposed by Galvao and Kato (2016) is to slightly modify
the QR objective function to make it smooth. While this seems an ad-hoc change of
the objective function, its asymptotic gains are remarkable. The idea of smoothing
non-differentiable objective functions goes back to Amemiya (1982) and Horowitz
(1992, 1998). Under suitable regularity conditions, the smoothed FE-QR estimator
has an order O(T−1) bias and hence its limiting normal distribution has a bias in
the mean (even) when N and T grow at the same rate. They propose a one-step
bias correction estimator based on the analytic form of the asymptotic bias. This
is of particular interest in multi-dimensional settings, where the dimension of the
individuals is large.

In an attempt to cope with the incidental parameters problem, Galvao and Kato
(2016) adopt a different approach and propose a model where N and T grow at the
same rate. Instead of the standard QR estimator, the asymptotic properties of the
estimator are defined by a minimizer of a smoothed version of the QR objective
function.

Smoothing the QR objective function was employed in Horowitz (1998) to study
the bootstrap refinement for inference in conditional quantile models. The basic
insight of Horowitz (1998) is to smooth over the indicator function I(yi jt ≤ πi j +
x′itβ ) by using a kernel function. To do so, let K(·) be a kernel function and G(·) be
the survival function of K(·), i.e.,∫

∞

−∞

K(u)du = 1, G(u) :=
∫

∞

u
K(v)dv.

K(·) is not required to be non-negative. Let {hN} be a sequence of positive numbers
(bandwidths) such that hN → 0 as N → ∞ and write GhN (·) = G(·/hN). Note that
GhN (yi jt −πi j− γ j− x′i jtβ ) is a smoothed counterpart of I(yi jt ≤ πi j + x′i jtβ ). Then,
we consider the estimator

(π̂, β̂ ) := arg min
(π,β )

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

(yi jt −πi j− x′i jtβ ){τ−GhN (yi jt −πi j− x′i jtβ )}, (8.9)
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The estimates β̂ are the FE smoothed quantile regression (FE-SQR) estimator of β .
Galvao and Kato (2016) investigate the asymptotic properties of the FE-SQR es-

timator defined by (8.9) and provide conditions under which the FE-SQR estimator
is consistent and has a limiting normal distribution with a bias in the mean when N
and T grow at the same rate. In particular, assuming that N/T → ρ for some ρ > 0,
and under some regularity conditions,

√
NT (β̂ −β )

d→ N(
√

ρb,Γ−1VΓ
−1) , (8.10)

where

b := Γ
−1

 lim
N→∞

 1
N

N1

∑
i=1

N2

∑
j=1

si j

ω
(1)
i j πi j−ω

(2)
i j +

si jω
(3)
i j νi j

2


 , (8.11)

with
si j := 1/ fi j(0) , πi j := si jE[ fi j(0|xi j1)xi j1] ,

νi j := f (1)i j (0)πi j−E[ f (1)i j (0|xi j1)xi j1] ,

ΓN := N−1
∑

N1
i=1 ∑

N2
j=1 E[ fi j(0|xi j1)xi j1(x′i j1−π ′i j)] ,

and the limit Γ := limN→∞ ΓN , and

V := lim
N→∞

N−1
N1

∑
i=1

N2

∑
j=1

Vi j

with Vi j denoting the covariance matrix of the term

T−1/2
T

∑
t=1
{τ− I(ui jt ≤ 0)}(xi jt −πi j) .

Moreover,

ω
(1)
i j := ∑

1≤|k|≤T−1

(
1− |k|

T

){
τ fi j(0)−

∫ 0

−∞

fi j,k(0,u)du
}
,

ω
(2)
i j := ∑

1≤|k|≤T−1

(
1− |k|

T

){
τE[ fi j(0|xi j1)xi j1]

−E
[

xi j1

∫ 0

−∞

fi j,k(0,u|xi j1,xi j,1+k)du
]}

,

ω
(3)
i j := ∑

|k|≤T−1

(
1− |k|

T

)
Cov{I(ui j1 ≤ 0), I(ui j,1+k ≤ 0)} .

The exact form of the term Vi j is given by
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Vi j = ∑
|k|≤T−1

(
1− |k|

T

)
E
[
{τ− I(ui j1 ≤ 0)}{τ− I(ui j,1+k ≤ 0)}×

× (xi j1−πi j)(xi j,1+k−πi j)
′] .

If there is no time series dependence, i.e., for each i, j, the process {(yi jt ,xi jt), t =
0,±1,±2, . . .} is i.i.d., then

Vi j = τ(1− τ)E[(xi j1−πi j)(xi j1−πi j)
′] , ω

(1)
i j = 0 , ω

(2)
i j = 0 , and

ω
(3)
i j = τ(1− τ)

8.2.3.1 Bias Correction – Analytical Method

As stated in the literature, the problem of the limiting distribution of
√

NT (β̂ −β )
not being centered at zero is that usual confidence intervals based on the asymptotic
approximation will be incorrect. In particular, even if b is small, the asymptotic bias
can be of moderate size when the ratio N/T is large. In this subsection, we shall
consider the bias correction to the FE-SQR estimator.

Consider a one-step bias correction based on the analytic form of the asymptotic
bias. Put ûi jt := yit − π̂i j − x′i jt β̂ . The terms fi j := fi j(0),si j,πi j,νi j and Γ can be
estimated by

f̂i j :=
1
T

T

∑
t=1

KhN (ûi jt) , ŝi j :=
1
f̂i j

, π̂i j :=
ŝi j

T

T

∑
t=1

KhN (ûi jt)xi jt ,

ν̂i j :=
1

T h2
N

T

∑
t=1

K(1)(ûi jt/hN)(xi jt − π̂i j) ,

Γ̂N :=
1

NT

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

KhN (ûi jt)xi jt(x′i jt − π̂
′
i j) ,

where K(1)(u) = dK(u)/du. The estimation of the terms ω
(1)
i j ,ω

(2)
i j and ω

(3)
i j is a

more delicate issue, since it reduces to the estimation of long run covariances. As in
Hahn and Kuersteiner (2004), we make use of a truncation strategy. Define

φi j(k) :=
∫ 0

−∞

fi j,k(0,u)du,

ϕi j(k) := E
[

xi j1

∫ 0

−∞

fi j,k(0,u|xi j1,xi j,1+k)du
]
,

ρi j(k) := E[I(ui j1 ≤ 0)I(ui j,1+k ≤ 0)].

Since φi j(k)≈ E[KhN (ui j1)I(ui j,1+k ≤ 0)], it can be estimated by
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φ̂i j(k) :=
1
T

min{T,T−k}

∑
t=max{1,−k+1}

KhN (ûi jt)I(ûi j,t+k ≤ 0).

Similarly, ϕi j(k) can be estimated by

ϕ̂i j(k) :=
1
T

min{T,T−k}

∑
t=max{1,−k+1}

KhN (ûi jt)I(ûi j,t+k ≤ 0)xi jt .

The term ρi j(k) can be estimated by its sample analogue:

ρ̂i j(k) :=
1
T

min{T,T−k}

∑
t=max{1,−k+1}

I(ûi jt ≤ 0)I(ûi j,t+k ≤ 0).

Take a sequence mN such that mN→∞ sufficiently slowly. Then, ω
(1)
i j ,ω

(2)
i j and ω

(3)
i j

can be estimated by

ω̂
(1)
i j := ∑

1≤|k|≤mN

(
1− |k|

T

)
{τ f̂i j− φ̂i j(k)},

ω̂
(2)
i j := ∑

1≤|k|≤mN

(
1− |k|

T

)
{τ f̂i jπ̂i j− ϕ̂i j(k)},

ω̂
(3)
i j := τ(1− τ)+ ∑

1≤|k|≤mN

(
1− |k|

T

)
{−τ

2 + ρ̂i j(k)}.

The bias term b is thus estimated by

b̂ := Γ̂
−1

N

 1
N

N1

∑
i=1

N2

∑
i=1

ŝi j

ω̂
(1)
i j π̂i j− ω̂

(2)
Ni j +

ŝi jω̂
(3)
i j ν̂i j

2

 .

We define the one-step bias corrected estimator by β̂ 1 := β̂ − b̂/T . In practice, there
is no need to compute the terms τ f̂i j and τ f̂i jπ̂i j in ω̂

(1)
i j and ω̂

(2)
i j , respectively, as

they are canceled out by the difference ω̂
(1)
i j π̂i j− ω̂

(2)
i j . Additionally, there is no need

to use the same kernel and the same bandwidth to estimate β and b.
Galvao and Kato (2016) show that the bias corrected estimator, β̂ 1, has the lim-

iting normal distribution with mean zero and the same covariance matrix as β̂ as

√
NT (β̂ 1−β )

d→ N(0,Γ−1VΓ
−1),

when mN → ∞ such that m2
N(logN)/(T h2

N)→ 0.
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8.2.3.2 Jackknife

Galvao and Kato (2016) also consider the half-panel jackknife method originally
proposed by Dhaene and Jochmans (2015), as an estimator. This method is an auto-
matic way of removing the bias of β̂ . Suppose for a moment that T is even. Partition
{1, . . . ,T} into two subsets, S1 := {1, . . . ,T/2} and S2 := {T/2+1, . . . ,T}. Let β̂Sl
be the FE-SQR estimate based on the data {(yi jt ,xi jt),1≤ i≤N1,1≤ j≤N2, t ∈ Sl}
for l = 1,2. The half-panel jackknife estimator is defined as β̂1/2 := 2β̂− β̄1/2, where
β̄1/2 := (β̂S1 + β̂S2)/2. For simplicity, suppose for a moment that we use the same
bandwidth to construct β̂ and β̂Sl (l = 1,2). Then, from the asymptotic representa-
tion of the FE-SQR estimator, it can be shown that under some regularity conditions

√
NT (β̂1/2−β )

d→ N(0,Γ−1VΓ
−1).

The half-panel does not require the non-parametric estimation of the bias term and
at the same time is easy to implement empirically.

8.3 Random Effects Models

Random effects (RE) models have recently been considered in the QR panel data
framework. As noted in Chap. 2, RE models have two main advantages. First, the
RE approach does not suffer from the incidental parameters problem, that is the
number of parameters to take into account does not increase with the sample size
(i.e., N). This is an important restriction to be lifted for QR models as noted pre-
viously, because for FE-QR models the existing sufficient conditions under which
the asymptotic bias of the FE-QR vanishes require T >> N. For the general multi-
dimensional setting, this is an important restriction for models in which the number
of intercepts is of the order O(N1 +N2) or O(N1 ·N2). Koenker (2004) argues that
the latter “would certainly be useful for groups of individuals: a distributional shift
for men versus women, or for blacks versus whites. However, in most applications
the [T ], the number of observations in the time series, would be relatively modest
and then it is quite unrealistic to attempt to estimate a τ-dependent, distributional,
individual effect” (p.76). In most applications, the time series dimension T is indeed
relatively small compared to the number of individuals.

Second, the RE model also makes possible the identification of parameters asso-
ciated with individual (and time) invariant variables. In a multi-dimensional frame-
work, this may be of interest for the applied researcher that wants to control for
(i, j, t) heterogeneity while exploring covariate heterogeneity across conditional
quantiles.

Galvao and Poirier (2015) develop a RE model for QR panel data with time in-
variant regressors. They establish identification, and develop practical estimation
and inference procedures. In this section, we extend the RE model to the multi-



8 Multi-dimensional Panels in Quantile Regression Models 253

dimensional context and apply a simple pooled QR estimator to estimate the coef-
ficients of interest and establish its statistical properties. We also suggest a cluster
robust variance-covariance matrix estimator for inference, and establish its uniform
consistency. The RE model is interesting because it allows the researcher to control
for time-invariant regressors, as well as use small a panel where the time dimension,
T , is small.

8.3.1 Model

Consider now a linear RE-QR model with scalar multi-dimensional specific effects
(for simplicity, we follow the notation of Chap. 1 rather than Chap. 2). Let zi j be a
set of covariates that does not vary across t.

Following Galvao and Poirier (2015), we begin the discussion with a random
coefficients representation of the form

yi jt = c(Ui jt)+ x′i jtβ (Ui jt)+ z′i jδ (Ui jt), (8.12)

where Ui jt represents the heterogeneity in responses and can depend on both εi jt and
πi j, as

Ui jt ≡U(πi j,εi jt), (8.13)

with U(·, ·) being a scalar and unspecified non-parametric function. Note that equa-
tion (8.13) allows the unobserved heterogeneity to depend on both the independent
unobserved component, εi jt , and the individual-specific components, πi j, in an un-
restricted form. The functions c(·),β (·) and δ (·) in (8.12) quantify the distributional
effects for the intercept, and the time-varying and time-invariant regressors, xi jt and
zi j respectively. Note that for the RE-QR models, since the time series dimension
T is fixed, one can easily include a time-specific effect λt as regressors with corre-
sponding parameters to be estimated inside the vector xi jt in equation (8.12), hence
we only consider πi j in equation (8.13).

The RE assumption in standard linear mean panel data models restricts the unob-
served component, πi j, to being uncorrelated with all regressors. We generalize this
assumption to the model in (8.12)–(8.13) by assuming the following independence
condition

(πi j,εi jt)⊥⊥ (xi jt ,zi j). (8.14)

The stronger independence assumption in (8.14) is used due to the non-linearity
in πi j of equations (8.12)–(8.13). Thus the unobserved heterogeneity U(πi j,εi jt) is
independent of (xi jt ,zi j), which gives rise to the following quantile representation

Qτ(yi jt |xi jt ,zi j) = c(τ)+ x′i jtβ (τ)+ z′i jδ (τ) , (8.15)

where the presence of τ on the right-hand side follows from our previous normal-
ization of Ui jt and from Qτ(Ui jt |xi jt ,zi j) =Qτ(Ui jt) = τ . Equation (8.15) establishes
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the linear RE-QR model, given equations (8.12)–(8.13), and condition (8.14). For
notation convenience define wi jt = [1,x′i jt ,z

′
i j]
′ and θ(.) = [c(.),β (.),δ (.)].

Before we present the estimation, it is important to discuss the differences be-
tween the FE-QR and the RE-QR. Galvao and Poirier (2015) show that the rela-
tionship between RE and FE is more delicate for quantile models than for standard
mean-regression models. In a linear panel model, traditional conditional mean FE
and RE estimation are based on the same linear model, which often takes the form

yi jt = x′i jtβ +πi j + εi jt .

Under FE, i.e., Cov(αi j,xi jt) 6= 0, the “within” estimator can recover β . On the other
hand, if the RE assumption of Cov(αi j,xi jt) = 0 is assumed, the pooled regression
estimator will also be consistent for β . However, in QR models, the FE and RE
models differ substantially.

To see this difference, consider the additive-in-πi j linear FE-QR model, which
can be represented as

yit = πi j + x′i jtβ (εi jt). (8.16)

There are two important points regarding model (8.16). First, note that under FE
or RE, the conditional model yields Qτ(yi jt |xi jt ,πi j) = πi j + x′i jtβ (τ), a linear ex-
pression. Under some regularity conditions, and no restriction on the relationship
between πi j and xi jt , Kato et al. (2012) show that β (τ) can be estimated consistently
by a QR with individual-specific dummy variables when T is large. Note that the
inclusion of individual-specific dummy variables precludes one from having time-
invariant regressors. Nevertheless, even if πi j ⊥⊥ xi jt holds in (8.16) a simple RE
estimator would be unable to consistently estimate β (τ) since the conditional quan-
tile function would be misspecified if we do not condition on the individual specific
effects πi j. This implies that the pooled QR and the FE-QR estimators estimate dif-
ferent quantities.

Second, note that there are differences between Qτ(yi jt |xi jt ,πi j), the conditional
model, and Qτ(yi jt |xi jt), the marginal model. Even if πi j ⊥⊥ xi jt holds in (8.16), the
conditional quantile of yi jt given xi jt might not be linear in xi jt since Qτ(yi jt |xi jt) 6=
Qτ(πi j)+x′i jtβ (τ), because the quantile of a sum is generally different from the sum
of the quantiles by the non-linearity of the quantile operator.1 Again, the pooled QR
and the FE-QR estimators estimate different quantities.

In equations (8.12)–(8.13), consider an alternative model which is non-additive
in the individual-specific effect, αi, as

yi jt = x′i jtβ (U(πi j,εi jt)).

Under assumption (8.14), the conditional quantile of yi jt given xi jt in the above
equation, i.e., the marginal model, is linear in xi jt and β (τ). Again, the conditional

1 The conditional quantile of the sum will be equal to the sum of conditional quantiles if conditional
co-monotonicity between πi ji and x′it β (εi jt) holds conditional on xi j . This is ruled out by the con-
ditional independence of πi j and εi jt given xi j since co-monotonic variables cannot be independent
(see Galvao and Poirier (2015) for a proof of this result).
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model will yield a different effect of xi jt on yi jt , so a FE estimator with individual-
specific dummy variables would not recover the same coefficients on xi jt due to
the non-additivity of πi j. Thus, the FE-QR and RE-QR estimators will converge to
different quantities, since they must rely on different modeling assumptions, which
stands in contrast to the linear mean-regression panel case, where both the FE and
RE estimators are consistent. This is due to the fact that under RE, the marginal and
conditional models for linear, mean-regression panels yield the same effect of xi jt
on yi jt ,2 while these effects differ for all models considered here.

Another feature of the non-additive RE-QR model is that a failure of the RE
assumption (8.14) will imply that the conditional quantile of yi jt is no longer linear
in wi jt , because the composite unobserved heterogeneity term Ui jt will generally be
correlated with wi jt . We can then write the conditional quantile of yi jt as follows

Qτ(yi jt |wi jt) = w′i jtθ(Qτ(Ui jt |wi jt))

≡ w′i jt θ̃(τ;wi jt),

where θ̃(τ;wi jt) is a non-parametric function of τ and wi jt . Graham et al. (2015)
discuss the non-parametric identification and estimation of this model, and more
specifically of the unconditional quantile effect θ(τ).3

8.3.2 Estimation and Implementation

Based on the identification condition (8.14) and the model given in (8.15), a simple
pooled QR estimator for θ(τ)= [c(τ),β (τ)′,δ (τ)′]′ can be employed. The estimator
is defined as follows:

θ̂(τ)≡ argmin
θ

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

ρτ(yi jt −w′i jtθ), (8.17)

where ρτ(u)≡ {τ−1(u≤ 0)}u is, again, the check function (Koenker and Bassett,
1978). Therefore, the practical estimation procedure for the coefficients of interest
is very simple and can thus be implemented through standard QR estimation. First,
one stacks the data, and second, applies a simple QR. Nevertheless, given that the
individual effects induce clustering, the inference needs to be adjusted. We describe
inference procedures in the next section.

2 This can be seen from E[yi jt |xi jt ,πi j] = πi j + x′i jt β and E[yi jt |xi jt ] = E[πi j]+ x′i jt β .
3 These differences between the RE and FE models in the QR case make testing for the presence
of RE very important in the QR context. Galvao and Poirier (2015) provide such a test.
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8.3.3 Inference Procedures

Under some standard regularity conditions, Galvao and Poirier (2015) derive the
asymptotic normality of the RE-QR estimator as follows. For a given quantile τ of
interest, as N→ ∞, θ̂(·)

√
N(θ̂(τ)−θ(τ))

d→ N(0,Γ (τ)−1V (τ)Γ (τ)−1) ,

where Γ (τ)≡ E
[

1
T ∑

T
t=1 wi jtw′i jt fyi jt (w

′
i jtθ(τ)|wi j)

]
, and

V (τ,τ ′) =
1

T 2

T

∑
s=1

T

∑
t=1

E
[
(1(vit(τ)≤ 0)− τ)(1(vis(τ

′)≤ 0)− τ
′)XitX ′is

]
. (8.18)

The existence of the RE in the model generates cluster-dependence, and thus the
standard errors require a cluster-robust variance-covariance matrix estimation.

For given quantiles of interest, the variance-covariance matrix of θ̂(τ) is

Γ (τ)−1V (τ)Γ (τ)−1

with components Γ (τ) = E
[

1
T ∑

T
t=1 wi jtw′i jt fyi jt (w

′
i jtθ(τ)|wi j)

]
, and (8.18) can be

rewritten as

V (τ) = E

[
1

T 2

T

∑
s=1

T

∑
t=1

(1(vi jt(τ)≤ 0)− τ)(1(vi js(τ)≤ 0)− τ)wi jsx′i jt

]

=
τ(1− τ)

T 2

T

∑
t=1

E[wi jtw′i jt ]

+
1

T 2 ∑
s6=t

E
[
Cov(1(vi js(τ)≤ 0),1(vi jt(τ)≤ 0)|wi js,wi jt)wi jsw′i jt

]
,

where vit(τ) ≡ yi jt − (c(τ)+ x′i jtβ (τ)+ z′i jγ(τ)) and f (.) is the conditional density
of yi jt given wi j = [wi j1,wi j2, ....,wi jT ]. Note that in the second component, the sec-
ond term disappears if there is no intra-unit dependence of the QR residuals. Thus,
using simple standard errors for the pooled QR estimator without correcting for the
cluster-dependence will produce incorrect inference unless the second term is zero.

To conduct practical inference, consider

Γ̂ (τ) =
1

NT

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

wi jtw′i jt
1

hN
K
(

v̂i jt(τ)

hN

)
,

where v̂i jt(τ) are the estimated residuals, and K(·) is a kernel function of bounded
variation, and hN is a bandwidth. This is a variant of the Powell (1986) kernel es-
timator for QR in cross-sectional models. The component V (τ) can be estimated
by
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V̂ (τ) =
τ(1− τ)

NT 2

N1

∑
i=1

N2

∑
j=1

T

∑
t=1

wi jtw′i jt

+
1

NT 2

N1

∑
i=1

N2

∑
j=1

∑
s 6=t

wi jsw′i jt(1(v̂i js(τ)≤ 0)− τ)(1(v̂i jt(τ)≤ 0)− τ).

8.4 Correlated Random Effects Models

Another alternative class of models for QR panel data is the correlated random ef-
fects. The correlated RE model of Chamberlain (1982, 1984) views the unobserv-
able individual specific component πi j as a linear projection onto the observables
plus a disturbance. The intuition behind these models is that a rich set of covariates
is able to explain unobserved heterogeneity and what is left is idiosyncratic noise.
This idea has also been implemented in QR panel data models.

Abrevaya and Dahl (2008) introduced an alternative approach to the FE-QR,
which estimates QR models for panel data employing the correlated random effects
(CRE) model of Chamberlain (1982). The unobservable individual specific effect is
modeled as a linear projection onto the observables and a disturbance. Geraci and
Bottai (2007) consider a RE approach for a single quantile assuming that the out-
come variable is distributed as an asymmetric Laplace distribution conditional on
covariates and individual effects. Arellano and Bonhomme (2016) introduce a class
of QR estimators for short panels, where the conditional quantile response function
of the unobserved heterogeneity is specified as a function of observables. They de-
velop a model general model for nonlinear panel data that covers static and dynamic
autoregressive models, models with general predetermined regressors, and models
with multiple individual effects. However, the correlated RE requires a specification
of the individuals specific effects as a known function of the observables.

Extensions to the multi-dimensional case allow for different covariates to be used
for each specific components, and as such, to be able to produce a more accurate
model of unobserved effects. Let zi, w j and b j be covariate sets that only vary on a
given dimension, i, j, and t, possibly nested within xi jt , and let (ai,g j,rt) be unob-
served component such that

αi = λ
′
1zi +ai,

γ j = λ
′
2w j +g j,

λt = λ
′
3bt + rt .

Following Abrevaya and Dahl (2008), the strategy is to replace them into equa-
tion (8.5) to obtain an explicit model of the quantiles as

Qτ(yi jt |xi jt) = β (τ)′xi jt +λ1(τ)
′zi +λ2(τ)

′w j +λ
′
3bt .
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Arellano and Bonhomme (2016) develop an estimation strategy for general non-
linear panel models. They specify outcomes yi jt as a function of covariates xi jt and
latent heterogeneity πi j as

yi jt =
K1

∑
k=1

θk(Ui jt)gk(xi jt ,πi j),

and similarly specify the dependence of πi j on covariates

πi j =
K2

∑
k=1

δk(Vi j)hk(xi jt),

where Ui j1, ...,Ui jT ,Vi j are independent uniform random variables, and g() and h()
belong to some family of functions. Outcomes and heterogeneity are monotone in
Ui jt and Vi j, respectively, so the above models correspond to conditional quantile
functions. This is a correlated RE model that can become arbitrarily flexible as K2
increases. For the multi-dimensional case, this could be made as

αi =
K2

∑
k=1

δ
α
h (Vαi)hα

k (xi jt),

γ j =
K3

∑
k=1

δ
γ

h (Vγ j)h
γ

k(xi jt),

where heterogeneity is modeled in a different way for each dimension.

8.5 Specific Guidelines for Practitioners

QR has attracted considerable interest in econometrics and statistics. It offers an
easy-to-implement method to estimate conditional quantiles. Recently, there has
been a growing literature on estimation and testing using QR for panel data models.
Panel QR has provided a valuable method of statistical analysis of the heterogeneous
effects of policy variables.

Nevertheless, as discussed above, one particular difficulty in QR panel data mod-
els, both for fixed and random effects models, is that the asymptotic variance of
QR estimators depends on the density of the innovation term, and it is not easy
to compute in practice. We have presented several procedures for estimating the
variance-covariance matrix in their corresponding models, all of them with a ker-
nel implementation whenever the density is involved. This in turn depends on the
specific multi-dimensional setting. Additional research is needed to evaluate the rel-
ative performance of each procedure. By selecting a specific model depending on
the dimension to be considered as fixed or random, we are in effect modeling differ-
ent quantiles, that is, different models to analyze the heterogeneity of the effects of
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covariates on an outcome variable. This should be guided by the specific interest of
the empirical analysis, in terms of why we are studying quantile heterogeneity.

Inference procedures and confidence interval construction can be greatly simpli-
fied by using bootstrap methods. Specific designs for different QR problems may be
guided by the bootstrap results developed in the mean regression case. In particular,
different bootstrapping procedures for panel data models, as in Kapetanios (2008),
can be easily adapted to the multi-dimensional setting. Galvao and Montes-Rojas
(2015) argue that bootstrapping techniques greatly simplify the variance-covariance
estimation.4 They propose to construct confidence intervals for the parameters of
interest using percentile bootstrap with pairwise resampling. In practice, FE and RE
QR parameters’ point estimates can thus be implemented using standard QR codes
available in econometric softwares, that work for both balanced and unbalanced
panel data, and different bootstrapping techniques could be adapted for either FE or
RE.

As discussed above, panel data QR estimators’ consistency and other asymptotic
properties rely on the dimension of the heterogeneity being described, either as FE
or RE. In the multi-dimensional setting, this may exponentially grow depending on
the researcher’s choice. If for mean-based models this is a serious issue for effi-
ciency reasons (i.e., degrees of freedom), the asymptotic results above should sug-
gest caution in QR models with large dimensions. In particular, smoothed and/or
mixed models should be considered to reduce potential asymptotic bias. As a prac-
tical example, if the researcher can choose which dimension is potentially correlated
with covariates of interest and which one is not, then the former could be considered
as a fixed-parameter to be estimated, with the corresponding incidental parameter
problem, and the other could be modeled as a random effect. Galvao and Poirier
(2015) test for RE vs. FE models could help in this direction.
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Chapter 9
Models for Spatial Panels

Julie Le Gallo and Alain Pirotte

Abstract Economic interactions in space and other forms of peer effects now re-
ceive considerable attention both from a theoretical as well as from an applied
perspective, especially on panel data. Until recently, the methodologies and spec-
ifications developed are related mainly to two-dimensional approaches that refer to
observations on a cross-section of households, firms, countries, etc. over several
time periods. However, lots of data exhibit more complex multi-dimensional struc-
tures that could be non-hierarchical or hierarchical. The multi-dimensional mod-
els that are not necessarily connected to a hierarchical structure are described in
Chaps. 11, 13 and 14. Therefore, this chapter considers the case of hierarchical
multi-dimensional spatial panels. We organize all the recent literature and empha-
size a range of issues pertaining to the specification, estimation, testing procedures
and prediction for these models. These issues include a mixture of usual topics on
panel data, i.e., the form taken by individual and temporal heterogeneity, or topics
more specific to spatial econometrics, i.e., dependence among observations across
space, structures of the spatial matrix, Maximum Likelihood (ML) and Generalized
Method of Moments (GMM) approaches, the determination and inference of direct
and indirect (or spillover) effects. Only static panel data models will be considered.

9.1 Introduction

Spatial econometrics has now reached a stage of maturity (see Anselin, 2010). While
originally most of the work in this field was inspired by research questions arising
in regional science and economic geography, its definition and scope have moved
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to mainstream economics and other social sciences, such as sociology or political
science. Economic interactions in space and other forms of peer effects now receive
considerable attention both from a theoretical as well as from an applied perspective.
The applications making use of spatial econometrics have risen exponentially in the
last two decades.

The first generation of spatial models was derived for cross-sectional data (El-
horst, 2014, p. 2). It is only since the 2000s that an important literature (second gen-
eration models) has developed to deal with spatial panel data; see, among others,
Anselin et al. (2008); LeSage and Pace (2009); Lee and Yu (2010a); Elhorst (2010b,
2014); Lee and Yu (2015) for literature reviews. In this context, the methodolo-
gies and specifications developed are mainly related to two-dimensional approaches
that refer to observations on a cross-section of households, firms, countries, etc. over
several time periods. However, lots of data exhibit more complex multi-dimensional
structures.

Examples of such multi-dimensional structures are gravity models, where eco-
nomic flows (such as trade, foreign direct investment, etc.) between spatial objects
(typically countries or regions) are modelled through three-dimensional panel data
models with individual and time-specific fixed effects and also possibly bilateral
interaction effects or other forms of composite fixed effects. Chapter 1 provides a
full account of estimation and inference issues for multi-dimensional fixed effects
panel data models. An alternative approach is to focus on the covariance structures
using random effects rather than fixed effects, following the philosophy set out in
so-called multi-level models in statistics, extensively used in education science (see,
for instance, Goldstein, 1995). Multi-dimensional panel data models with random
effects are presented in Chap. 2 (see also Mátyás et al., 2012 and Pus et al., 2013
for examples). The way spatial autocorrelation and spillovers can be introduced in
such models is detailed in Chap. 11. Other cases of multi-dimensional data can be
found in the international economics literature, with one dimension pertaining to
countries, one dimension to industries or sectors, and the last dimension to time.
Unobserved heterogeneity is in these cases typically modelled with fixed effects.
Chapter 14 provides an example of such a structure, focusing mainly on the impacts
of information and communication technologies, R&D and market regulations on
productivity growth. None of the multi-dimensional models mentioned above nec-
essarily connected to a hierarchical structure, and are described in Chaps. 11, 13 and
14. Therefore, we will not discuss them further here.

Another interesting topic to consider arises when the multi-dimensional structure
may be hierarchical. For example, house price data naturally exhibit a nested struc-
ture, typically grouped by district within counties. Other examples concern regional
data that can be observed at several nested spatial scales (NUTS3 regions nested
in NUTS2 regions nested in NUTS1 regions in Europe), data on firms that may be
grouped by industry, or data on air pollution that may be grouped by observation
station within a city, a city within a country, and by country. Corrado and Fingleton
(2012) also give another example of property taxes. These examples emphasize the
need to account for the nested hierarchical structure of the data.
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Early work on hierarchical non-spatial panels was carried out by Fuller and
Battese (1973); Montmarquette and Mahseredjian (1989); Antweiler (2001); Bal-
tagi et al. (2001, 2002); Davis (2002), and more recently by Baltagi and Pirotte
(2013). The nested structure is modelled using covariance structures with random
effects. Spatial interdependence and spatial heterogeneity, which are quite naturally
a feature of multi-dimensional data containing a cross-sectional dimension, compli-
cates the specifications and estimation procedures (see, for example, Baltagi et al.
(2014b), Baltagi and Pirotte (2014) or Fingleton et al. (2017), which derive spatial
nested panel data models with random effects concerning only one level, the most
disaggregated). Overall, with the increasing availability of spatial data observed at
different levels, the field dealing with multi-dimensional nested spatial panel data is
becoming an important theoretical and applied topic.

In this chapter, we indeed focus on hierarchical spatial panels. We organize all
this recent literature and emphasize a range of issues related to the specification, es-
timation, testing procedures and prediction for these models. These issues include a
mixture of usual topics on panel data, i.e., the form taken by individual and tempo-
ral heterogeneity, or topics more specific to spatial econometrics, i.e., dependence
among observations across space, structures of the spatial matrix, Maximum Like-
lihood (ML) and Generalized Method of Moments (GMM) approaches, the deter-
mination and inference of direct and indirect (or spillover) effects. Only static panel
data models will be considered. This chapter contains six sections. Sect. 9.2 presents
how traditional spatial cross-section models and two-dimensional panel data models
can be extended to multi-dimensional nested spatial panels, along the lines set out
previously. Next, we also tackle, in particular, extensions of estimation (Sect. 9.3),
testing (Sect. 9.4) and prediction (Sect. 9.5). Sect. 9.6 presents a range of special
topics, namely how coefficient heterogeneity can be accounted for. Lastly, Sect. 9.7
ends with some concluding remarks.

9.2 Spatial Models

9.2.1 The Baseline Model

In this section, we focus on the most relevant three-dimensional model that com-
bines three different types of spatial interactions effects, i.e., endogenous interac-
tion effects (spatial lag on the dependent variable y), exogenous interaction effects
(spatial lags on the explanatory variables X) and interaction effects among the dis-
turbances (for example, using a Spatial AutoRegressive (SAR) process or a Spatial
Moving Average (SMA) process on ε). Using similar notations to that in Chap. 1,
we consider three-dimensional panel data where the dependent variable is observed
along three indices, yi jt with i = 1,2, . . . ,N, j = 1,2, . . . ,Mi and t = 1,2, . . . ,T . N
denotes the number of groups. Mi denotes the number of individuals in group i, so
in total there are S = ∑

N
i=1 Mi individuals. T represents the number of periods. Since
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we allow for an unequal number of individuals across the N groups, the panel may
therefore be unbalanced in the individual dimension, although it is balanced in the
time dimension. This kind of structure is common in practice, for example, if we
group data on firms by industry over a balanced time dimension.1 The number of
observations is therefore T S.

In the case of a hierarchical structure, suppose that the index j pertains to individ-
uals that are nested with the N groups. Assuming that spatial autocorrelation only
takes place at the individual level and that the slope coefficients are homogenous,
the spatial specification takes the form

yi jt = ρ

N

∑
g=1

Mg

∑
h=1

wi j,ghyght + xi jtβ +
N

∑
g=1

Mg

∑
h=1

wi j,ghxghtθ + εi jt , (9.1)

where yi jt is the dependent variable, in which the subscript denotes the individual
j in group i at time period t. xi jt is a (1×K) vector of explanatory (exogenous)
variables, while β , like θ , represents a (K×1) vector of parameters to be estimated.
εi jt is the disturbance, the properties of which will be discussed below. The weight
wi j,gh = wk,l is the (k = i j; l = gh) element of the spatial matrix WS with i j denoting
individual j within group i, and similarly for gh. Thus k, l = 1, . . . ,S and WS is a (S×
S) known spatial weights matrix which has zero diagonal elements and is usually
row-normalized so that for row k, ∑

N
g=1 ∑

Mg
h=1 wk,gh = 1. Overall, WS is assumed non-

stochastic, and its row and column sums are required to be uniformly bounded in
absolute value. ρ is the spatial lag parameter to be estimated. This coefficient is
bounded numerically to ensure spatial stationarity, i.e., e−1

min < ρ < 1 where emin is
the minimum real characteristic root of WS.

Model (9.1) implies that unobservable heterogeneity is only captured through the
regression constant or a composite disturbance term, see Sect. 9.2.2. Nevertheless,
the heterogeneity structure could be more complex, especially on multi-dimensional
panels. Sect. 9.6.1 tackles this, mainly considering simultaneously the unobserved
and observed heterogeneity, i.e., relaxing the assumption of a constant regression
coefficient in (9.1).

Moreover, in contrast with the usual panel data framework, the disturbance εi jt
could be contemporaneously correlated. A simple and widely used approach to mod-
elling spatial error dependence is to assume a SAR process at the individual level,
such as

εi jt = λ

N

∑
g=1

Mg

∑
h=1

mi j,ghεght +ui jt . (9.2)

The weight mi j,gh is an element of the spatial matrix MS which satisfies the same
assumptions as the one of WS. For simplicity, we assume MS =WS. λ is the spatial
autoregressive parameter to be estimated. ui jt is assumed to be i.i.d.(0,σ2

u ). For a
cross-section t, Eqs. (9.1) and (9.2) can be written as

1 This presentation is mainly connected to the existing literature. A possible further extension is to
consider an unbalanced time dimension Ti j .
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yt = ρWSyt + xtβ +WSxtθ + εt , (9.3)

εt = λWSεt +ut . (9.4)

Stacking the T cross-sections gives

y = ρWy+Xβ +WXθ + ε, (9.5)

ε = λWε +u, (9.6)

with y and X being the vector and matrix of the dependent and explanatory variables
(covariates), respectively of size (T S×1) and (T S×K), β , just as θ , being the vec-
tor of the slope parameters of size (K×1), and finally, ε the vector of the disturbance
terms is of size (T S×1). Given that IT is an identity matrix of dimension (T ×T ),
then W = (IT ⊗WS) of size (T S×T S). Adopting Elhorst’s (2014) taxonomy, Eqs.
(9.5) and (9.6), namely the General Nesting Spatial (GNS) model, includes a fam-
ily of nine linear spatial econometric models. For example, if θ = 0, we obtain the
Spatial Autoregressive Combined (SAC) model. If the restriction λ = 0 is imposed,
the specification corresponds to the Spatial Durbin (SD) model, whereas if ρ = 0, it
is referred to as the Spatial Durbin Error (SDE) model.

Among the family of GNS models, the Spatial Lag Model is the specification
assuming that θ = 0 and λ = 0, and this leads to specific direct and spillover effects.
To understand this, it is necessary to consider the reduced form of the Spatial Lag
Model, which is given by

y = D−1[Xβ + ε], (9.7)

with D−1 = (IT ⊗D−1
S ), where

D−1
S = (IS−ρWS)

−1 = IS +ρWS +ρ
2W 2

S +ρ
3W 3

S + . . . , (9.8)

where IS = diag(IMi) is an identity matrix of dimension (S× S). By diag(IMi), we
mean diag(IM1 , . . . , IMN ), where IMi is an identity matrix of dimension (Mi×Mi).
For each cross-section (S×1) at time period t, we have

yt = D−1
S [xtβ + εt ]. (9.9)

This means that the spatial distribution of the dependent variable yt in each cross-
section is determined not only by the explanatory variables and their parameters
at each location, but also by those at neighboring locations. A change in x at any
location will affect all other locations following (9.8), even if two locations are not
connected in WS. A strong assumption induced by the Spatial Lag Model is that
the ratio between the spillover (indirect) and direct effects is the same for each
explanatory variable. Moreover, it is difficult to interpret a (S× S) matrix for each
of the K explanatory variables of direct and spillover effects, and so it is standard
practice to compute the scalar average measures as proposed by LeSage and Pace
(2009). Similar derivations can be obtained for the Spatial Durbin model (λ = 0), in
which case the derivation of direct and indirect effects should take into account the
presence of the spatial lags of the explanatory variables.
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Other spatial models (Spatial Error Model, Spatial lag of X Model, etc.) could be
obtained as the result of different simultaneous restrictions on the parameters (see
Elhorst (2014) for an exhaustive spatial taxonomy).

Concerning the disturbances ε and their full (T S× T S) covariance matrix, the
latter takes the form

Ωε = E[εε
′] = σ

2
u [(IT ⊗B−1

S )(IT ⊗B−1
S )′] = σ

2
u [IT ⊗ (B′SBS)

−1], (9.10)

with BS = IS−λWS. The matrix BS is nonsingular with |λ |< 1, with row and column
sums assumed uniformly bounded in absolute value. The SAR process (9.6) implies
complex interdependence between individuals, so that changes affecting an individ-
ual j in group i impact all other individuals regardless of the group they belong to. In
other words, this process is known to transmit exogenous shocks globally.2 Another
spatial autocorrelation structure is possible for the error term ε , namely the Spatial
Moving Average (SMA) process, which can be expressed as

ε = γ(IT ⊗WS)u+u, (9.11)

or
ε = [IT S + γ(IT ⊗WS)]u = (IT ⊗GS)u, (9.12)

where GS = IS + γWS. The full (T S× T S) covariance matrix associated with this
process is

Ωε = σ
2
u (IT ⊗GSG′S) = σ

2
u [IT ⊗ (IS + γ(WS +W ′S)+ γ

2WSW ′S)]. (9.13)

In contrast with the SAR process, SMA errors transmit the shocks locally rather
than globally, i.e., the covariance matrix (9.13) includes only the first two-order
neighbors (see Anselin, 2003 for an extensive discussion on the interpretation of
local versus global spillovers in spatial econometric models).

So far, we have introduced the spatial effects for multi-dimensional panels in the
form of spatial lag on y and X and spatial processes (SAR or SMA) on the dis-
turbances under the homogeneity assumption. The panel dimension enables us to
control for time and spatial heterogeneity. The main question is how to formalize
this heterogeneity. We limit our attention to spatial models with unobserved hetero-
geneity that could be treated as random effects or as fixed effects, see also Chaps. 1
and 2.

9.2.2 Unobserved Heterogeneity

In our context, unobserved heterogeneity can pertain either to time heterogeneity or
to spatial heterogeneity.

2 As in Eq. (9.8), the inverse of BS is related to the infinite series IS +λWS +λ 2W 2
S +λ 3W 3

S + · · ·



9 Models for Spatial Panels 269

With respect to unobservable time heterogeneity, it is usual to consider it using
time fixed effects (time-specific intercepts) or time random effects (time random
component or a common factor). In the case of time-specific fixed in (9.1), we have

yi jt = ρ

N

∑
g=1

Mg

∑
h=1

wi j,ghyght + xi jtβ +
N

∑
g=1

Mg

∑
h=1

wi j,ghxghtθ +δt + εi jt , (9.14)

where δt are the time-specific fixed effects. If T is small compared to S, they can be
estimated alongside the other coefficients using the estimation methods outlined in
section 9.3. These effects can also be considered as random assuming that E(δt) = 0,
E(δtδs) = σ2

δ
if t = s and 0 otherwise. This is a special case of those considered in

Chap. 2, where the corresponding variance-covariance matrices are detailed. Ran-
dom effects can also appear as common factors (see Pesaran, 2015a) in the distur-
bances

ui jt = ζ j1 f1t +ζ j2 f2t + · · ·+ζ jm fmt + ei jt , (9.15)

in which ft = ( f1t , f2t , . . . , fmt)
′ is an m-dimensional vector of unobservable com-

mon factors and ζ j = (ζ j1,ζ j2, . . . ,ζ jm)
′ is the associated (m,1) vector or factor

loadings, with m assumed to be fixed relative to S and m << S. The idiosyncratic
errors ei jt can be cross-sectionally weakly dependent, the factor loadings can be
considered as draws from a random distribution, or fixed unknown coefficients. This
setting can be further extended to allow for heterogenous coefficients (see Sect. 9.6).

We now consider in further detail the problem of unobserved spatial heterogene-
ity. Following Baltagi and Pirotte (2013, 2014), we assume that the random effect
structure of the errors ui jt contains an unobserved permanent group-specific error
component αi, a nested permanent individual-group-specific error component µi j,
together with a remainder error component vi jt . Hence, we envisage a time-invariant
group-effect applying equally to all individuals nested within a group, time-invariant
individual-group-specific effects, and transient effects that vary at random across
groups, individuals and time. More formally, the disturbance term is decomposed as

ui jt = αi +µi j + vi jt , (9.16)

with the following assumptions: (i) αi is an unobservable group specific time-
invariant effect which is assumed to be i.i.d.N

(
0,σ2

α

)
; (ii) µi j is the nested effect

of individual j within the ith group, which is assumed to be i.i.d.N
(
0,σ2

µ

)
; (iii) vi jt

is the remainder term, which is also assumed to be i.i.d.N
(
0,σ2

v
)
; (iv) The αi’s, µi j’s

and vi jt ’s are independent of each other and among themselves.
For a cross-section t, the standard specification of the Nested Random Effects

(NRE) ut is given by
ut = diag(ιMi)α +µ + vt , (9.17)

where ut is (S×1), α is the vector of group effects of dimension (N×1), µ ′=(µ ′1,
. . . ,µ ′N), a vector of dimension (1×S), µ ′i = (µi1, . . . ,µiMi), a vector of dimension
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(1×Mi). By diag(ιMi), we mean diag(ιM1 , . . . , ιMN ), where ιMi is a vector of ones of
format (Mi×1). vt is of dimension (S×1). The covariance matrix of ut is

E
[
utu′t
]
= σ

2
α diag(JMi)+

(
σ

2
µ +σ

2
v
)

IS, (9.18)

where JMi =
(

ιMi ι
′
Mi

)
is a matrix of ones of dimension (Mi×Mi). For the full

(T S×1) vector of disturbances u, we have

u = (ιT ⊗diag(ιMi))α +(ιT ⊗ IS)µ + v, (9.19)

where ιT is a vector of ones of dimension (T ×1). The covariance matrix of u cor-
responds to

Ωu = σ
2
α

(
Zα Z′α

)
+σ

2
µ

(
Zµ Z′µ

)
+σ

2
v (IT ⊗ IS)

= σ
2
α (JT ⊗diag(JMi))+

((
σ

2
µ JT +σ

2
v IT
)
⊗ IS

)
, (9.20)

where Zα = (ιT ⊗diag(ιMi)), Zµ = (ιT ⊗ IS) and JT = (ιT ι ′T ) is a matrix of ones of
dimension (T ×T ). Replace JT by its idempotent counterpart T JT , JMi by MiJMi . In
addition, define QT = IT − JT , and QMi = IMi − JMi , and replace IT by

(
QT + JT

)
,

IMi by
(
QMi + JMi

)
. Collecting terms, one gets the spectral decomposition of Ωu,

which is
Ωu = λ1Q̃1 +λ2Q̃2 +(IT ⊗diag(λ3iIMi)) Q̃3, (9.21)

with

λ1i = λ1 = σ
2
v , λ2i = λ2 = T σ

2
µ +σ

2
v , λ3i = MiT σ

2
α +T σ

2
µ +σ

2
v , (9.22)

Q̃1 = (QT ⊗ IS) , Q̃2 =
(
JT ⊗diag(QMi)

)
, (9.23)

Q̃3 =
(
JT ⊗diag

(
JMi

))
, (9.24)

and JT = JT/T , JMi = JMi/Mi. The operators Q̃1, Q̃2 and Q̃3 are symmetric and
idempotent, with their rank equal to their trace. Moreover, they are pairwise orthog-
onal and add up to the identity matrix. From (9.21), we can easily obtain Ω−1

u as

Ω
−1
u = λ

−1
1 Q̃1 +λ

−1
2 Q̃2 +

(
IT ⊗diag

(
λ
−1
3i IMi

))
Q̃3. (9.25)

Considering the SAR process (9.6) of the vector disturbances ε , we get

ε =
(
IT⊗B−1

S

)
u, (9.26)

and the corresponding (T S×T S) covariance matrix is given by

Ωε= AΩ uA′, (9.27)

where A is a block-diagonal matrix equal to
(
IT⊗B−1

S

)
. Following the properties of

the matrices Ωu and A, we obtain the inverse covariance matrix of ε defined as
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Ω
−1
ε =

(
A′
)−1

Ω
−1
u A−1. (9.28)

If an SMA process (9.11) instead of a SAR process is considered for the vector dis-
turbances ε , the matrix A corresponds to (IT ⊗GS) instead of (IT ⊗B−1

S ). Combin-
ing (9.19) and (9.26) give what we call a SAR-NRE process, and the association of
equations (9.19) and (9.11) corresponds to the SMA-NRE process. This means for
the latter process that the covariance matrix is given by (9.27), where A = (IT ⊗GS).
An alternative approach is to assume, first, that the disturbance εt has a NRE struc-
ture and, second, that the error vt follows a SAR or an SMA process, namely NRE-
SAR and NRE-SMA, respectively. We will not consider this approach further in this
chapter.3

9.3 Spatial Estimation Methods

The estimation methods of multi-dimensional spatial panel models are direct exten-
sions of the ones that have been done for the standard spatial panel data economet-
rics. This means that two main approaches are used to estimate these models, one
based on the Maximum Likelihood (ML) principle, the other linked to the method
of moments procedures.

9.3.1 Maximum Likelihood Estimation

Upton and Fingleton (1985), Anselin (1988), LeSage and Pace (2009) and Elhorst
(2014) provide the general framework for the ML estimation of spatial models. Un-
der normality of the disturbances, the log-likelihood function is proportional to

lnL = −T S
2

ln(2π)− 1
2

ln |Ωε |+T ln |DS|

−1
2
(Dy−Xβ −WXθ)′Ω−1

ε (Dy−Xβ −WXθ) . (9.29)

If we consider a SAR-NRE process for the disturbances ε , after some mathematical
manipulations, we obtain

lnL = −T S
2

ln(2π)− 1
2

ln |Ωu|+T ln |BS|+T ln |DS|

−1
2
(Dy−Xβ −WXθ)′Ω−1

ε (Dy−Xβ −WXθ) . (9.30)

3 See Baltagi et al. (2013) and Baltagi and Liu (2016), for a discussion on a generalized spatial
model that encompasses the NRE-SAR and the SAR-NRE models.
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Let γ1 = σ2
α/σ2

v , γ2 = σ2
µ/σ2

v and Ωε = σ2
v Σ , then the log-likelihood function (9.30)

can be written as4

lnL = −T S
2

ln(2π)− T S
2

lnσ
2
v −

1
2

N

∑
i=1

ln(T (Miγ1 + γ2)+1)

−1
2

N

∑
i=1

(Mi−1) ln(T γ2 +1)

+T
N

∑
i=1

Mi

∑
j=1

ln(1−ωi jλ )+T
N

∑
i=1

Mi

∑
j=1

ln(1−ηi jρ)

− 1
2σ2

v
(Dy−Xβ −WXθ)′Σ−1 (Dy−Xβ −WXθ) , (9.31)

where ωi j’s and ηi j’s are the eigenvalues of MS and WS respectively.
For a SMA-NRE process for the disturbances ε , the log-likelihood takes the fol-

lowing form

lnL = −T S
2

ln(2π)− 1
2

ln |Ωu|−T ln |GS|+T ln |DS|

−1
2
(Dy−Xβ −WXθ)′Ω−1

ε (Dy−Xβ −WXθ) . (9.32)

Using the same notations as before, this can be written as

lnL = −T S
2

ln(2π)− T S
2

lnσ
2
v −

1
2

N

∑
i=1

ln(T (Miγ1 + γ2)+1)

−1
2

N

∑
i=1

(Mi−1) ln(T γ2 +1)

−T
N

∑
i=1

Mi

∑
j=1

ln(1+ωi jγ)+T
N

∑
i=1

Mi

∑
j=1

ln(1−ηi jρ)

− 1
2σ2

v
(Dy−Xβ −WXθ)′Σ−1 (Dy−Xβ −WXθ) . (9.33)

The first-order conditions for the parameters in (9.31) and (9.33) are intertwined,
which means that they are non-linear, i.e., the equations cannot be solved analyti-
cally. Therefore, a numerical solution by means of an iterative procedure is needed
in the spirit of Anselin (1988). For a SAR-NRE process with ρ 6= 0, θ = 0 and
λ = 0, Baltagi et al. (2014b) give the general ML framework approach and propose

4 Grouping the data by units rather than periods, Baltagi et al. (2001) have shown that the
covariance matrix of u is given by Ω

p
u = diag

(
Λ

p
i

)
= diag

(
λ

p
1iQ̃1i +λ

p
2iQ̃2i +λ

p
3iQ̃3i

)
, where

Q̃1i = (IMi ⊗QT ), Q̃2i =
(
QMi ⊗ JT

)
, Q̃3i =

(
JMi ⊗ JT

)
and λpi,, for p = 1,2,3, are the distinct

characteristic roots of Λi = λ1iQ̃1i +λ2iQ̃2i +λ3iQ̃3i then |Λi|= (λ3i)
(

λ
Mi−1
2i

)(
λ

Mi(T−1)
1i

)
.
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an Instrumental Variables (IV) approach due to the correlation between the spatial
lag of the dependent variable and disturbances (see Sect. 9.3.2). If ρ = 0, θ = 0 and
λ 6= 0, Baltagi and Pirotte (2014) describe an iterative procedure to obtain the ML
estimates.

9.3.2 GMM, FGLS and Instrumental Variables Approaches

One method of estimating panel data models with spatially dependent nested ran-
dom effects is by means of ML, as we have seen above. However, with limited
computing power, which has often been the case in the past and may still be a prob-
lem in the future for some researchers, ML procedures are likely to be impractical
when the individual sample size is exceptionally large, and sample sizes are in-
creasing, perhaps exponentially, as we enter an era of “big data”. Finally, ML calls
for explicit distributional assumptions, which may be difficult to satisfy, although
Quasi-ML (QML) approaches may to some extent allay this problem, and specify-
ing and maximizing likelihood functions appropriate to extensions to more complex
models may be problematic. In view of the desirability of estimation approaches
that avoid some of the challenges posed by ML, Kelejian and Prucha (1998, 1999)
suggested an alternative instrumental variable estimation procedure for the spatial
lag model, also including a SAR process for the disturbances. This approach is
based on a Generalized Method of Moments (GMM) estimator of the parameter in
the spatial autoregressive process. The procedures suggested in Kelejian and Prucha
(1998, 1999) are computationally feasible even for very large sample sizes.5 As in
most of the spatial literature, they consider the case where a single cross section
of data is available. Monte Carlo results in Das et al. (2003) suggest that both the
GMM and the instrumental variable estimators are as efficient as the corresponding
ML estimators in small samples. Alternatively, in a panel data context, Fingleton
et al. (2017) take advantage of the Kapoor et al. (2007) (hereafter KKP) General-
ized Method of Moments (GMM) estimator, which is computationally feasible even
for large sample sizes, extending this procedure to capture nested spatial random
effects.

Assuming that ρ = 0 and θ = 0 in a SAR-NRE model, Fingleton et al. (2017)
develop a GMM approach leading to estimators for λ , σ2

α , σ2
µ , σ2

v , or equivalently
of λ , σ2

α , λ2
(
= T σ2

µ +σ2
v
)

and σ2
v , relying on appropriate moment conditions. For

notational convenience, we have

ε = (IT ⊗WS)ε, (9.34)
ε = (IT ⊗WS)ε, (9.35)
u = (IT ⊗WS)u. (9.36)

5 Kelejian and Prucha (1998, 1999) use the terminology Generalized Moments (GM) for GMM,
we however, will stick to GMM throughout the chapter.
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The GMM estimators are defined in terms of nine moment conditions. Fingleton
et al. (2017) demonstrate that we have

E



1
S(T−1)u′Q̃1u

1
S(T−1)u′Q̃1u

1
S(T−1)u′Q̃1u

1
(S−N)u′Q̃2u

1
(S−N)u′Q̃2u

1
(S−N)u′Q̃2u

1
T u′Q̃3u
1
T u′Q̃3u
1
T u′Q̃3u


=



σ2
v

σ2
v
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S tr
(
W ′SWS
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′

S W •S
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α tr
(
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′

S W •S
)

λ2
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′

S

)
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T λ2 +Sσ2

α
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1
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S W ∗S
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α tr
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λ2
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
, (9.37)

where W ∗S = diag
(
JMi

)
WS, W •S = diag(QMi)WS and Γ = diag(JMi). The GMM esti-

mators of λ , σ2
α , λ2, σ2

v are based on these moments. Stacking the T cross-sections
(9.4) and using (9.29), (9.35), (9.36), we obtain

u = ε−λε, (9.38)

u = ε−λε . (9.39)

Replacing u and u with their expressions (9.38), (9.39) into (9.37), we obtain a
system of nine equations involving the second moments of ε , ε and ε . This system
includes λ , σ2

α , λ2 and σ2
v and can be written as

Λ
[
λ ,λ 2,σ2

v ,λ2,σ
2
α

]′− γ = 0, (9.40)

where

Λ =


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11 γ2
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, (9.41)

and
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.

The equations underlying these GMM procedures are the sample counterparts to
the nine equations in (9.40) based on the appropriate residuals. We can observe that
the first three equations in (9.40) do not include the parameters λ2 and σ2

α , while the
last six do not include σ2

v . This means that the GMM estimators of λ and σ2
v can be

obtained using only the first three moments. These are given by

Λ
• [

λ ,λ 2,σ2
v
]′− γ

• = 0, (9.42)
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where

Λ
•=

 γ1
11 γ1

12 γ1
13

γ1
21 γ1

22 γ1
23

γ1
31 γ1

32 γ1
33

 and γ
• =

 γ1
1

γ1
2

γ1
3

 . (9.43)

Given λ̂ and σ̂2
v , it is possible to estimate λ2 and σ2

α from the fourth and seventh
moment conditions respectively. In the case of a spatially non-nested random effects
model, KKP (2007, p. 108 and Appendix A) established the consistency of λ̂ , σ̂2

v

and λ̂2. They also showed that their RMSEs are close to those of the weighted and
partially weighted GMM approaches. This suggests that this consistency remains
valid in our case. Using Monte Carlo simulations, Fingleton et al. (2017) obtain
similar results to those of KKP suggesting that this GMM estimator performs well.
This estimator is called the unweighted GMM estimator.

However, the literature on GMM estimators indicates that it is optimal to use the
inverse of the variance-covariance matrix of the sample moments at the true param-
eter values as a weighting matrix to obtain asymptotic efficiency. Ξ is a function
of the variances σ2

α , σ2
µ and σ2

v , which are unobserved. The consistent unweighted
GMM estimators σ̂2

α , σ̂2
µ and σ̂2

v are used to obtain a consistent estimator of Ξ , i.e.,
Ξ̂ . Thus, our second GMM estimator, called the weighted GMM estimator, is de-
fined as the nonlinear least squares estimator based on the sample counterparts of
(9.40) with the sample moments weighted by Ξ̂−1(

λ̃ , σ̃2
v , λ̃2, σ̃

2
α

)
= argmin

{
ξ
(
λ ,σ2

v ,λ2,σ
2
α

)′
Ξ̂
−1

ξ
(
λ ,σ2

v ,λ2,σ
2
α

)}
. (9.44)

Following KKP (2007, p. 109), it is apparent that the consistency of this estimator
remains valid in the case of the nested random effects model.

9.3.2.1 The GMM Spatial FGLS Estimator

To estimate β , it is necessary to use a Feasible Generalized Least Squares (FGLS),
namely GMM-S-FGLS estimator. One first calculates the unweighted GMM esti-
mates of λ ,σ2

v ,λ2 and σ2
α , following a two-stage procedure:

• First, the GMM estimators of λ , σ2
α , λ2, σ2

v are computed from the Ordinary
Least Squares (OLS) residuals. Given exogenous regressors, the OLS estimator
defined by β̂OLS

(
= (X ′X)−1 X ′y

)
is consistent, and thus the OLS estimated er-

rors ε̂t = yt − xt β̂OLS are consistent estimates. Then the sample counterpart of

equation (9.42) in terms of ε̃ , ε̃ and ε̃ is

Λ̃
• [

λ ,λ 2,σ2
v
]′− γ̃

• = ξ
(
λ ,σ2

v
)

, (9.45)
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where Λ̃ •, γ̃• are the sample counterparts of (9.43), and ξ
(
λ ,σ2

v
)

is a vector of
residuals. The unweighted GMM estimators of λ and σ2

v are the nonlinear least
squares estimators based on (9.45)(

λ̂ , σ̂2
v

)
= argmin

{
ξ
(
λ ,σ2

v
)′

ξ
(
λ ,σ2

v
)}

. (9.46)

Given λ̂ and σ̂2
v , λ2 is estimated using

λ̂2 =
1

(S−N)

(
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Q̃2
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)
= γ̃

2
1 − λ̂ γ̃

2
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2
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2
12, (9.47)

and σ̂2
α by

σ̂
2
α =

1
ST

(
ε̃− λ̂ ε̃

)′
Q̃3
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)
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. (9.48)

Using σ̂2
v and (9.48), we obtain

σ̂
2
µ =

1
T

(
λ̂2− σ̂

2
v

)
. (9.49)

• In a second stage, we need the estimated variance-covariance matrix Ω̂u ob-
tained from the first stage estimates σ̂2

v , σ̂2
µ , σ̂2

α using (9.25). In order to obtain
an equation in terms of u, from which spatial autocorrelation is absent, rather
than considering the SAR error process of ε , we can purge the equation of spa-
tial dependence by pre-multiplication by

[
IT⊗

(
IS−λ̂WS

)]
. This can be seen to

be a type of Cochrane-Orcutt transformation appropriate to spatially dependent
data. Hence, pre-multiplication of the model by

[
IT⊗

(
IS−λ̂WS

)]
yields

y∗
(

λ̂

)
= X∗

(
λ̂

)
β +u, (9.50)

where

X∗
(

λ̂

)
=
[
IT⊗

(
IS−λ̂WS

)]
X , (9.51)

y∗
(

λ̂

)
=
[
IT⊗

(
IS−λ̂WS

)]
y. (9.52)

However, a convenient way of computing β̂GMM−S−FGLS, the GMM-S-FGLS es-
timator, is to use Ω̂−1

ε , which is derived as a function of Ω̂−1
u , as shown by (9.54).

If we are guided by the classical panel data random effects literature (see Baltagi,
2013), and transform the model in (9.50) by premultiplying it by Ω̂

−1/2
u , the OLS
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estimator of β computed from the resulting transformed model is identical to the
GMM-S-FGLS estimator β̂GMM−S−FGLS. This latter estimator is given by

β̂GMM−S−FGLS =
(

X ′Ω̂−1
ε X

)−1
X ′Ω̂−1

ε y

=

(
X∗
(

λ̂

)′
Ω̂
−1
u X∗

(
λ̂

))−1

X∗
(

λ̂

)′
Ω̂
−1
u y∗

(
λ̂

)
, (9.53)

in which
Ω̂
−1
ε =

(
Â′
)−1

Ω̂
−1
u Â−1, (9.54)

where Â =

(
IT⊗

(
IS−λ̂WS

)−1
)

.

Applying the weighted GMM estimators, we initially have to use the unweighted
GMM estimates of step 1 above to construct the variance-covariance matrix Ξ̂ .
Then, nonlinear least squares is used to solve(

λ̃ , σ̃2
v , λ̃2, σ̃

2
α

)
= argmin

{
ξ
(
λ ,σ2

v ,λ2,σ
2
α

)′
Ξ̂
−1

ξ
(
λ ,σ2

v ,λ2,σ
2
α

)}
. (9.55)

They provide the weighted GMM estimators of λ ,σ2
v ,λ2 and σ2

α , which are denoted
by λ̃ , σ̃2

v , λ̃2, σ̃2
α . First one replaces λ , σ2

v , λ2, σ2
α with their weighted GMM coun-

terpart estimates λ̃ , σ̃2
v , λ̃2, σ̃2

α to give Ω̂u and hence Ω̂−1
ε . Then, one applies (9.53)

and (9.54) to obtain estimates of β̂GMM−S−FGLS.
If ρ 6= 0 and θ = 0, the approach proposed by Fingleton et al. (2017) could be

applied using the IV estimator in combination with GMM and GLS. In the spirit of
Fingleton (2008), instead of using in the first step procedure the OLS residuals, it is
necessary to use the IV residuals. This is due to the spatially lag dependent variable
Wy, which is always correlated with the disturbances and which implies that neither
OLS nor FGLS estimators will be consistent. For a spatial cross-section, Kelejian
and Prucha (1998) suggest a Two-Stage Least Squares spatial estimator (S2SLS) for
the spatial lag model. They propose that the instrument set should be kept at a low
order to avoid linear dependence and retain full column rank for the matrix of in-
struments, and thus recommend using [X ,WX ], if the number of regressors is large.
However, inclusion of further spatial lags of the explanatory variables (θ 6= 0) could
have a major impact on the performance of the estimation procedures set forth. Pace
et al. (2012) show that instrumental variables estimation suffers greatly in situations
where spatial lags of the explanatory variables (WX) are included in the model
specification. The reason is that this requires the use of

[
W 2X ,W 3X ,W 4X , . . .

]
as

instruments, in place of the conventional instruments that rely on WX , and this ap-
pears to result in a weak instruments problem.6 However, invoking an SMA error
process potentially avoids this problem. If this embodies the same W matrix, then

6 Alternatively, in cross-sectional models, one can use the optimal instruments proposed by Lee
(2003) and extended to a panel spatial lag model with random effects by Baltagi and Liu (2011).
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we might assume that omitted spatial lags of explanatory variables, so-called lo-
cal spillovers, are implicitly embodied within the (local) error process. This means
we can use the recommended instrument set without having exogenous spatial lags
among the set of regressors. Instead, we assume that the disturbances are character-
ized by a SMA-RE structure which purposefully captures these local spillovers. In
the context of a panel nested model, Baltagi et al. (2014b) present an IV approach
that could be used to obtain a correct estimation of residuals. The latter are used to
obtain estimates for λ , σ2

α , σ2
µ and σ2

v . In a second step, an IV estimator under non-
spherical disturbances (Cochrane-Orcutt-type transformation with an IV approach)
is used to obtain consistent estimates of the parameters.

9.4 Testing for Spatial Dependence

Lagrange Multiplier (LM) tests have a long tradition in spatial econometrics. They
are typically used to help specify the model in a specific-to-general procedure and
are convenient to implement as they are based on the residuals of the model un-
der the null. He and Lin (2015) consider a multi-dimensional spatial model where
the disturbances are spatially autocorrelated (9.2), whereas the remainder term has
a nested error component structure (9.16) assuming that θ = 0, proposing various
standard LM statistics linked to joint and conditional LM tests. For example, con-
sider the joint LM test: H1

0 : ρ = λ = σ2
α = σ2

µ = 0 vs. H1
1 : At least one of them is

not zero. The associated LM1 statistic is

LM1 = η̂λλ ŝ2
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+2η̂ρλ ŝρ ŝλ +2η̂

λσ2
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ŝλ ŝ
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σ2
µ

+η̂ρρ ŝ2
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ρσ2
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ŝρ ŝ
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ρσ2
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α σ2
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ŝ2
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σ2

µ σ2
α

ŝ
σ2

µ
ŝ

σ2
α
+ η̂

σ2
µ σ2

µ
ŝ2
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µ

, (9.56)

where ŝλ , ŝρ , ŝ
σ2

α
, ŝ

σ2
µ

and ŝσ2
v

are defined as

sλ =−tr(WA)+ ε
′W ′Ω−1

ε ε , (9.57)

sρ =−tr(WD−1)+ y′W ′Ω−1
ε ε , (9.58)
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evaluated under the null hypothesis. In this case, the restricted ML estimator is the
OLS estimator. The terms η̂λλ , η̂ρρ , η̂λρ , η̂

λσ2
α

, η̂
λσ2

µ
, η̂

ρσ2
α

, η̂
ρσ2

µ
, η̂

σ2
α σ2

α
, η̂

σ2
µ σ2

α

and η̂
σ2

µ σ2
µ

are those of the inverse information matrix also evaluated under H1
0 (see

He and Lin (2015)). Under the null hypothesis, the LM1 statistic is asymptotically
distributed as a chi-squared distribution with four degrees of freedom, i.e., χ2

4 . If the
null hypothesis cannot be rejected, this corresponds to the usual pooled panel data
model. Otherwise, more investigation is needed and conditional tests assuming all
or part of spatial autocorrelation of the disturbances, spatial lag dependence, group-
specific time-invariant effects, and nested individual effects, should be considered.
For instance, if we are interested in testing spatial effects, i.e., spatial lag dependence
and spatial autocorrelation of the disturbances, H2

0 : ρ = λ = 0|σ2
α > 0,σ2

µ > 0 vs.
H2

1 : At least one of them is not zero, the LM2 statistic is given by

LM2 = η̂λλ ŝ2
λ
+2η̂ρλ ŝρ ŝλ + η̂ρρ ŝ2

ρ , (9.62)

where η̂λλ , η̂ρρ , η̂λρ , ŝ2
ρ , ŝ2

µ and ŝρµ are evaluated under H2
0 . The model is reduced

to the nested random effects model suggested by Baltagi et al. (2001). Under the null
hypothesis, the LM2 statistic is asymptotically distributed as a chi-squared distribu-
tion with two degrees of freedom, i.e., χ2

2 (see He and Lin (2015) for a description
of all conditional tests).

Overall, using Monte Carlo simulations, He and Lin (2015) show the good finite
sample performance of the LM tests that they have developed. To take into account
possible distributional misspecification in the finite sample and spatial layout sensi-
tivity, modified versions of these LM tests can be obtained along the lines of Yang
(2010) and Baltagi and Yang (2013).

9.5 Prediction with Spatial Models

Predicting with spatial (two-dimensional) panels has recently become an integral
part of the empirical work in economics (see Baltagi and Li (2004, 2006); Longhi
and Nijkamp (2007); Kholodilin et al. (2008); Fingleton (2009); Schanne et al.
(2010); Girardin and Kholodilin (2011); Baltagi et al. (2014a) among others).
Nevertheless, prediction still remains in its infancy with regard to spatial multi-
dimensional panels (see Baltagi and Pirotte (2014)).

Following Goldberger (1962), assuming ρ = 0 and θ = 0, the BLUP for the
dependent variable yi j,T+τ , denoted by ŷi j,T+τ , can be written in a general form as

ŷi j,T+τ = xi j,T+τ β̂GLS +ω
′
Ω
−1
ε ε̂GLS, (9.63)

where ω = E [εi j,T+τ ε] is the covariance between the future disturbance εi j,T+τ and
the sample disturbances ε . β̂GLS is the GLS estimator of β based on true Ωε , while
ε̂GLS denotes the corresponding GLS residual vector. For the nested error compo-
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nents model without spatial autocorrelation (λ = 0), assuming that the time dimen-
sion is unbalanced, Baltagi and Pirotte (2013) derive the BLUP where ω ′ is reduced
to

ω
′ =
(
0′,
[[

σ
2
α ι
′
Mi

+σ
2
µ l′j
]
⊗ ι
′
Ti

]
,0′
)
, (9.64)

where l j is the jth column of IMi and 0′ is a row vector of zeros of appropriate length,
and

ω
′
Ω
−1
ε ε̂GLS =

(
Tiσ

2
µ

λ2i

)
ε̂i j.,GLS +

[
MiTiσ

2
α σ2

v

λ2iλ3i

]
ε̂i..,GLS, (9.65)

with ε̂i j.,GLS = ∑
Ti
t=1 ε̂i jt,GLS/Ti and ε̂i..,GLS = ∑

Mi
j=1 ∑

Ti
t=1 ε̂i jt,GLS/MiTi. Thus, if we

transfer (9.65) into (9.63), the BLUP of yi j,Ti+τ is given by

ŷi j,Ti+τ = xi j,T+τ β̂GLS +

(
Tiσ

2
µ

λ2

)
ε̂i j.,GLS +

[
MiTiσ

2
α σ2

v

λ2λ3i

]
ε̂i..,GLS. (9.66)

Therefore, the BLUP of yi j,Ti+τ for the nested error components model modifies the
usual GLS forecast by adding two terms. The first is a fraction of the average of the
GLS residuals (over time) corresponding to the individual j in group i.The second
term adds a fraction of the average GLS residual (over time as well as individual
j) corresponding to group i. In order to make (9.66) operational, β̂GLS and the vari-
ance components are replaced by their feasible estimates proposed by Baltagi et al.
(2001).

Now, if both spatial autoregressive and nested error components are present in the
model (SAR-NRE model), after some algebra and assuming that the time dimension
is balanced (see Baltagi and Pirotte (2014)), one can show that

ω
′ = σ

2
α bi jdiag(ιMi)

(
ι
′
T ⊗diag(ιMi)

′ (B−1
S

)′)
+σ

2
µ bi j

(
ι
′
T ⊗

(
B−1

S

)′)
, (9.67)

where bi j is the i jth row of the matrix B−1
S , and the second term of (9.63) is given

by

ω
′
Ω
−1
ε ε̂GLS =

σ2
α

σ2
v

bi jdiag(ιMi)
[
ι
′
T ⊗diag

(
θ
−1
2i ι

′
Mi

)]
[IT ⊗BS] ε̂GLS

+
σ2

µ

σ2
v

bi j
[
ι
′
T ⊗

[
θ
−1
1 diag(QMi)+diag

(
θ
−1
2i JMi

)]]
[IT ⊗BS] ε̂GLS, (9.68)

where θ1 = (T δ2 +1), θ2i = (MiT δ1 +T δ2 +1), δ1 = σ2
α/σ2

v and δ2 = σ2
µ/σ2

v .
Thus, if we transfer (9.68) into (9.63), the BLUP of yi j,T+τ is given by
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ŷi j,T+τ = xi j,T+τ β̂GLS

+
σ2

α

σ2
v

bi jdiag(ιMi)
[
ι
′
T ⊗diag

(
θ
−1
2i ι

′
Mi

)]
[IT ⊗BS] ε̂GLS

+
σ2

µ

σ2
v

bi j
[
ι
′
T ⊗

[
θ
−1
1 diag(QMi)+diag

(
θ
−1
2i JMi

)]]
[IT ⊗BS] ε̂GLS. (9.69)

To compute (9.69), we use the ML estimates obtained from the iterative procedure
or the GMM-S-FGLS approach described in Sect. 9.3.

If ρ 6= 0 and θ = 0, it is possible to obtain a BLUP using the reduced form
(9.7). The derivation is similar to the one developed by Baltagi et al. (2014a) in
the case of the two-dimensional panel data model with spatially correlated error
component disturbances. To operationalize this BLUP, an IV estimator has to be
used, see Sect. 9.3.2. This approach remains valid when spatial lags on explanatory
variables (θ 6= 0) are introduced in the multi-dimensional spatial panel model.

9.6 Some Further Topics

9.6.1 Heterogenous Coefficients Spatial Models

As mentioned is Sect. 9.2, model (9.1) implies that unobservable heterogeneity is
only captured through the regression constant or a composite disturbance term. If
heterogeneity is more complex (slope heterogeneity) and neglected, the consistency
of the estimates and the inference will be affected. Then, it is necessary to implement
spatial models that explicitly allow for slope heterogeneity in the temporal or in the
spatial dimension. In this section we derive a number of possibilities.

In the case where T is small compared to S, time slope heterogeneity can be
allowed using a Seemingly Unrelated Regression (SUR) framework. Following
Anselin (1988), we can specify one equation for each time period, which is esti-
mated for a cross section of spatial units, which are organised hierarchically. For
instance, we can allow for time-varying coefficients in equations (9.3) and (9.4)

yt = ρtWSyt + xtβt +WSxtθt + εt , (9.70)

εt = λtWSεt +ut . (9.71)

Additional assumptions allowing for cross-equation correlation in the ut can be
specified. In non-hierarchical panels, the estimation of such a model using ML has
been derived by Anselin (1988). Mur et al. (2010) and Lopez et al. (2014) further
extended it to deal with a higher number of equations, say Γ , for each time period.
The case of a SUR model with spatial error autocorrelation and unobserved indi-
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vidual random effects in a two-way error component model has been analyzed by
Baltagi and Pirotte (2011) with a GMM-FGLS procedure.

Conversely, to deal with spatial slope heterogeneity, it is necessary to assume
that the number of time observations, T , is large, see Pesaran (2015b) and Chudik
and Pesaran (2015). Then, it becomes possible to specify a spatially heterogenous
version of (9.1)

yi jt = ρi j

N

∑
g=1

Mg

∑
h=1

wi j,ghyght + xi jtβi j +
N

∑
g=1

Mg

∑
h=1

wi j,ghxghtθi j + εi jt . (9.72)

This specification assumes that the coefficients are allowed to vary across individu-
als which could be nested in groups.

For the non-hierarchical case, Aquaro et al. (2015) propose a QML estimation
procedure for this category of spatial panel models with heterogenous coefficients,
while LeSage and Chih (2016) derive the partial derivatives and the associated im-
pacts. The extension of such procedures to the hierarchical case would then be an
important issue for practical purposes.

Finally, an important question is the nature and the degree of dependencies be-
tween individuals (or spatial units). Are the observed dependencies between dif-
ferent individuals due to common factors that affect different units, rather than the
result of local interactions that generate spatial spillover effects? The factor and
spatial econometric approaches tend to complement each other, with the factor ap-
proach more suited to modelling strong cross-sectional dependence (e.g., aggregate
shocks), while the spatial approach (connected to a spatial weighted matrix) gener-
ally requires the spatial dependence to be weak. This is an important point because
most large panel datasets are subject to a combination of strong and weak cross-
dependencies.

Bailey et al. (2016) adopt a two-stage estimation strategy. They apply this frame-
work to real house price changes of 363 U.S. Metropolitan Statistical Areas (MSAs),
excluding three MSAs located in Alaska and Hawaii, over the period 1974:Q1 to
2010:Q4 (T = 144 quarters). These data exhibit are typically grouped by MSA
within states (49), thus forming a nested structure. Nevertheless, instead of focusing
on states as the upper level of the nested hierarchy, they use the Bureau of Eco-
nomic Analysis regional classification, which comprises 8 regions (New England,
Mid East, South East, Great Lakes, Plains, South West, Rocky Mountains and Far
West, N = 8), which are homogenous with regard to economic and social factors
across states. Each region contains an average of around 45 MSAs. In a first step,
they consider the hierarchical model

yi jt = β0i j +β1i jy.it +β2i jy..t + εi jt , (9.73)

where y.it = M−1
i ∑

Mi
j=1 yi jt and y..t = S−1

∑
N
i=1 ∑

Mi
j=1 yi jt . y.it corresponds to the re-

gion mean at time t, y..t , the national mean at time t. They examine the degree of
cross-sectional dependence, using the Cross-sectional Dependence (CD) statistic,
see Pesaran (2015a), to test if it is appropriate to apply standard spatial modelling
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methods directly (if the null of weak cross-dependence is not rejected). If the null
of weak dependence is rejected, spatial dependence is considered to be strong and
factor models become appropriate. They show that the cross-sectional averages ap-
proach, as well as principal components, perform reasonably well in purging factor
loadings from price changes (checked through a CD test). Then, pair-wise corre-
lations of de-factored price changes are used to built positive and negative spatial
matrices. In a second step, a time-space spatial model without any exogenous re-
gressors is estimated using a QML estimator.

9.6.2 Time-Space Models

Panel data with spatial interactions are of great interest, not only to control for the
observable/unobservable heterogeneities, but also to take into account the dynamics.
A dynamic version of model (9.5) can be obtained by adding one or more of the
following variables: a dependent variable lagged in time (y−1), a dependent variable
lagged in both space and time (Wy−1), explanatory variables lagged in time (X−1)
and explanatory variables lagged in both space and time (WX−1). In matrix form,
we have

y = φy−1 +ρWy+πWy−1 +Xβ +X−1β
∗+WXθ +WX−1θ

∗+ ε. (9.74)

The disturbance terms ε could also be contemporaneously correlated (9.6) including
a nested error components structure (9.19). An alternative to (9.19) is to introduce
fixed effects to capture unobservable heterogeneity. In the two-dimensional spa-
tial panel data literature, many articles focus on the estimation procedures: QML
(Lee et al., 2008; Qu and Lee, 2015), ML (Lee and Yu, 2010c,b, 2016), General-
ized Method of Moments (Lee and Yu, 2014; Baltagi et al., 2014a), bias-corrected
estimators (Lee et al., 2008; Elhorst, 2010a; Korniotis, 2010) and Bayesian proce-
dures (Parent and LeSage, 2010, 2012; Debarsy et al., 2012), assuming that all or
some of the above-mentioned variables are present. Moreover, considering the time-
space dynamic spatial model (9.74), several spatial multiplier matrices are at work
at the same time, which complicate the parameter interpretations (direct, indirect
and total short-run and long-run effects). More empirical research is needed to clar-
ify interpretation. Despite this significant literature on two-dimensional dynamic
spatial panel models, multi-dimensional hierarchical spatial panel models remain
unexplored.

9.7 Conclusion

This chapter has focused on hierarchical spatial panels, i.e., panel data models where
data present a nested structure together with spatial autocorrelation at the individ-
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ual level. We started with a general specification with balanced data in the time
dimension, slope coefficient homogeneity and spatial autocorrelation in the form of
a spatial lag of the endogenous variable, spatial lags of the exogenous variables and
spatial error autocorrelation (either in autoregressive or in moving average form).
Then we showed how these models can be estimated with ML of GMM methods
and some LM specification tests. Finally, some possible extensions dealing with
parameter heterogeneity in one of the dimensions were presented.

Obviously, this literature is still in its infancy and much remains to be done.
In particular, these models need to be extended to deal with the usual problems
in panel data, such as allowing for both time and spatial observed and unobserved
heterogeneity, unbalanced or incomplete panels in several dimensions or regressors
that are invariant over one of the dimensions. Endogeneity other than the spatial
lag of the explained variable remains to be explored in these settings (Chap. 3 ex-
amines this in non-spatial multi-dimensional panels). This aspect presents more of
a challenge to single equation approaches involving ML estimation compared to
other methods involving instrumental variables, as ML estimation is not possible
when endogeneity is in implicit form, unlike the endogenous spatial lag variable.
Finally, large-sample theory available for spatial panels also has to be extended to
hierarchical spatial panels.
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Chapter 10
Modelling in the Presence of Cross-sectional
Error Dependence

George Kapetanios, Camilla Mastromarco, Laura Serlenga, and Yongcheol Shin

Abstract Given the growing availability of big datasets which contain informa-
tion on multiple dimensions and following the recent research trend on multi-
dimensional modelling, we develop three-dimensional panel data models with three-
way error components that allow for strong cross-sectional dependence (CSD)
through unobserved heterogeneous global factors, and propose appropriate consis-
tent estimation procedures. We also discuss the extent of CSD in 3D models and
provide a diagnostic test for cross-sectional dependence. We provide the extensions
to unbalanced panels and 4D models. The validity of the proposed approach is con-
firmed by the Monte Carlo simulation results. We also demonstrate the empirical
usefulness through the application to the 3D panel gravity model of the intra-EU
trade flows.

10.1 Introduction

Given the growing availability of big datasets containing information on multiple
dimensions, the recent literature on panel data has focused more on extending the
two-way error components models to a multi-dimensional setting. Chapter 1 (BMW
hereafter, from the initials of the authors) introduces the appropriate Within estima-
tors for the most frequently used three-dimensional (3D) fixed effects panel data
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models, and Chap. 2 (BBMP hereafter, from the initials of the authors) considers
the random effects approach and proposes a sequence of optimal GLS estimators.
This multi-dimensional approach is expected to become an essential tool for the
analysis of the complex interconnectedness of big datasets, and can be applied not
only to bilateral (origin-destination) flows such as trade, FDI, capital or migration
(see, e.g., Feenstra, 2004; Bertoli and Moraga, 2013; Gunnella et al., 2015), but also
to a variety of matched datasets which may link, for example, employers-employees,
pupils-teachers, (see, e.g., Abowd et al., 1999; Kramarz et al., 2008).

However, no study has attempted to address the important issue of explicitly con-
trolling cross-sectional error dependence in 3D or higher-dimensional panel data,
even though the cross-sectional dependence (CSD) seems pervasive even in 2D pan-
els. This is because it seems rare that the cross-sectional covariance of the errors is
zero (see, e.g., Pesaran, 2015). Recently, there has been much progress in modelling
CSD in 2D panels by two main approaches, the factor-based approach (see, e.g., Pe-
saran, 2006; Bai, 2009) and the spatial econometrics techniques (see, e.g., Behrens
et al., 2012; Mastromarco et al., 2016b). Chudik et al. (2011) show that factor-based
models exhibit the strong CSD, whilst the spatial-based models can deal with weak
CSD only (see also Bailey et al. (2016b) for a more general discussion).

Chapter 9 reviews the current state-of-art in the analysis of multi-dimensional
nested spatial panels, highlighting a range of issues related to the specification, esti-
mation, testing procedures and predictions. Chapter 11 provides a survey of empiri-
cal issues in the analysis of the gravity-model estimation of international trade flows,
then proceeds with the modelling of the multi-dimensional stochastic structure, fo-
cusing on the fixed-effects estimation, and describes how spatial autocorrelation and
spillovers can be introduced into such models. Chapter 12 surveys hedonic housing
models and discrete choice models using multi-dimensional panels, also focussing
on the spatial econometrics approach.

Following this research trend, we develop 3D panel data models with strong
CSD. In particular, we generalise the multi-dimensional error components speci-
fication by modelling residual CSD via unobserved heterogeneous global factors.
The multi-dimensional country-time fixed (CTFE) and random effects (CTRE) es-
timators proposed by BMW and BBMP fail to remove heterogenous global factors,
suggesting that they are biased in the presence of nonzero correlation between the
regressors and the unobserved global factors. In this regard, we develop a two-step
consistent estimation procedure. First, we follow Pesaran (2006) and augment the
3D model with the cross-sectional averages of the dependent variable and regres-
sors over double cross-sectional units, which are shown to provide valid proxies
for unobserved heterogenous global factors. Next, we apply the 3D-Within transfor-
mation to the augmented specification and obtain consistent estimators, called the
3D-PCCE estimator. Our approach is the first attempt to accommodate strong CSD
in multi-dimensional panels, and is expected to a make timely contribution to the
growing literature.

We discuss the extent of CSD within the 3D panel data models under three dif-
ferent error components specifications: the CTFE, the two-way heterogeneous fac-
tor, and both components. We also distinguish between three types of CSD under
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the hierarchical multi-factor error components specification recently advanced by
Kapetanios and Shin (2017). First, the global factor tends to display strong CSD as
it influences the (i j) pairwise interactions for i = 1, ...,N1 and j = 1, ...,N2 (of N1N2
dimension). Next, the local factors show semi-strong or semi-weak CSD, as they
influence origin and destination countries separately (each of N1 or N2 dimension).
Finally, idiosyncratic errors are characterised with weak or no CSD.

We then develop a diagnostic test for the null hypothesis of (pairwise) resid-
ual cross-sectional independence or weak dependence in the 3D panels, which is a
modified counterpart of an existing CD test in the 2D panels proposed by Pesaran
(2015) and we describe how to consistently estimate the exponent of cross-sectional
dependence by extending Bailey et al. (2016b). Furthermore, we provide a couple
of extensions into unbalanced panels and 4D or higher dimensional models.

We have conducted a Monte Carlo studies to investigate the small sample prop-
erties of the 3D-PCCE estimators relative to the CTFE estimator. We find strong
evidence that the 3D-PCCE estimators perform well when the 3D panel data is sub-
ject to the strong CSD through heterogeneous global factors. In contrast, the CTFE
estimator tends to display severe biases and size distortions.

We apply our proposed 3D PCCE estimation techniques, together with the two-
way fixed effects and the CTFE estimators, to a dataset over the period 1960–2008
(49 years) for 182 country-pairs amongst 14 EU countries. Based on the CD test
results, estimates of CSD exponent, and the predicted signs and statistical signifi-
cance of the coefficients, we come to the conclusion that the 3D PCCE estimation
results are mostly satisfactory and reliable. In particular, when we explicitly control
for strong CSD in the 3D panels, we find that the trade effect of currency union
is rather modest. It seems that this evidence provides strong support for the thesis
that the trade increase within the Euro area may reflect a continuation of a long-run
historical trend linked to the broader set of the EU’s economic integration policies.

This chapter proceeds in seven sections. Section 10.2 introduces 3D models with
three-way error components that allow for strong cross-sectional dependence, and
develops a consistent estimation procedure. Section 10.3 discusses the nature of
CSD in 3D models and provide a diagnostic test for cross-sectional dependence.
Section 10.4 presents the extension to unbalanced panels and 4D models. Sec-
tion 10.5 discusses the Monte Carlo simulation results. The empirical results for
the gravity model of EU export flows are presented in Sect. 10.6, and Sect. 10.7
concludes.

Throughout the chapter, we adopt the following standard notations. IN is an
(N×N) identity matrix, JN the (N×N) identity matrix of ones, and ιN the (N×1)
vector of ones, respectively. MA projects the (N×N) matrix A into its null-space,
i.e., MA = IN −A(A′A)−1A′. Finally, ȳ. jt = N−1

1 ∑
N1
i=1 yi jt , ȳi.t = N−1

2 ∑
N2
j=1 yi jt and

ȳi j. = T−1
∑

T
t=1 yi jt denote the average of y over the index i, j and t, respectively,

with the definition extending to other quantities, such as ȳ..t , ȳ. j., ȳi.. and ȳ.... This
notational convention extends naturally to the higher dimensional cases and un-
balanced panels. For example, in the 4D extensions covered in Section 10.4.2,
ȳ...t = N−1

1 ∑
N1
i=1 N−1

2 ∑
N2
j=1 N−1

3 ∑
N3
s=1 yi jst , denotes the average of y over the indices
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i, j, s, with the definition extending to other quantities such as ȳ. jst , ȳi.st., ȳi j.t , ȳ..st ,
ȳ. j.t., ȳ. js., ȳi..t , ȳi.s.., ȳi j.., ȳ...t , ȳ..s., ȳ. j.., ȳi... and ȳ...t .

10.2 3D Models with Cross-sectional Error Dependence

Following Chaps. 1 and 2, we consider the following three-dimensional country-
time fixed effects panel data model

yi jt = β
′xi jt +γ

′sit +δ
′d jt +κ

′qt +ϕ
′zi j+ui jt , i= 1, ...,N1, j = 1, ...,N2, t = 1, ...,T,

(10.1)
with the error components

ui jt = µi j +υit +ζ jt + εi jt , (10.2)

where yi jt is the dependent variable observed across three indices (e.g., the import
of country j from country i at period t), xi jt , sit , d jt , qt , zi j are the (kx×1), (ks×1),
(kd×1), (kq×1), (kz×1) vectors of covariates covering all possible measurements
observed across three indices, and β , γ , δ , κ , ϕ, are the associated vectors of the
parameters. The multiple error components in (10.2) contain bilateral pair-fixed ef-
fects (µi j), as well as origin and destination country-time fixed effects (CTFE), υit
and ζ jt , respectively.1

To remove all unobserved fixed effects, µi j, υit and ζ jt , BMW derive the follow-
ing 3D Within transformation2

ỹi jt = yi jt − ȳi j.− ȳ. jt − ȳi.t + ȳ..t + ȳ. j.+ ȳi..− ȳ... . (10.3)

Applying the 3D Within transformation to (10.1), we can estimate consistently β

only from the following regression

ỹi jt = β
′x̃i jt + ε̃i jt , i = 1, ...,N1, j = 1, ...,N2, t = 1, ...,T, (10.4)

where x̃i jt = xi jt − x̄i j.− x̄. jt − x̄i.t + x̄..t + x̄. j.+ x̄i..− x̄... and similarly for ε̃i jt . We
write (10.4) compactly as

Ỹi j = X̃i jβ + Ẽi j , (10.5)

where

Ỹi j
(T×1)

=

 ỹi j1
...

ỹi jT

 , X̃i j
(T×kx)

=

 x̃′i j1
...

x̃′i jT

 , Ẽi j
(T×1)

=

 ε̃i j1
...

ε̃i jT

 .
The 3D-Within estimator of β is obtained by

1 Note that the error component specification (10.2) is proposed by Baltagi et al. (2003).
2 Baltagi et al. (2015) also derive the same projection by applying Davis’s (2002) Lemma twice
(see Corollary 1).
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β̂W =

(
N1

∑
i=1

N2

∑
j=1

X̃′i jX̃i j

)−1( N1

∑
i=1

N2

∑
j=1

X̃′i jỸi j

)
. (10.6)

Then, it follows that, as (N1,N2,T )→ ∞ (see also BBMP),

√
N1N2T

(
β̂W −β

)
a∼ N

0,σ2
ε lim
(N1,N2,T )→∞

(
1

N1N2T

N1

∑
i=1

N2

∑
j=1

X̃′i jX̃i j

)−1
 .

By construction, the Within transformation in (10.3) wipes out all other covari-
ates, xit , x jt , xt , and xi j in (10.1). However, we may be interested in uncovering the
effects of those covariates (e.g., the impacts of measured trade costs in the structural
gravity model). In order to recover them, it would be worthwhile developing an ex-
tension of the Hausman and Taylor (1981) estimation, which has been popular in
the two-way panel data models even in the presence of cross-sectionally correlated
errors (see, e.g., Serlenga and Shin, 2007). Chapter 3 in fact develops an extended
Hausman-Taylor estimator for multi-dimensional panel data models.

BMW also show that the CTFE error components in (10.2) nests a number of
special cases by applying suitable restrictions to (10.2).3 Note, however, that model
(10.1) with (10.2) does not address the important issue of cross-sectional error de-
pendence. In the presence of such cross-sectional dependence (CSD), the 3D-Within
estimator would likely be biased. In this regard, we consider a couple of alternative
three-way error components specifications that can accommodate CSD, and develop
the appropriate estimation techniques.

Given that υit and ζ jt are supposed to measure the (local) origin and destination
country-time fixed effects, it is natural to add the global factor λt to (10.2)

ui jt = µi j +υit +ζ jt +λt + εi jt .

However, the 3D-Within transformation (10.3) removes λt together with µi j, υit and

ζ jt , because λt is shown to be proportional to
N1
∑

i=1
υit or

N2
∑
j=1

ζ jt .

To introduce strong CSD explicitly in the 3D model, (10.1), we first consider the
following error components specification

ui jt = µi j +πi jλt + εi jt . (10.7)

This is similar to the two-way heterogeneous factor model considered by Serlenga
and Shin (2007). We follow Pesaran (2006) and apply the cross-sectional averages
of (10.1) and (10.7) over i and j to obtain

3 Baltagi et al. (2003), Baldwin and Taglioni (2006), and Baier and Bergstrand (2007) consider
several forms of fixed effects, such as ui jt = αi+γ j +λt +εi jt , ui jt = µi j +λt +εi jt , ui jt = ζ jt +εi jt ,
ui jt = υit + εi jt , and ui jt = υit +ζ jt + εi jt .
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ȳ..t =
1

N1

N1

∑
i=1

1
N2

N2

∑
j=1

(
β
′xi jt + γ

′sit +δ
′d jt +κ

′qt +ϕ
′zi j +µi j +πi jλt + εi jt

)
= β

′x̄..t + γ
′s̄.t +δ

′d̄.t +κ
′qt +ϕ

′z̄..+ µ̄..+ π̄..λt + ε̄..t , (10.8)

where s̄.t = N−1
1 ∑

N1
i=1 sit , d̄.t = N−1

2 ∑
N2
j=1 d jt , z̄.. = (N1N2)

−1
∑

N1
i=1 ∑

N2
j=1 zi j,

µ̄.. = (N1N2)
−1

∑
N1
i=1 ∑

N2
j=1 µi j and π̄.. = (N1N2)

−1
∑

N1
i=1 ∑

N2
j=1 πi j. Hence,

λt =
1

π̄..

{
ȳ..t −

(
β
′x̄..t + γ

′s̄.t +δ
′d̄.t +κ

′qt +ϕ
′z̄..+ µ̄..+ ε̄..t

)}
.

Using these results, we can augment the model (10.1) with the cross-sectional aver-
ages as follows

yi jt = β
′xi jt + γ

′sit +δ
′d jt +ψ

′
i jft + τi j +µ

∗
i j + ε

∗
i jt , (10.9)

where

ψ
′
i j =

(
ψ0i j,ψ

′
1i j,ψ

′
2i j,ψ

′
3i j,ψ

′
4i j
)
=

(
πi j

π̄..
,
−πi jβ

′

π̄..
,
−πi jγ

′

π̄..
,
−πi jδ

′

π̄..
,

(
1−

πi j

π̄..

)
κ
′
)

ft =
(
ȳ..t , x̄′..t , s̄

′
.t , d̄
′
.t ,q
′
t
)′ (10.10)

τi j = ϕ
′zi j−

−πi j

π̄..
ϕ
′z̄.., µ

∗
i j = µi j−

πi j µ̄..

π̄..
, ε
∗
i jt = εi jt −

πi j

π̄..
ε̄..t .

We write (10.9) compactly as

Yi j = Xi jβ +Siγ +D jδ +Fψ i j + τi jιT +µ
∗
i jιT +E∗i j (10.11)

= Wi jθ +Hψ
∗
i j +E∗i j, i = 1, ...,N1, j = 1, ...,N2 ,

where

Yi j
(T×1)

=

 yi j1
...

yi jT

 , Xi j
(T×kx)

=

 x′i j1
...

x′i jT

 , Si
(T×ks)

=

 s′i1
...

s′iT

 ,

D j
(T×kd)

=

 d′j1
...

d′jT

 , F
(T×k f )

=

 f′1
...

f′T

 , E∗i j
(T×1)

=

 ε∗i j1
...

ε∗i jT

 ,
Wi j =

(
Xi j,Si,D j

)
, θ =

(
β ′ γ ′ δ ′

)′, ψ∗i j =
(

ψ ′i j,
(

τi j +µ∗i j

))′
and H = [F, ιT ].

Then, we derive the consistent estimator of θ (called 3D-PCCE) by4

4 κ and ϕ cannot be identified due to the factor approximations and the Within transformation.



10 Modelling in the Presence of Cross-sectional Error Dependence 297

θ̂PCCE =

(
N1

∑
i=1

N2

∑
j=1

W′
i jMHWi j

)−1( N1

∑
i=1

N2

∑
j=1

W′
i jMHYi j

)
, (10.12)

where MH = IT −H(H′H)−1 H′. Following Pesaran (2006), it is straightforward to
show that as (N1,N2,T )→ ∞, the PCCE estimator, (10.12) follows the asymptotic
normal distribution (see also Kapetanios and Shin, 2017)

√
N1N2T

(
θ̂PCCE −θ

)
a∼ N (0,ΣΣΣ θ ) ,

where the (robust) consistent estimator of ΣΣΣ θ is given by

Σ̂ΣΣ θ =
1

N1N2
S−1

θ
Rθ S−1

θ
,

Rθ =
1

N1N2−1

N1

∑
i=1

N2

∑
j=1

(
W′

i jMHWi j

T

)(
θ̂i j− θ̂MG

)(
θ̂i j− θ̂MG

)′(W′
i jMHWi j

T

)
,

Sθ =
1

N1N2

N1

∑
i=1

N2

∑
j=1

(
W′

i jMHWi j

T

)
, θ̂MG =

1
N1N2

N1

∑
i=1

N2

∑
j=1

θ̂i j,

where θ̂i j is the (i j) pairwise OLS estimator obtained from the individual regression
of Yi j on (Wi j,H) in (10.11) for i = 1, ...,N1 and j = 1, ...,N2.

Next, we consider the 3D model (10.1) with the following general error compo-
nents by combining CTFEs and heterogeneous global factors

ui jt = µi j +υit +ζ jt +πi jλt + εi jt . (10.13)

It is straightforward to show that the 3D-Within transformation (10.3) fails to re-
move heterogeneous factors πi jλt , because it is easily seen that

ũi jt = π̃i jλ̃t + ε̃i jt ,

where λ̃t = λt − λ̄ with λ̄ = T−1
∑

T
t=1 λt and π̃i j = πi j− π̄. j− π̄i.+ π̄.. with π̄. j =

N−1
1 ∑

N1
i=1 πi j and π̄i. = N−1

2 ∑
N2
j=1 πi j.5 It is clear in the presence of the nonzero cor-

relation between xi jt and λt that the 3D-Within estimator of β is biased.
We develop a two-step consistent estimation procedure. First, taking the cross-

sectional averages of (10.1) and (10.13) over i and j, we have

ȳ..t = β
′x̄..t + γ

′s̄.t +δ
′d̄.t +κ

′qt +ϕ
′z̄..+ µ̄..+ v̄.t + ζ̄.t + π̄..λt + ε̄..t , (10.14)

where v̄.t = N−1
1 ∑

N1
i=1 υit , ζ̄.t = N−1

2 ∑
N2
j=1 ζ jt and see (10.8) for other definitions.

Hence, we augment the model (10.1) with the cross-sectional averages as

5 Unless π̃i j = 0,ũi jt 6= ε̃i jt . This holds only if factor loadings, πi j are homogeneous for all (i, j)
pairs.
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yi jt = β
′xi jt + γ

′sit +δ
′d jt +ψ

′
i jft + τi j +µ

∗
i j +υ

∗
i jt +ζ

∗
i jt + ε

∗
i jt , (10.15)

where υ∗i jt = υit −
πi j v̄.t

π̄..
, ζ ∗i jt = ζ jt −

πi j ζ̄.t
π̄..

, and see (10.11) for other definitions. We
rewrite (10.15) as

yi jt = β
′xi jt + γ

′sit +δ
′d jt +ψ

′
i jft + τi j +µ

∗
i j +υit +ζ jt + ε

∗∗
i jt , (10.16)

where ε∗∗i jt = εi jt −
πi j
π̄..

ε̄..t −
πi j v̄.t

π̄..
− πi j ζ̄.t

π̄..
. Note that as N1,N2→ ∞, ε∗∗i jt →p εi jt since

v̄.t→p 0, ζ̄.t→p 0 and ε̄..t→p 0. Next, we apply the 3D-Within transformation (10.3)
to (10.16), and obtain6

ỹi jt = β
′x̃i jt + ψ̃

′
i j f̃t + ε̃

∗∗
i jt , (10.17)

where ψ̃i j = ψi j− ψ̄. j− ψ̄ j.+ ψ̄.., f̃t = ft − f̄ with f̄ = T−1
∑

T
t=1 ft , and ft is defined

in (10.10). Rewriting (10.17) compactly as

Ỹi j = X̃i jβ + F̃ψ̃ i j + Ẽ∗∗i j , i = 1, ...,N1, j = 1, ...,N2 , (10.18)

where

Ỹi j
(T×1)

=

 ỹi j1
...

ỹi jT

 , X̃i j
(T×kx)

=

 x̃′i j1
...

x̃′i jT

 , F̃
(T×k f )

=

 f̃′1
...

f̃′T

 , Ẽ∗∗i j
(T×1)

=

 ε̃∗∗i j1
...

ε̃∗∗i jT

 .
Then, the 3D-PCCE estimator of β is obtained by

β̂PCCE =

(
N1

∑
i=1

N2

∑
j=1

X̃′i jMF̃ X̃i j

)−1( N1

∑
i=1

N2

∑
j=1

X̃′i jMF̃ Ỹi j

)
, (10.19)

where MF̃ = IT − F̃
(
F̃′F̃
)−1 F̃′ is the (T × T ) idempotent matrix. Following Pe-

saran (2006) and Kapetanios and Shin (2017), it is also straightforward to show that
as (N1,N2,T )→ ∞, the PCCE estimator, (10.19), follows the asymptotic normal
distribution √

N1N2T
(

β̂PCCE −β

)
a∼ N

(
0,ΣΣΣ β

)
,

where the (robust) consistent estimator of ΣΣΣ β is given by

Σ̂ΣΣ β =
1

N1N2
S−1

β
Rβ S−1

β
,

6 It is clear that γ, δ , κ , and ϕ cannot be identified due to the 3D-Within transformation and the
factor approximation. Define θi jt = ψ ′i jft , then it is straightforward to show that

θ̃i jt = θi jt −
(
θ̄i j.+ θ̄. jt + θ̄i.t

)
+
(
θ̄..t + θ̄i..+ θ̄. j.

)
− θ̄... = (ψi j− ψ̄. j− ψ̄ j.+ ψ̄..)

′ (ft − f̄
)
.
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Rβ =
1

N1N2−1

N1

∑
i=1

N2

∑
j=1

(
X̃′i jMF̃ X̃i j

T

)(
β̂i j− β̂MG

)(
β̂i j− β̂MG

)′( X̃′i jMF̃ X̃i j

T

)
,

Sβ =
1

N1N2

N1

∑
i=1

N2

∑
j=1

(
X̃′i jMF̃ X̃i j

T

)
, β̂MG =

1
N1N2

N1

∑
i=1

N2

∑
j=1

β̂i j,

where β̂i j is the (i j) pairwise OLS estimator obtained from the individual regression
of Ỹi j on

(
X̃i j, F̃

)
in (10.18) for i = 1, ...,N1 and j = 1, ...,N2.

We can extend the proposed approach to the 3D panels with heterogeneous slope
parameters

yi jt = β
′
i jxi jt + γ

′
jsit +δ

′
i d jt +κ

′
i jqt +ϕ

′zi j +ui jt (10.20)

with i = 1, ...,N1, j = 1, ...,N2, t = 1, ...,T . In this case, we can develop the mean
group estimators for (10.2), (10.7) and (10.13) in a straightforward manner (see,
e.g., Pesaran, 2006; Kapetanios and Shin, 2017)

β̂W,MG =
1

N1N2

N1

∑
i=1

N2

∑
j=1

(
X̃′i jX̃i j

)−1 (X̃′i jYi j
)

θ̂MGCCE =
1

N1N2

N1

∑
i=1

N2

∑
j=1

(
W′

i jMHWi j
)−1 (W′

i jMHYi j
)

β̂MGCCE =
1

N1N2

N1

∑
i=1

N2

∑
j=1

(
X̃′i jMF̃ X̃i j

)−1 (X̃′i jMF̃ Ỹi j
)
,

10.3 Cross-sectional Dependence (CD) Test

We discuss next the extent of cross-sectional dependence in 3D panel data models.
Following Pesaran (2015) and Bailey et al. (2016b) (hereafter BKP), we can show
that the extent of CSD is captured by the non-zero covariance between ui jt and
ui′ j′t for i 6= i′ and j 6= j′, denoted as σi jt,u. Here, the extent of CSD involves both

N1 and N2, and thus relates to the rate at which 1
N1N2

N1
∑

i=1

N2
∑
j=1

σi jt,u declines with the

product, N1N2. First, we consider the 3D model (10.1) with country-time effects
(10.2). Following BBMP, we make the following random effects assumptions

µi j ∼ iid
(
0,σ2

µ

)
, υit ∼ iid

(
0,σ2

v
)
, ζ jt ∼ iid

(
0,σ2

ζ

)
, εi jt ∼ iid

(
0,σ2

ε

)
and µi j, υit , ζ jt and εi jt are pairwise uncorrelated. Rewrite (10.2) sequentially as

ui j
(T×1)

= µi jιT +vi +ζ j + εi j, i = 1, ...,N1, j = 1, ...,N2,
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ui
(N2T×1)

= (µi⊗ ιT )+(ιN2 ⊗vi)+ζ + εi, i = 1, ...,N1,

u
(N1N2T×1)

= (µ⊗ ιT )+V+(ιN1 ⊗ζ )+ ε , (10.21)

where

ui j
(T×1)

=

 ui j1
...

ui jT

 , vi
(T×1)

=

 υi1
...

υiT

 , ζ j
(T×1)

=

 ζ j1
...

ζ jT

 , εi j
(T×1)

=

 εi j1
...

εi jT

 ,

ui
(N2T×1)

=

 ui1
...

uiN2

 , µi
(N2×1)

=

 µi1
...

µiN2

 , ζ

(N2T×1)
=

 ζ1
...

ζN2

 , εi
(N2T×1)

=

 εi1
...

εiN2

 ,

u
(N1N2T×1)

=

 u1
...

uN1

 , µ

(N1N2×1)
=

 µ1
...

µN1

 ,

V
(N1N2T×1)

=

 (ιN2 ⊗v1)
...

(ιN2 ⊗vN1)

 , ε
(N1N2T×1)

=

 ε1
...

εN1

 .

(10.22)

Then, it is easily seen that (see also BBMP)

Cov(u)
(N1N2T×N1N2T )

= σ2
µ (IN1N2 ⊗JT )+σ2

v (IN1 ⊗JN2 ⊗ IT )

+σ2
ζ
(JN1 ⊗ IN2T )+σ2

ε IN1N2T .
(10.23)

Note that the CTRE model imposes a very limited structure on the CSD, because
for i 6= i′ and j 6= j′, we have

E[ui jtui j′t ] = σ
2
v , E[ui jtui j′t ] = σ

2
ζ

and E[ui jtui′ j′t ] = 0. (10.24)

This suggests that the covariance between ui jt and ui′ jt is common σ2
v for all

i = 1, ...,N1, while the covariance between ui jt and ui j′t is common σ2
ζ

for all
j = 1, ...,N2. Further, it imposes zero covariance between ui jt and ui j′t ′.

Next, we consider the 3D model with the two-way heterogeneous factor specifi-
cation, (10.7). In this case, it is straightforward to derive

u
(N1N2T×1)

= (µ⊗ ιT )+(π⊗λT )+ ε , (10.25)

where

π
(N1N2×1)

=

 π1
...

πN1

 , πi
(N2×1)

=

 πi1
...

πiN2

 , λT
(T×1)

=

 λ1
...

λT

 ,
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and see (10.22) for other definitions. The covariance matrix for u in (10.25) is

Cov(u)
(N1N2T×N1N2T )

= σ
2
µ (IN1N2 ⊗JT )+σ

2
λ

(
ππ
′⊗ IT

)
+σ

2
ε IN1N2T . (10.26)

Thus, the specification (10.25) can capture CSD by non-zero covariances between
ui jt and ui′ j′t for i 6= i′ and j 6= j′ by

E[ui jtui j′t ] = πi jπi j′σ
2
λ
, E[ui jtui′ jt ] = πi jπi′ jσ

2
λ
, E[ui jtui′ j′t ] = πi jπi′ j′σ

2
λ
. (10.27)

Next, we consider the 3D model with more general error components, (10.13).
Combining the above results, it is straightforward to derive

u
(N1N2T×1)

= (µ⊗ ιT )+V+(ιN1 ⊗ζ )+(π⊗λT )+ ε . (10.28)

Thus, the covariance matrix for u in (10.28) is given by

Cov(u)
(N1N2T×N1N2T )

= σ
2
µ (IN1N2 ⊗JT )+σ

2
v (IN1 ⊗JN2 ⊗ IT ) (10.29)

+σ
2
ζ
(JN1 ⊗ IN2T )+σ

2
λ

(
ππ
′⊗ IT

)
+σ

2
ε IN1N2T .

This model can capture CSD by non-zero covariances between ui jt and ui′ j′t for
i 6= i′ and j 6= j′, given by

E[ui jtui j′t ] = πi jπi j′σ
2
λ
+σ

2
v ,E[ui jtui′ jt ] = πi jπi′ jσ

2
λ
+σ

2
ξ
,E[ui jtui′ j′t ] = πi jπi′ j′σ

2
λ
.

(10.30)
Comparing (10.24), (10.27) and (10.30), we find that the CTFE specification in

(10.2) can only accommodate non-zero covariances locally, but it also imposes the
same covariance for all i = 1, ...,N1 and j = 1, ...,N2, respectively. Such restrictions
are too strong to hold in practice.7

In contrast, our proposed error components specification (10.13) can accommo-
date non-zero covariances both locally and globally.

Note that υit and ζ jt are related to the local-time factors. In order to examine
whether they exhibit weak or strong CSD, we consider the following heterogeneous
local factors specifications

υit = υiτt and ζ jt = ζ jτ
∗
t ,

where τt and τ∗t are the origin and the destination-specific local common factors,
respectively. Then, (10.13) can be replaced by

ui jt = µi j +υiτt +ζ jτ
∗
t + εi jt . (10.31)

7 In the two-way error components with individual effects and time effects, the cross-sectional
correlation is the same for all cross-sectional pairs. Serlenga and Shin (2007) show that such spec-
ification would produce very misleading results in the presence of heterogeneous strong CSD in a
2D panel data model.
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This specification implies that the exporter, i, reacts heterogeneously to the common
import market conditions, τt and the importer, j, reacts heterogeneously to the com-
mon export market conditions, τ∗t . Recently, Kapetanios and Shin (2017) proposed
a more general hierarchical multi-factor error components specification

ui jt = µi j +υiτt +ζ jτ
∗
t +πi jλt + εi jt . (10.32)

Within this model, we can distinguish between three types of CSD: (i) the strong
global factor, λt which influences the (i j) pairwise interactions (of N1N2 dimen-
sion); (ii) the semi-strong local factors, τt and τ∗t , which influence origin or desti-
nation countries separately (each of N1 or N2 dimension); and (iii) the weak CSD
idiosyncratic errors, εi jt . We expect that this kind of generalisation would be most
natural within the 3D panel data models. Following BBMP, we assume

µi j ∼ iid
(
0,σ2

µ

)
, τt ∼ iid

(
0,σ2

τ

)
, τ∗t ∼ iid

(
0,σ2

τ∗
)
,

λt ∼ iid
(
0,σ2

λ

)
, εi jt ∼ iid

(
0,σ2

ε

)
and µi j, τt , τ∗t , λt and εi jt are mutually independent.8 It is clear that model (10.32)
can capture CSD by non-zero covariances between ui jt and ui′ j′t for i 6= i′ and j 6= j′,
given by

E[ui jtui j′t ] = υ
2
i σ

2
τ +πi jπi j′σ

2
λ
, E[ui jtui′ jt ] = ζ

2
j σ

2
τ∗ +πi jπi′ jσ

2
λ

E[ui jtui′ j′t ] = πi jπi′ j′σ
2
λ
. (10.33)

The covariance structure in (10.33) is clearly more general than (10.30).
We now develop a diagnostic test for the null hypothesis of residual cross-

sectional independence in the triple-index panel data models. These are evaluated
using the residuals obtained respectively from (10.5), (10.11) and (10.18), which
we denote as ei j =

(
ei j1, ...,ei jT

)′. In particular, we have ei j = Ỹi j − X̃i jβ̂W for
model (10.5), ei j = MHYi j −MHWi jθ̂PCCE for model (10.11), and finally ei j =

MF̃ Ỹi j−MF̃ X̃i jβ̂PCCE for the model (10.18).
The proposed cross-sectional dependence (CD) test is a modified counterpart of

an existing CD test proposed by Pesaran (2015). For convenience, we represent ei j
as the (i j) pair using the single index n = 1, ...,N1N2, and compute the pair-wise
residual correlations between n and n′ cross-sectional units by

ρ̂nn′ =
e′nen′√

(e′nen)
(
e′n′en′

) , n,n′ = 1, ...,N1N2 and n 6= n′.

Then, we construct the CD statistic by

CD =

√
2

N1N2 (N1N2−1)

N1N2−1

∑
n=1

N1N2

∑
n′=n+1

√
T ρ̂nn′ . (10.34)

8 This assumption is still more general than the random effects assumptions made in BBMP.
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Pesaran derives that the CD test has the limiting N(0,1) distribution under the null
hypothesis of cross-sectional error independence, namely H0 : ρ̂nn′ = 0 for all n,n′ =
1, ...,N1N2 and n 6= n′. Following BKP, Pesaran further shows that the CD statistic,
(10.34), can also be applicable to testing the null hypothesis of weak cross-sectional
error dependence. As an extension, one can also construct hierarchical CD tests
based on a 2D sub-dataset out of the 3D dataset.

Following BKP, we introduce the exponent of cross-sectional dependence based
on the double cross-sectional averages defined as ū..t = (N1N2)

−1
∑

N1
i=1∑

N2
j=1ui jt . If

ui jt ’s are cross-sectionally correlated across (i, j) pairs, Var(ū..t) declines at a rate
that is a function of α , where α is defined as

lim
N1N2→∞

(N1N2)
−α

λmax (ΣΣΣ u)

and ΣΣΣ u is the (N1N2 × N1N2) covariance matrix of ut = (u11t , ...,uN1N2t)
′ with

λmax (ΣΣΣ u) denoting the largest eigenvalue. Clearly, Var(ū..t) cannot decline at a rate
faster than (N1N2)

−1, as well as it cannot decline at a rate slower than (N1N2)
α−1

with 0≤ α ≤ 1. Given that

Var(ū..t)≤ (N1N2)
−1

λmax (ΣΣΣ u) ,

we find that α defined by (N1N2)
−1

λmax (ΣΣΣ u) = O
(
(N1N2)

α−1
)

will provide an
upper bound for Var(ū..t). The extent of CSD depends on the nature of the factor
loadings in the following factor-based errors

ui jt = πi jλt + εi jt .

If the average of the heterogenous loading parameters, πi j, denoted µπ , is bounded
away from zero, the cross-sectional dependence will be strong, in which case,
(N1N2)

−1
λmax (ΣΣΣ u) and Var(ū..t) are both O(1), which yields α = 1.

Furthermore, for 1/2 < α ≤ 1, BKP propose the following bias-adjusted estima-
tor to consistently estimate α:

α̊ = 1+
1
2

ln
(
σ̂2

u..t

)
ln(N1N2)

−
ln
(
µ̂2

π

)
2ln(N1N2)

−
ĉN1N2

2
[
N1N2 ln(N1N2) σ̂2

u..t

] , (10.35)

where

σ̂
2
ū..t = T−1

Σ
T
t=1ū2

..t , ĉN1N2 =
̂̄
σ2

N1N2
= (N1N2)

−1
N1

∑
i=1

N2

∑
j=1

σ̂
2
i j ,

and σ̂2
i j = T−1Σ T

t=1ε̂2
i jt is the i jth diagonal element of the estimated covariance ma-

trix, Σ̂ε with ε̂i jt = ui jt − δ̂i jū..t and δ̂i j is the OLS estimator from the regression of
ui jt on ū..t . BKP also argue that a suitable estimation of µ2

π can be derived, noting
that µπ is the mean of the population regression coefficient of ui jt on ũ..t = ū..t/σ̂ū..t
for units ui jt , that have at least one non-zero loading, and those units are selected
using Holm’s (1979) multiple testing approach.
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In the empirical section, we apply the above 3D extension of the BKP estimation
and testing techniques directly to the residuals ei jt obtained respectively from (10.5),
(10.11) and (10.18). We also evaluate the confidence band for the estimated CSD
exponent by employing the test statistic defined in (B47) in BKP’s Supplementary
Appendix VI.

10.4 Extensions

We provide two extensions of the proposed estimation techniques into unbalanced
panels and four dimensional (4D) models. Such extensions are challenging as they
involve several layers of factor specifications.

10.4.1 Unbalanced Panels

In practice, we may be faced with unbalanced panels. Note, however, that the issue
of unbalanced panels or missing data has been almost neglected even in the literature
on 2D panels with unobserved factors or interactive effects. Kapetanios and Pesaran
(2005) briefly deal with this issue in their Monte Carlo studies. Bai et al. (2015)
investigate the unbalanced 2D panel data model with interactive effects, and propose
the use of the functional principal components analysis and the EM algorithm. Via
simulation studies, they find that the EM-type estimators are consistent for both
smooth and stochastic factors, though no asymptotic analysis is provided. For the
error components model (10.2), the 3D Within transformation fails to fully eliminate
the fixed effects. BMW thus extend the Wansbeek and Kapteyn (1989) approach and
derive a complex Within transformation, which is computationally quite demanding
as it may involve an inversion of (NT ×NT ) matrices. Thus, we expect that this
extension of our proposed 3D PCCE estimation into unbalanced panels will be more
challenging.

We now introduce a vector of selection indicators for each pair (i, j), si j =(
si j,1, ...,si j,T

)′, where si jt = 1 if time period t for pair (i, j) can be used in the
estimation. We only use information on units where a full set of data is observed.
Therefore, si jt = 1 if and only if (xi jt ,yi jt) is fully observed; otherwise, si jt = 0.
Following Wooldridge (2010), we assume that selection is ignorable conditional on
(xi jt ,sit ,d jt ,qt ,zi j,µi j,λt):

E(yit |xi jt ,sit ,d jt ,qt ,zi j,µi j,λt ,si) = E(yit |xi jt ,sit ,d jt ,qt ,zi j,µi j,λt) .

Let n = ∑
N1
i=1 ∑

N2
j=1 ∑

T
t=1 si jt be the total number of observations. Also define nt =

∑
N1
i=1 ∑

N2
j=1 si jt and ni j = ∑

T
t=1 si jt as the number of cross-sectional pairs observed for

time period t and the number of time periods observed for pair (i, j). Similarly,
define ni = ∑

N2
j=1 ∑

T
t=1 si jt , n j = ∑

N1
i=1 ∑

T
t=1 si jt , nit = ∑

N2
j=1 si jt and n jt = ∑

N1
i=1 si jt ,
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respectively. To simplify further analysis, we maintain the assumption9(
min

i
ni,min

j
n j,min

t
nt ,min

(i j)
ni j

)
→ ∞ or

(
min

t
nt ,min

(i j)
ni j

)
→ ∞ .

Consider the 3D model (10.1) with the error components specification (10.7). We
multiply the model by the selection indicator to get

ys
i jt = β

′xs
i jt + γ

′ss
it +δ

′ds
jt +κ

′qs
t +ϕ

′zs
i j +µ

s
i j +π

s
i jλt + ε

s
i jt , (10.36)

where ys
i jt = si jtyi jt , xs

i jt = si jtxi jt , ss
it = si jtsit , ds

jt = si jtd jt , qs
t = si jtqt , zs

i j = si jtzi j,
µs

i j = si jt µi j, πs
i j = si jtπi j, and εs

i jt = si jtεi jt . Applying the cross-sectional averages
of (10.36) over i and j, we obtain

ȳs
..t = β

′x̄s
..t + γ

′s̄s
.t +δ

′d̄s
.t +κ

′qt +ϕ
′z̄s
..t + µ̄

s
..t + π̄

s
..tλt + ε̄

s
..t , (10.37)

where ȳs
..t =

1
nt

∑
N1
i=1 ∑

N2
j=1 si jtyi jt = ∑

N1
i=1 wit ȳs

i.t is expressed as a weighted average

with wit = nit/nt and ȳs
i.t = n−1

it ∑
N2
j=1 si jtyi jt .10 Similarly for x̄s

..t , z̄s
..t , µ̄s

..t , π̄s
..t and

ε̄s
..t . Further, s̄s

.t = ∑
N1
i=1 witsit , d̄s

.t = ∑
N2
j=1 w jtd jt with w jt = n jt/nt , and q̄s

t = qt . As
nt → ∞ ,

z̄s
..t = z̄+op (1) , µ̄

s
..t = µ̄ +op (1) , π̄

s
..t = π̄ +op (1) and ε̄

s
..t = ε̄..t +op (1) ,

(10.38)
where z̄ = (N1N2)

−1
∑

N1
i=1 ∑

N2
j=1 zi j →p E(zi j), µ̄ = (N1N2)

−1
∑

N1
i=1 ∑

N2
j=1 µi j →p 0,

π̄ =(N1N2)
−1

∑
N1
i=1 ∑

N2
j=1 πi j→p E(πi j) 6= 0 and ε̄..t =(N1N2)

−1
∑

N1
i=1 ∑

N2
j=1 εi jt→p 0.

Using (10.38), we rewrite (10.37) as

ȳs
..t = β

′x̄s
..t + γ

′s̄s
.t +δ

′d̄s
.t +κ

′qt +ϕ
′z̄+ µ̄ + π̄λt + ε̄..t +op (1) .

Hence, λt can be approximated by

λt '
1
π̄

{
ȳs
..t −

(
β
′x̄s

..t + γ
′s̄s
.t +δ

′d̄s
.t +κ

′qt +ϕ
′z̄+ µ̄ + ε̄..t

)}
.

Using these results, we can augment the model (10.36) with the cross-sectional av-
erages as follows

ys
i jt = β

′xs
i jt + γ

′ss
it +δ

′ds
jt +ψ

′
i j f̊

s
t + τ

s
i j +µ

s
i j + ε

∗s
i jt , (10.39)

where τs
i j = si jtτi j, ε∗si jt = si jtε

∗
i jt and

f̊s
t = si jt fs

t with fs
t =
(
ȳs
..t , x̄

s′
..t , s̄

s′
.t , d̄

s′
.t ,q

′
t
)′

. (10.40)

9 For factor approximation by cross-sectional averages or the principal components to be valid, we
still require min(i j) ni j → ∞, see Pesaran (2006) and Bai (2009).
10 ȳs

..t can be expressed as a (column sum) weighted average ∑
N2
j=1 w jt ȳs

. jt with w jt = n jt/nt and

ȳs
. jt = n−1

jt ∑
N1
i=1 si jt yi jt .
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Collecting only the ni j observations with si jt = 1 from (10.39), we have

Yi j = Xi jβ +Si jγ +Di jδ +Fi jψi j +(τi j +µi j) ιni j +E∗i j = Wi jθ +Hi jψ
∗
i j +E∗i j ,

(10.41)
where

Wi j =
(
Xi j,Si j,Di j

)
, θ =

(
β ′ γ ′ δ ′

)′
,

ψ∗i j =
(

ψ ′i j,(τi j +µi j)
)′

, Hi j =
[
Fi j, ιni j

]
and

Yi j
(ni j×1)

=

 yi j(1)
...

yi j(ni j)

 , Xi j
(Ti j×kx)

=


x′i j(1)

...
x′

i j(ni j)

 , Si j
(Ti j×ks)

=


s′i(1)

...
s′

i(ni j)

 ,

Di j
(ni j×kd)

=


d′j(1)

...
d′

j(ni j)

 , Fi j
(ni j×k f )

=


fs′
(1)
...

fs′
(ni j)

 , Ei j
(Ti j×1)

=


ε∗i j(1)

...
ε∗

i j(ni j)

 .
Here we express the time index inside (.) to highlight different initial and last time
periods for each cross-sectional pair (i j) respectively. Then, the 3D-PCCE estimator
of θ is obtained by

θ̂PCCE =

(
N1

∑
i=1

N2

∑
j=1

W′
i jMHi j Wi j

)−1( N1

∑
i=1

N2

∑
j=1

W′
i jMHi j Yi j

)
, (10.42)

where MHi j = ITi j −Hi j

(
H′i jHi j

)−1
H′i j.

Next, we consider the 3D model (10.1) with the general error components speci-
fication (10.13). To develop the two-step consistent estimation procedure for unbal-
anced panels, we multiply the model by si jt = 1 to get

ys
i jt = β

′xs
i jt + γ

′ss
it +δ

′ds
jt +κ

′qs
t +ϕ

′zs
i j +µ

s
i j +υ

s
it +ζ

s
jt +πi jλ

s
t + ε

s
i jt , (10.43)

where ys
i jt = si jtyi jt and similarly for others. Taking the cross-sectional averages of

(10.43) over i and j, we have

ȳs
..t = β

′x̄s
..t + γ

′s̄s
.t +δ

′d̄s
.t +κ

′qt +ϕ
′z̄s
..t + µ̄

s
..t + v̄s

.t + ζ̄
s
.t + π̄

s
..tλt + ε̄

s
..t , (10.44)

where v̄s
.t = ∑

N1
i=1 witυit with wit = nit/nt , ζ̄ s

.t = ∑
N2
j=1 w jtζ jt with w jt = n jt/nt , and

see (10.37) for other definitions. As nt → ∞,

v̄s
.t = v̄+op (1) and ζ̄

s
.t = ζ̄ +op (1) , (10.45)

where v̄ = N−1
1 ∑

N1
i=1 υit →p 0 and ζ̄ = N−1

2 ∑
N2
j=1 ζ jt →p 0. Using (10.38) and

(10.45), we can approximate ȳs
..t and λt by
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ȳs
..t = β

′x̄s
..t + γ

′s̄s
.t +δ

′d̄s
.t +κ

′qt +ϕ
′z̄+ µ̄ + v̄+ ζ̄ + π̄λt + ε̄..t +op (1)

λt =
1
π̄

{
ȳs
..t −

(
β
′x̄s

.t + γ
′s̄s
.t +δ

′d̄s
.t +κ

′qt +ϕ
′z̄+ µ̄ + v̄+ ζ̄ + ε̄..t

)}
+op (1) .

Hence, we augment the model (10.43) with the cross-sectional averages as

ys
i jt = β

′xs
i jt + γ

′ss
it +δ

′ds
jt +ψ

′
i jf

s
t + τ

s
i j +µ

s
i j +υ

s
it +ζ

s
jt + ε

∗s
i jt , (10.46)

where ε∗si jt = si jtε
∗
i jt with ε∗i jt = εi jt −

πi j
π̄

(
ε̄..t + µ̄ + v̄+ ζ̄

)
→p εi jt and see (10.39)

for other definitions.
To derive the appropriate 3D-Within transformation directly for unbalanced pan-

els (10.46), we consider the simple specification

ys
i jt = µ

s
i j +υ

s
it +ξ

s
jt + ε

s
i jt , (10.47)

and examine the property of the transformed data given by

ỹs
i jt = ys

i jt + si jt
(
−ȳs

i j·− ȳs
· jt − ȳs

i·t + ȳs
··t + ȳs

· j·+ ȳs
i··− ȳs

···
)
. (10.48)

Then, it is straightforward to show(
−ȳs

i j·− ȳs
· jt − ȳs

i·t + ȳs
··t + ȳs

· j·+ ȳs
i··− ȳs

···
)

= −(µi j +υit +ξ jt)+D1 +D2 +D3 +D4 +D5 ,

where

D1 =−

(
v̄s

i j.−
N2

∑
j=1

ni j

ni
v̄s

i j.

)
+

(
N1

∑
i=1

ni j

n j
v̄s

i j.−
N1

∑
i=1

ni

n

N2

∑
j=1

ni j

ni
v̄s

i j.

)

D2 =−

(
ξ̄

s
i j.−

N1

∑
i=1

ni j

n j
ξ̄

s
i j.

)
+

(
N2

∑
j=1

ni j

ni
ξ̄

s
i j.−

N2

∑
j=1

n j

n

N1

∑
i=1

ni j

n j
ξ̄

s
i j.

)

D3 =−

(
µ̄. jt −

T

∑
t=1

n jt

n j
µ̄. jt

)
−

(
µ̄i.t −

T

∑
t=1

nit

ni
µ̄i.t

)
+

(
µ̄..t −

T

∑
t=1

nt

n
µ̄..t

)

D4 =−

(
v̄s
. jt −

N2

∑
j=1

n jt

nt
v̄s
. jt

)
, D5 =−

(
ξ̄i.t −

N1

∑
i=1

nit

nt
ξ̄i.t

)
with
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v̄s
i j. =

1
ni j

∑
T
t=1 si jtυit

ξ̄ s
i j. =

1
ni j

∑
T
t=1 si jtξ jt

µ̄s
. jt =

1
n jt

∑
N1
i=1 si jt µi j

µ̄s
i.t =

1
nit

∑
N2
j=1 si jt µi j

µ̄s
..t =

1
nt

∑
N1
i=1 ∑

N2
j=1 si jt µi j

v̄s
. jt = 1

n jt
∑

N1
i=1 si jtυit and

ξ̄ s
i.t = 1

nit
∑

N2
j=1 ξ jt .

Notice in the balanced panels that D1 = D2 = D3 = D4 = D5 = 0. In addition, as(
mini ni,min j n j,mint nt ,min(i j) ni j

)
→ ∞, Di →p 0 for i = 1, ...,5. Therefore, we

obtain(
−ȳs

i j·− ȳs
· jt − ȳs

i·t + ȳs
··t + ȳs

· j·+ ȳs
i··− ȳs

···
)
=−(µi j +υit +ξ jt)+op (1) . (10.49)

Using (10.49) and applying (10.48) to (10.47), we obtain the desired result

ỹs
i jt = ε̃

s
i jt , (10.50)

where ε̃s
i jt = εs

i jt − si jt

(
ε̄s

i j·− ε̄s
· jt − ε̄s

i·t + ε̄s
··t + ε̄s

· j·+ ε̄s
i··− ε̄s

···

)
.

We now apply the 3D-Within transformation (10.48) to (10.46) and obtain

ỹs
i jt = β

′x̃s
i jt + ψ̃

′
i j f̊

s
i jt + ε̃

∗s
i jt , (10.51)

where ψ̃ ′i j =ψ ′i j−
(

1
n jt

∑
N1
i=1 ψ ′i j

)
−
(

1
nit

∑
N2
j=1 ψ ′i j

)
+
(

1
nt

∑
N1
i=1 ∑

N2
j=1 ψ ′i j

)
, f̊s

i jt = si jt f̃s
i j

with f̃s
i j = fs

t − f̄s
i j and f̄s

i j = n−1
i j ∑

T
t=1 si jt fs

t , and fs
t is defined in (10.40). Collecting

only the ni j observations with si jt = 1 from (10.51), we have

Ỹi j = X̃i jβ + F̃i jψ̃i j + Ẽ∗i j , (10.52)

where

Ỹi j
(ni j×1)

=

 ỹi j(1)
...

ỹi j(ni j)

 , X̃i j
(ni j×kx)

=


x̃′i j(1)

...
x̃′

i j(ni j)

 ,

F̃i j
(ni j×k f )

=


f̃s′
i j(1)
...

f̃s′
i j(ni j)

 , Ẽ∗i j
(ni j×1)

=


ε̃∗i j(1)

...
ε̃∗

i j(ni j)

 .

As before, we use the time index inside (.) to highlight different initial and last time
periods for each cross-sectional pair (i j) respectively. Then, the 3D-PCCE estima-
tors of β are obtained by
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β̃PCCE =

(
N1

∑
i=1

N2

∑
j=1

X̃′i jMi jX̃i j

)−1( N1

∑
i=1

N2

∑
j=1

X̃′i jMi jỸi j

)
, (10.53)

where Mi j = IT − F̃i j

(
F̃′i jF̃i j

)−1
F̃′i j. As

(
mint nt ,min(i j) n(i j)

)
→ ∞, both PCCE

estimators, (10.42) and (10.53), follow the asymptotic normal distribution.

10.4.2 4D Model Extensions

BMW propose the following baseline 4D model

yi jst = x′i jstβ +ui jst , (10.54)

ui jst = µi js +θi jt +ζ jst +υist + εi jst (10.55)

for i = 1, ...,N1, j = 1, ...,N2, s = 1, ...,N3, and t = 1, ...,T . BMW derive the follow-
ing 4D Within transformation to eliminate pair-wise interaction effects, µi js, υist ,
ζ jst , and λi jt from (10.54)

ỹi jst = yi jst − ȳ. jst − ȳi.st − ȳi j.t − ȳi js.+ ȳ..st + ȳ. j.t + ȳ. js.+ ȳi..t + ȳi.s.+ ȳi j..

−ȳ...t − ȳ..s.− ȳ. j..− ȳi...− ȳ.... (10.56)

and estimate β consistently from the transformed specification

ỹi jst = x̃′i jstβ +ui jst . (10.57)

Further, BBMP propose the feasible GLS random effects estimator of β under the
assumption that ui jst and its components individually have a zero mean, and the
error components are pairwise uncorrelated.

To introduce CSD explicitly into (10.54), we consider the following extension

yi jst = x′i jstβ +µi js +θi jt +ζ jst +υist +πi jsλt + εi jst , (10.58)

where λt is the global factor with heterogeneous coefficients πi js. In the presence
of such CSD, both the 4D-FE estimator and the 4D-RE estimator would likely be
biased due to the correlation between xi jst and λt . Thus, we develop the two-step
consistent estimation procedure. Taking the cross-sectional averages of (10.58) over
i, j and s, we obtain

ȳ...t =
1

N1

N1

∑
i=1

1
N2

N2

∑
j=1

1
N3

N3

∑
s=1

(
β
′xi jst +µi js +θi jt +ζ jst +υist +πi jsλt + εi jst

)
= β

′x̄...t + µ̄...+ θ̄..t + ζ̄..t + v̄..t + π̄...λt + ε̄...t , (10.59)

where
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x̄...t = 1
N1

∑
N1
i=1

1
N2

∑
N2
j=1

1
N3

∑
N3
s=1 xi jst

ε̄...t =
1

N1
∑

N1
i=1

1
N2

∑
N2
j=1

1
N3

∑
N3
s=1 εi jst

µ̄... =
1

N1
∑

N1
i=1

1
N2

∑
N2
j=1

1
N3

∑
N3
s=1 µi js

π̄... =
1

N1
∑

N1
i=1

1
N2

∑
N2
j=1

1
N3

∑
N3
s=1 πi js

θ̄..t = 1
N1

∑
N1
i=1

1
N2

∑
N2
j=1 θi jt

ζ̄..t = 1
N2

∑
N2
j=1

1
N3

∑
N3
s=1 ζ jst and

v̄..t = 1
N1

∑
N1
i=1

1
N3

∑
N3
s=1 υist .

From (10.59), we have

λt =
1

π...

{
ȳ...t −

(
β
′x̄...t + µ̄...+ θ̄..t + ζ̄..t + v̄..t + π̄...λt + ε̄...t

)}
.

Thus, we derive the cross-sectional augmented version of (10.58) by

yi jst = β
′xi jst +ψ

′
i jsft +µi js +θi jt +ζ jst +υist + ε

∗
i jst , (10.60)

where ft = (ȳ...t , x̄′...t)
′, ψ ′i js =

(
ψ0,i js,ψ

′
i js

)
=
(

πi js
π̄...

,−πi js
π̄...

β ′
)

and

ε∗i jst = εi jst −
πi js
π̄...

(
ε̄...t + θ̄..t + ζ̄..t + v̄..t

)
. As N1,N2,N3 → ∞, ε∗i jst →p εi jst because

of the following approximations: µ̄... →p 0, θ..t →p 0, ζ..t →p 0, υ..t →p 0, and
ε̄...t →p 0.

Next, we apply the 4D-Within transformation (10.56) to (10.60), and obtain

ỹi jst = β
′x̃i jst + ψ̃

′
i js f̃t + ε̃

∗
i jt , (10.61)

where

ψ̃
′
i js = (ψi js−ψ. js−ψi.s−ψi j.+ψ..s +ψ. j.+ψi..−ψ...)

′ and f̃t =
(
ft − f̄

)
.

We rewrite (10.61) as
Ỹi js = X̃i jsβ + F̃ψ̃ i js + ε̃

∗
i js, (10.62)

where

Ỹi js
(T×1)

=

 ỹi js1
...

ỹi jsT

 , X̃i js
(T×kx)

=

 x̃′i js1
...

x̃′i jsT

 , F̃
(T×k f )

=

 f̃′1
...

f̃′T

 .
Then, it is straightforward to derive the PCCE estimator of β by

β̂PCCE =

(
N1

∑
i=1

N2

∑
j=1

N3

∑
s=1

X̃′i jsMF̃X̃i js

)−1( N1

∑
i=1

N2

∑
j=1

N3

∑
s=1

X̃′i jsMF̃Ỹi js

)
, (10.63)

where MF̃ = IT − F̃
(
F̃′F̃
)−1 F̃′.

Further, we can follow Kapetanios and Shin (2017) and develop 4D models with
the hierarchical multi-factor error structure. To this end define the global factor λt
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which affects all (i js) pairs, the regional factors τit , τ∗jt , τ∗∗st , and finally the local
factors τi jt , τ∗ist and τ∗∗jst . This logic suggests the following model

yi jst = x′i jstβ +µi js+υ jsτit +υ
∗
isτ jt +υ

∗∗
i j τst +ζsτi jt +ζ

∗
j τ
∗
ist +ζ

∗∗
i τ
∗∗
jst +πi jλt +εi jst .

(10.64)
Such higher-dimensional setups involve several layers of factor specifications (a
number that grows with the dimensions), rendering estimation and inference non-
trivial and challenging.

10.5 Monte Carlo Analysis

In this section, we conduct Monte Carlo studies and investigate the small sample
properties of the CTFE and two versions of the PCCE estimator for models, (10.4),
(10.11) and (10.17), respectively. We consider the two data generating processes
(DGP). We construct DGP1 by

yi jt = βxi jt +µi j +πi jλt + εi jt , (10.65)

xi jt = µ
x
i j +µi j +π

x
i jλt +υi jt , (10.66)

for i = 1, ...,N1, j = 1, ...,N2, and t = 1, ...,T . The global common factor, λt and
idiosyncratic errors, εi jt and υi jt are generated independently as iid processes
with zero mean and unit variance: namely, λt ∼ iid N (0,1), εi jt ∼ iid N (0,1)
and υi jt ∼ iid N (0,1). We generate pairwise individual effects independently as
µi j ∼ iid N (0,1) and µx

i j ∼ iid N (0,1). The factor loadings, πi j and πx
i j, are then

independently generated from U [1,2] random variables.
Next, we construct DGP2 by

yi jt = βxi jt +µi j +υit +ζ jt +πi jλt + εi jt , (10.67)

xi jt = µ
x
i j +µi j +π

x
i jλt +υi jt , (10.68)

for i = 1, ...,N1, j = 1, ...,N2, and t = 1, ...,T . In addition, we follow BBMP and
generate υit and ζ jt independently as

υit ∼U (−1,1) and ζ jt ∼U (−1,1) for i = 1, ...,N1, j = 1, ...,N2, t = 1, ...T.

In both DGP1 and DGP2, we set β = 1.
For each experiment, we evaluate the following summary statistics:

• Bias: β̂R−β0, where β0 (= 1) is the true parameter value, and β̂R = R−1
∑

R
r=1 β̂r

is the mean of β̂r.
• Root mean square error (RMSE):
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R−1

R

∑
r=1

(
β̂r−β0

)2
.

• Size: the empirical rejection probability of the t-statistic for the null hypothesis
β = β0 against β 6= β0 at the 5% significance.

We conduct each experiment 1,000 times for the (N1,N2,T ) triples with N1,N2 =
{25,49,100}11 and T = {50,100,200,400}. The simulation results are provided in
Table 10.1 for DGP1 and Table 10.2 for DGP2 respectively.

In Table 10.1 we find that biases of the 2D and 3D PCCE estimators of β

are mostly negligible even for the relatively small sample size at (N1,N2,T ) =
(25,25,50). On the other hand, the CTFE estimator displays substantial biases for
most cases. As N1, N2 or T increases, the biases become smaller but still non-
negligible. RMSE results are qualitatively similar to the bias patterns. RMSEs of
both PCCE estimators decrease sharply with N1 (N2) or T , whilst RMSEs of the
CTFE estimator fall only with N1 (N2). Turning to the empirical sizes of the t-test
for the null hypothesis, β̂ = β0 (= 1), we find that the CTFE over-rejects the null
in all cases and tends to 1 as N1 (N2) or T rises. By contrast, the size of the 2D
PCCE estimator is reasonably close to the nominal 5% level in all cases, while the
3D PCCE estimator tends to slightly over-reject the null when N1 or N2 is relatively
small. As expected, the overall performance of the 2D PCCE estimator is the best
under DGP1.

Simulation results in Table 10.2 are qualitatively similar to those in Table 10.1.
Biases of both PCCE estimators are almost negligible in all cases, and their RMSEs
decrease rapidly with N1 (N2) or T . Empirical sizes of the t-test for β̂ = β0 (= 1) are
still close to the nominal 5% level in almost all cases for the 2D PCCE estimator. The
3D PCCE estimator tends to slightly over-reject the null, but its size performance
improves quickly as N1 (N2) or T increases. In contrast, the CTFE estimator suffers
from substantial biases and size distortions, and its performance does not improve
in large samples. We note in passing that such good performance of the 2D PCCE
estimator is rather surprising as we expect that the 3D PCCE estimator will dominate
under DGP2. Overall simulation results support the simulation findings reported
under the 2D panels by Kapetanios and Pesaran (2005) and Pesaran (2006).

10.6 Empirical Application to the Gravity Model of the Intra-EU
Trade

Anderson and van Wincoop (2003) show that “the gravity equation tells us that
bilateral trade, after controlling for size, depends on the bilateral trade barriers but
relative to the product of their Multilateral Resistance Indices (MTR).” Bilateral
barriers are relative to average trade barriers that both regions face with all their
trading partners. Omitting MTR induces a potentially severe bias (see, e.g., Baldwin

11 Namely, 25 are pairs of 5 units, 49 pairs of 7 units, and 100 pairs of 10 units.
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Table 10.1 Simulation results for β under the DGP1

CTFE

Bias
(N1N2,T ) 50 100 200 400

25 0.0829 0.0832 0.0833 0.0822
49 0.0347 0.0341 0.0338 0.0344
100 -0.0307 -0.0315 -0.0313 -0.0316

RMSE
(N1N2,T ) 50 100 200 400

25 0.0914 0.0871 0.0854 0.0832
49 0.0420 0.0383 0.0357 0.0353
100 0.0347 0.0336 0.0324 0.0322

Size
(N1N2,T ) 50 100 200 400

25 0.7610 0.9590 0.9980 1.0000
49 0.4020 0.6290 0.8810 0.9950
100 0.5530 0.8410 0.9910 1.0000

2D PCCE 3D PCCE

Bias Bias
(N1N2,T ) 50 100 200 400 50 100 200 400

25 0.0017 0.0011 0.0014 0.0003 0.0017 0.0008 0.0012 0.0002
49 0.0006 -0.0005 0.0002 0.0004 0.0000 -0.0001 0.0000 0.0006
100 0.0004 -0.0005 -0.0001 -0.0003 0.0009 -0.0002 0.0000 -0.0003

RMSE RMSE
(N1N2,T ) 50 100 200 400 50 100 200 400

25 0.0290 0.0202 0.0146 0.0101 0.0290 0.0202 0.0146 0.0101
49 0.0207 0.0156 0.0100 0.0071 0.0207 0.0156 0.0100 0.0071
100 0.0142 0.0103 0.0070 0.0051 0.0142 0.0103 0.0070 0.0051

Size Size
(N1N2,T ) 50 100 200 400 50 100 200 400

25 0.049 0.045 0.052 0.052 0.133 0.124 0.132 0.114
49 0.041 0.062 0.047 0.047 0.095 0.113 0.097 0.086
100 0.042 0.048 0.044 0.055 0.081 0.093 0.074 0.093

Notes: We report the simulation results for three estimators for DGP1, (10.65) and (10.66).
CTFE refers to the 3D Within estimator given by (10.5), 2D PCCE is the PCCE estimator
given by (10.11), and 3D PCCE is the PCCE estimator given by (10.18).

and Taglioni, 2006). Subsequent research has focused on estimating the model with
directional country-specific fixed effects to control for unobservable MTRs (see,
e.g., Feenstra, 2004).

A large number of studies have established the importance of taking into ac-
count multilateral resistance and bilateral heterogeneity, simultaneously, in the 2D
panels. Serlenga and Shin (2007) is the first paper to develop the panel gravity
model by incorporating observed and unobserved factors. Alternatively, Behrens
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Table 10.2 Simulation results for β under the DGP2

CTFE

Bias
(N1N2,T ) 50 100 200 400

25 0.0835 0.0829 0.0830 0.0827
49 0.0143 0.0144 0.0155 0.0156
100 -0.0365 -0.0371 -0.0362 -0.0370

RMSE
(N1N2,T ) 50 100 200 400

25 0.0921 0.0872 0.0850 0.0839
49 0.0272 0.0220 0.0194 0.0177
100 0.0400 0.0388 0.0371 0.0374

Size
(N1N2,T ) 50 100 200 400

25 0.7780 0.9450 1.0000 1.0000
49 0.1420 0.2060 0.3630 0.5650
100 0.7120 0.9400 0.9940 1.0000

2D PCCE 3D PCCE

Bias Bias
(N1N2,T ) 50 100 200 400 50 100 200 400

25 -0.0001 0.0008 0.0009 0.0001 0.0012 0.0006 0.0009 0.0005
49 -0.0002 0.0000 0.0006 0.0001 -0.0001 0.0000 0.0005 0.0005
100 0.0000 -0.0001 0.0001 -0.0002 0.0001 -0.0003 0.0001 -0.0002

RMSE RMSE
(N1N2,T ) 50 100 200 400 50 100 200 400

25 0.0295 0.0201 0.0145 0.0104 0.0368 0.0250 0.0181 0.0130
49 0.0208 0.0147 0.0102 0.0072 0.0238 0.0169 0.0120 0.0083
100 0.0148 0.0103 0.0069 0.0049 0.0161 0.0114 0.0076 0.0054

Size Size
(N1N2,T ) 50 100 200 400 50 100 200 400

25 0.0510 0.0470 0.0630 0.0570 0.1290 0.1240 0.1330 0.1260
49 0.0480 0.0540 0.0460 0.0500 0.0910 0.1010 0.1070 0.0850
100 0.0620 0.0510 0.0450 0.0490 0.0930 0.0800 0.0660 0.0700

Notes: We report the simulation results for three estimators for DGP2, (10.67) and (10.68).
CTFE refers to the 3D Within estimator given by (10.5), 2D PCCE is the PCCE estimator
given by (10.11), and 3D PCCE is the PCCE estimator given by (10.18).

et al. (2012) develop the spatial econometric specification to control for multilateral
cross-sectional correlations across trade flows. Mastromarco et al. (2016b) compare
the factor and the spatial-based gravity models to investigate the Euro impact on
intra-EU trade flows over 1960–2008 for 190 country-pairs of 14 EU and 6 non-EU
OECD countries. They document evidence that the CD test confirms that the factor-
based model is more appropriate. Furthermore, Gunnella et al. (2015) propose the
panel gravity models which accommodate both strong and weak CSD, simultane-
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ously, through the use of unobserved factors and endogenously selected spatial clus-
ters estimated by the nonlinear threshold techniques advanced by Kapetanios et al.
(2014).

When we analyse 3D panel gravity models, we should control for the potential
origin of biases presented by unobserved time-varying MTRs, if they are corre-
lated with covariates. Baltagi et al. (2003) propose the 3D panel data model with
CTFE specification. This approach has been popularly applied to measure the im-
pacts of (unobserved) MTRs of the exporters and the importers in the structural
gravity studies (see, e.g., Chap. 11). As discussed in Sect. 10.3, however, the 3D
panel data model, typically estimated by CTFE or CTRE estimators, fails to accom-
modate (strong and heterogeneous) CSD. The presence of cross-sectional correla-
tions across (i j) pairs suggests that appropriate econometric techniques need to be
used, in order to avoid biased and misleading estimation results.

In this regard, we apply our proposed approach to the dataset covering the pe-
riod 1960–2008 (49 years) for 182 country-pairs amongst 14 EU member coun-
tries (Austria, Belgium-Luxemburg, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Netherlands, Portugal, Spain, Sweden, and United Kingdom).12 Our
sample period consists of several important economic integrations, such as the Cus-
toms Union in 1958, the European Monetary System in 1979 and the Single Market
in 1993, all of which can be regarded as promoting intra-EU trade.13

We consider the following generalised panel gravity specification:

lnEXPi jt = β0 +β1CEEi jt +β2EMUi jt +β3SIMi jt +β4RLFi jt +β5 lnGDPit
+β6 lnGDP jt +β7RERt + γ1DISi j + γ2BORi j + γ3LANi j +ui jt ,

(10.69)
where the dependent variable, EXPi jt is the export flow from country i to country j
at time t, CEE and EMU are dummies for European Community membership and
for European Monetary Union, SIM and RLF measure similarity in size and differ-
ence in relative factor endowments, RER represents the logarithm of common real
exchange rates, GDPit and GDPjt are logged GDPs of exporter and importer, and
finally the logarithm of geographical distance (DIS) and the dummies for common
language (LAN) and for common border (BOR) represent time-invariant bilateral
barriers.

We report the estimation results of (10.69), employing the four estimators,
namely the two-way Within estimator with ui jt = µi j +λt +εi jt , the CTFE estimator
with ui jt = µi j +υit +ζ jt +εi jt , the 2D PCCE estimator with ui jt = µi j +πi jλt +εi jt ,
and the 3D PCCE estimator with ui jt = µi j +υit +ζ jt +πi jλt + εi jt . We also report
the CD test results applied to the residuals from each of the four estimation methods

12 It is the extended dataset analysed by Serlenga and Shin (2007), who provide detailed data
description and sources in the Data Appendix. Belgium and Luxemburg are treated as a single
country. Denmark, Sweden and The UK although non euro member countries, as part of the EU,
experienced a similar history and faced similar legislation and regulation to euro area countries.
13 To mitigate the potentially negative impact of the global financial crisis on our analysis, we
exclude the data after 2008.
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and the estimates of the CSD exponent (α). Following BKP, we compute the CD
test and estimate α sequentially.

Following the structural gravity literature, our main focus is on investigating the
impacts of ti j, which contain both barriers and incentives to trade between i and
j.14 Here we focus on the two dummy variables, CEE (equal to one when both
countries belong to the European Community) and EMU (equal to one when both
trading partners adopt the same currency). Both are expected to exert a positive
impact on bilateral export flows. The main motivation behind the EMU project is
that a single currency will reduce the transaction costs within member countries.
However, the empirical evidence on the common currency effect on trade flows is
rather mixed. Rose (2001), Frankel and Rose (2002), Glick and Rose (2002), and
Frankel (2008) document a huge positive effect whilst a number of studies report
negative or insignificant effects (see, e.g., Persson, 2001; Pakko and Wall, 2002;
de Nardis and Vicarelli, 2003). More recent studies by Serlenga and Shin (2007),
Mastromarco et al. (2016b), and Gunnella et al. (2015) highlight the importance of
controlling for strong CSD, and find a small but significant effect (7 to 10%) of the
euro on intra-EU trade flows.15

In addition to the standard mass covariates, GDPit and GDPjt , we also consider
the impact of (the logarithm of) bilateral real exchange rates (RER), which is de-
fined as the price of the foreign currency per the home currency unit and is meant
to capture the relative price effects. Further, following the New Trade Theory ad-
vanced by Krugman (1997) and Helpman (1987), we add RLF and SIM. RLF is the
logarithm of the absolute value of the difference between per capita GDPs of trading
countries, and measures the difference in terms of relative factor endowments. The
higher RLF results in a higher volume of inter-industry trade and a lower share of
intra-industry trade. SIM is the logarithm of an index that captures the relative size
of two countries in terms of GDP, and is bounded between zero (absolute divergence
in size) and 0.5 (equal country size).

Table 10.3 reports the estimation results for the 3D panel gravity specification
in (10.69). The two-way FE estimation results are all statistically significant ex-
cept RER. The impacts of home and foreign country GDPs on exports are positive,
but surprisingly, the former is twice as large as the latter. The impact of similarity
in size (SIM) is negative and significant, inconsistent with a priori expectations.
Importantly, we find that trade and currency union memberships (CEE and EMU)
significantly boost export flows, though their magnitudes seem to be too high. How-
ever, the CD test applied to the residuals convincingly rejects the null of no or weak
CSD. The estimate of α is 0.99 with the confidence band containing unity, suggest-

14 In the current study, we cannot consistently estimate the coefficients associated with time-
invariant regressors, DISi j , BORi j , and LANi j and/or because the Within transformation wipes
them out. Similar identification issues are also applied to the coefficients on GDPit and GDPjt .
Following Serlenga and Shin (2007) and Chap. 3, we will investigate this issue in a future study.
15 After Brexit, the issue on potential benefits of joining the currency union will be more hotly
debated. In retrospect, the UK Treasury made a bold prediction in 2003 that the pro-trade effect of
the Euro on the UK would be over 40%.
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ing that the residuals are strongly correlated. Thus, the FE estimation results are
likely to be biased and unreliable.

Next, we turn to the CTFE estimation results, which have been popularly applied
in the structural gravity literature. This approach aims to control for MTRs through
bilateral pair-fixed effects and origin and destination country-time fixed effects. The
CD test results indicate that the CTFE residuals do not suffer from any strong CSD,
suggesting that the 3D Within transformation may be able to remove strong CSD.
This rather surprising result is not supported by the estimate of α , which is 0.91.
Though the confidence band does not include unity, this estimate is still quite high
and close to 1. Further, we find that all the coefficients become insignificant except
for CEE. Focusing on the impacts on CEE and EMU, the former is still substantial
(0.29), while the latter turns out to be negligible (−0.011). Combining these results
together, we may conclude that the CTFE results are rather unreliable.

Moving to the 2D PCCE estimation results, we find that all the coefficients are
significant with the expected signs, except for EMU. The impact of foreign coun-
try GDP on exports is substantially larger than home GDP. The RER coefficient is
positive, confirming that a depreciation of the home currency increases exports. The
impact of CEE is smaller (0.187), but the EMU effect is insignificant and negligible
(0.018). But, the PCCE estimator still suffers from strong CSD residuals together
with the estimate of α being 0.87. This may explain the conflicting findings relative
to the existing studies reporting a significant effect of the euro on trade in 2D panels.

Finally, the 3D PCCE estimation results show that all the coefficients – except
RFL – are significant with expected signs. The CD test fails to strongly reject the
null, suggesting that this approach is able to successfully deal with strong and/or
weak CSD in the 3D panels. This is also supported by the smaller estimate of α

(0.77), which is close to a moderate range of weak CSD.16 Focusing on the CEE
and EMU impacts on exports, we find that the former turns out to be still substantial
(0.335), while the latter becomes modest at 0.081, close to the consensus magni-
tudes reported in the recent 2D panel studies (see, e.g., Baldwin, 2006; Gunnella
et al., 2015). Combining these results, we may conclude that the 3D PCCE estima-
tion results are mostly reliable, providing a general support for the thesis that the
potential trade-creating effects of the Euro should be viewed in the long-run histor-
ical and multilateral perspectives rather than simply focusing on the formation of a
monetary union as an isolated event.

The CTFE estimator is proposed to capture the (unobserved) multilateral resis-
tance terms and trade costs, which are likely to exhibit history and time dependence
(see, e.g., Herwartz and Weber, 2015). However, it fails to accommodate strong
cross-sectional correlations among MTRs, which are present in our sample of the
EU countries (confirmed by CD tests and CSD exponent estimates). To capture these
complex interlinkages among trading partners, we should model the time-varying
interdependency of bilateral export flows in a more flexible manner than simply in-
troducing deterministic country-time specific dummies. Baldwin (2006) stresses the
importance of taking into account the fact that many omitted pair-specific variables

16 BHP show that the values of α ∈ (1/2,3/4) represent a moderate degree of CSD.
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Table 10.3 3D panel gravity model estimation results for bilateral export
flows

FE CTFE
Coeff se t-ratio Coeff se t-ratio

gdph 2.185 0.041 52.97
gdpf 1.196 0.041 28.98
sim -0.263 0.052 -5.069 -0.055 0.074 -0.754
rlf 0.031 0.006 5.011 0.006 0.005 1.294
rer 0.005 0.007 0.791 0.031 0.072 0.436
cee 0.302 0.014 22.05 0.290 0.017 16.99
emu 0.204 0.019 10.71 -0.011 0.036 -0.315

CD stat 620.1 -2.676
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.925 0.992 1.059 0.865 0.914 0.963

2D PCCE 3D PCCE
Coeff se t-ratio Coeff se t-ratio

gdph 0.289 0.095 3.033
gdpf 1.491 0.095 15.69
sim 0.042 0.105 0.401 1.032 0.111 9.290
rlf 0.007 0.005 1.420 -0.004 0.005 -0.748
rer 0.144 0.019 7.427 0.168 0.114 1.471
cee 0.187 0.014 13.20 0.335 0.022 15.10
emu 0.018 0.015 1.160 0.081 0.045 1.793

CD stat 76.11 -4.19
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.837 0.867 0.897 0.724 0.775 0.826

Notes: Using the annual dataset over 1960-2008 for 182 country-pairs
amongst 14 EU member countries, we estimate the 3D panel gravity
specification, (10.69). FE stands for the two-way fixed effects estimator
with country-pair and time effects. CTFE refers to the 3D Within
estimator given by (10.5). 2D PCCE estimator is given by (10.11) with
factors ft =

{
gd p.t ,sim..t ,rl f ..t ,cee..t ,rert , t

}
. 3D PCCE estimator is

given by (10.18) with factors ft =
{

sim..t ,rl f ..t ,rert , t
}

. CD test refers to
testing the null hypothesis of residual cross-sectional error independence
or weak dependence and is defined in (10.34). α denotes the estimate of
CSD exponent jointly with the 90% confidence bands.

reflect time-varying factors, such as multilateral trade costs or union membership.
MTRs arise from the bilateral country-pair specific reactions to global shocks or the
local spillover effects across a small number of countries or both. In order to avoid
biased and misleading results, we propose a novel econometric technique, called
the 3D-PCCE estimator, which is the first step to developing the multi-dimensional
models with the hierarchical multi-factor error structure, whereby an external shock
can alter the trade costs for an individual country relative to all other countries in a
heterogeneous and time-dependent way (sse, e.g., Kapetanios and Shin, 2017).
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10.7 Conclusion

Given the growing availability of big datasets containing information on multiple di-
mensions, the recent literature on panel data has focused on extending the two-way
error components models to the multi-dimensional setting. We propose in this chap-
ter novel estimation techniques to accommodate cross-sectional error dependence
within the 3D panel data models. Despite the massive development of modelling
residual CSD through unobserved factors in 2D panel data models (see, e.g., Pe-
saran, 2006; Bai, 2009), our approach is the first attempt to introduce strong CSD
into multi-dimensional error components models, and well suited to the analysis of
sophisticated error CSD across triple or higher dimensions.

We develop a two-step consistent estimation procedure, called the 3D-PCCE es-
timator. We discuss the extent of cross-sectional dependence and develop a diagnos-
tic test for the null hypothesis of (pairwise) residual cross-sectional independence
or weak dependence in the 3D panels. The empirical usefulness and superiority of
the proposed 3D-PCCE estimator are demonstrated via some Monte Carlo studies
and an empirical application to the 3D panel gravity model of intra-EU trade.

At this stage, it seems appropriate to mention the number of obvious and chal-
lenging extensions and generalisations. First, as discussed in Sect. 10.4, we address
the number of extensions to the analysis of incomplete panel datasets and 4D or
higher dimensional models. Second, as an ongoing research, we develop general
multi-dimensional heterogenous panel data models with hierarchical multi-factor
error structure (see, e.g., Kapetanios and Shin, 2017). Third, our proposed approach
can also easily be extended to dynamic models. Finally and more importantly, we
aim to develop the most challenging models by combining both the spatial-based
and factor-based techniques within the 3D or higher dimensional models. Bailey
et al. (2016a) develop a multi-step estimation procedure that can distinguish the re-
lationship between spatial units that are purely spatial from those which are due
to the effect of common factors. Furthermore, Mastromarco et al. (2016a) propose
a technique for allowing weak and strong CSD in modelling technical efficiency
of stochastic frontier panels by combining the exogenously driven factor-based ap-
proach and an endogenous threshold regime selection by Kapetanios et al. (2014).
Bai and Li (2015) and Shi and Lee (2017) have developed the framework for jointly
modelling spatial effects and interactive effects (see also Gunnella et al. (2015) and
Kuersteiner and Prucha (2015)). This is the most recent research trend, and thus the
successful development of a general combined approach within multi-dimensional
panels may broaden its appeal further.
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Chapter 11
The Estimation of Gravity Models in
International Trade

Badi H. Baltagi, Peter H. Egger and Katharina Erhardt

Abstract Over the last few decades, multi-indexed data on trade, multinational ac-
tivity, and even migration have become available. By far the most prominent ap-
plication of multi-dimensional data in the context of international economics is the
estimation of the famous gravity equation of international trade, where bilateral ex-
port or import volume (or foreign direct investment stock or migration stock) is the
dependent variable of interest. This chapter provides a survey of empirical issues
in gravity-model estimation from a panel econometric perspective. It sets off with
a generic illustration of the theoretical foundations of gravity equations and pro-
ceeds with the modelling of the multi-dimensional stochastic structure, focusing on
fixed-effects estimation.

11.1 Introduction

By far the most widely used application of multi-dimensional data in the context of
international economics is the estimation of the famous gravity equation of inter-
national trade. Even though gravity equations are estimated with bilateral foreign
direct investment, bilateral migration, or bilateral services trade as a dependent vari-
able, most of the empirical work is available for bilateral goods-export or import
volume as the dependent variable of interest. The explicit econometric treatment of
the multi-dimensionality of the data is relatively young, and, for structural theoreti-
cal reasons, the dominant approach is the use of multiple fixed effects in estimation.
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This chapter provides a broad survey of the empirical literature in international
economics from a panel econometric perspective. It starts off with a generic illus-
tration of the theoretical foundations of gravity equations and the structural back-
ground of the parameters of interest. It proceeds with the modelling of the multi-
dimensional stochastic structure, mainly focusing on fixed effects frameworks. Sub-
sequently, it outlines specific problems that frequently emerge in empirical stud-
ies. Most notably, these problems relate to the estimation of log-linear versus
exponential-family models, the treatment of an excessive mass of zeroes in bilat-
eral trade data, the dependence of data in the time (dynamics) or cross-sectional
dimension (spatial or contagious processes), the endogeneity of regressors, and the
estimation of ratio-transformed models.

11.2 Generic Theoretical Background

As outlined above, the customary gravity equation involves bilateral commodity
flows between exporting and importing countries. Therefore, it is a classical exam-
ple of panel data. Even in the simplest case of cross-sectional data, the dependent
variable is double-indexed, Yi j, where the indices pertain to the exporter country
i ∈ {1, ...,N1} and the importer country j ∈ {1, ...,N2}. Observing such data over
time (years or months) and/or products increases the dimensionality of the data,
leading to multi-dimensional problems.

Not only is the gravity equation arguably the most successful empirical spec-
ification in international trade, but it is also probably one of the most important
applications of panel-data – if not of multi-dimensional panel-data – techniques in
general. Its success story reaches back to Tinbergen (1962), who modeled bilateral
trade flows as being proportional to the product of the economic size of the trading
partners reflected in their GDPs and inversely proportional to the geographic dis-
tance between these countries. It is this resemblance to Newton’s law of universal
gravitation that the gravity equation owes its name.

Early empirical specifications of the gravity equation in international economics
lacked a deep theoretical foundation but became successful mainly thanks to their
strong explanatory power. Starting with Anderson (1979), theoretical trade models
were developed that actually provided a theoretical foundation for gravity equations
(see also Bergstrand, 1989, 1990; Deardorff, 1998). However, regarding theory-
consistent estimation, it was the seminal work of Anderson and van Wincoop (2003)
that took gravity research a big step further. Anderson and van Wincoop (2003) de-
rived the first so-called iterative-structural gravity equation emerging from a general
equilibrium model of trade based on Armington preferences.

It will be useful to consider a generic version of this simplistic model for illustra-
tion. In this model, countries are endowed with a fixed amount of goods, so that the
main economic problem boils down to distributing these goods across customers.
Goods are differentiated by their country of origin, and agents have Dixit-Stiglitz
preferences over these goods. The quantity of the country-i-specific goods shipped
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to country j, Qi j, is determined by maximizing the utility of country j’s representa-
tive consumer subject to their budget constraint

max U j =

[
N1

∑
i=1

Q
σ−1

σ

i j

] σ
σ−1

s.t.
N1

∑
i=1

Pi jQi j = E j, (11.1)

where σ > 1 denotes the elasticity of substitution, Pi j is the price paid by consumers
in country j for goods from country i, and E j is the total expenditure volume in
country j. While sellers offer goods at the same price to everybody, Pi, consumer
prices vary across destinations, Pi j. Assuming iceberg-type transport costs, Ci j ≥ 1,
consumer prices relate to producer prices and transport costs by Pi j = PiCi j. From
(11.1), it follows that bilateral trade flows (sales) from i to j are given by

Yi j = Qi jPi j =
(PiCi j)

1−σ

∑
N1
k=1

(
PkCk j

)1−σ
E j. (11.2)

Put simply, how appealing a good from i is for potential buyers in j depends on
its price relative to the price of all other options the same buyer has. To obtain
equilibrium prices, market-clearing has to prevail: the value of total sales of good i
has to equal total consumption expenditures for that good: Yi = ∑

N2
j=1 Yi j. Combin-

ing the market-clearing condition with (11.2) yields the so-called structural gravity
that explains bilateral trade flows between country i and j taking into account the
endogenous nature of prices

Yi j =
Yi

∑
N2
k=1

C1−σ

ik Ek

∑
N1
m=1(PmCmk)

1−σ

E j

∑
N1
k=1

(
PkCk j

)1−σ
C1−σ

i j ≡ Yi

Pi

E j

P∗
j
C1−σ

i j . (11.3)

The terms in the denominators, Pi and P∗
j , are commonly called multilateral resis-

tance terms because they account for third-country effects in determining bilateral
trade flows (see Anderson and van Wincoop, 2003).1 Considering the first term, if
products from i face more restrictive trade barriers in other countries than j, Pi falls
and country i will direct a larger share of its production and sales to j. On the other
hand, if products from countries other than i become cheaper, P∗

j rises and country
j will purchase less goods from i.

Trade economists are especially interested in estimating the partial effect of bi-
lateral trade costs on trade flows as reflected in the so-called trade elasticity, κ . In
the context of the Armington model, trade elasticity relates to the demand param-
eter, κ = 1−σ . Trade elasticity is an important parameter to evaluate the effect of
changes in trade costs (e.g., a reduction of tariffs) on trade flows, but it is also an
important statistic for evaluating welfare effects.

1 Note that P∗
j =

(
∑

N1
i=1 (PiCi j)

1−σ
) 1

1−σ

denotes the classical constant-elasticity-of-substitution
price index.
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To see the latter, define welfare as the value of production in a country scaled
by the price index prevailing in that country, i.e., real consumption volume, Wi =
Yi/P∗

i . Using the convention to denote variables in logs by lower-case letters, rela-
tive changes in welfare, dWi/Wi = d lnWi = dwi, are hence given by

dwi = dyi−d ln(P∗
i ). (11.4)

Note that in an endowment economy, the quantity of production does not change.
Taking the good produced in country i as the numeraire, its price will not change
either, and dyi = 0. It can then be shown that2

dwi =−
N1

∑
m=1

Ymi

Ei
(d pm +dcmi). (11.5)

From (11.2), it follows that

Ymi
Ei
Yii
Ei

=
(PmCmi)

1−σ

(PiCii)
1−σ

. (11.6)

Noting that we defined the good in i as the numeraire and setting Cii = 1, we can
rewrite (11.6)

d ln
Ymi

Ei
−d ln

Yii

Ei
= (1−σ)(d pm +dcmi) . (11.7)

Plugging this back into (11.5), welfare changes can be expressed in terms of the
share of domestic absorption and trade elasticity:

dwi =
d(yii− ei)

(1−σ)
. (11.8)

Hence, to recover the welfare change from moving to autarky, where all production
is consumed domestically, the researcher only needs to calculate the change from
the current observed domestic absorption share to a counter-factual situation with
full domestic absorption and scale it by the trade elasticity.3 An estimate of the
trade elasticity can be recovered from equation (11.3), if ad-valorem trade costs
(such as bilateral applied tariff factors) are used in the parametrization of bilateral
trade costs, Ci j. Since the multilateral resistance terms are inherently unobservable
to the researcher, one can consistently estimate (11.3) using fixed or random effects.
However, in finite samples, random effects estimation will not produce unbiased
results, since the multilateral resistance terms are correlated with both the exporter
trade potential and bilateral trade costs (see Eaton and Kortum, 2002; Anderson

2 To see, this plug in (11.2) for Ymi and rearrange terms to get ∑
N1
m=1

Ymi
Yi
(d pm +dcmi) = d lnP∗

i .
3 This is what is often referred to as the gains from trade (compare Arkolakis et al., 2012).
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and van Wincoop, 2003).4 Rewriting (11.3) in logs, using appropriate fixed effects
{ᾱi, ᾱ

∗
j } and setting 1−σ = κ yields

yi j = ᾱi + ᾱ
∗
j +κ · ci j + εi j. (11.9)

Adding a time index to the structure in (11.9), the empirical models by Matyas
(1997), Matyas (1998), Hummels (1999), Egger (2000), Rose and van Wincoop
(2001), Glick and Rose (2002), Eaton and Kortum (2002), Egger and Pfaffermayr
(2003), Cheng and Wall (2005), Baldwin and Taglioni (2006), Baier and Bergstrand
(2007), Shin and Serlenga (2007) or Armenter and Koren (2014) can be viewed as
more or less restricted variants of a more generally indexed empirical model of the
form

yi jt = λt + ᾱi + ᾱ
∗
j +αit +α

∗
jt + γi j + εi jt , (11.10)

where either a cross section is considered (the time index is missing) so that the
above model collapses to one with effects ᾱi and ᾱ∗j as in (11.9), or the interac-
tive effects {αit ,α

∗
jt ,γi j} are assumed to be zero, or at least some of the interactive

effects are restricted to zero – namely either γi j or both αit and α∗jt . Clearly, the
model in (11.10) could not be estimated without restrictions, since the interactive
effects {αit ,α

∗
jt ,γi j} are nested in the main effects {ᾱi, ᾱ

∗
j ,λt}, so that the effects

{ᾱi, ᾱ
∗
j ,λt} could not be identified if {αit ,α

∗
jt ,γi j} were included without restric-

tions. The general version of the model in (11.10) when subsuming the main ef-
fects {ᾱi, ᾱ

∗
j ,λt} in {αit ,α

∗
jt ,γi j} has been proposed and estimated by Baltagi et al.

(2003).5

Structural gravity equations such as (11.10) follow not only from the rather par-
simonious Armington model, but from a very wide class of trade models. Arko-
lakis et al. (2012) show that all models that feature (i) Dixit-Stiglitz preferences; (ii)
one factor of production; (iii) linear cost functions; and (iv) perfect or monopolistic
competition; (v) balanced trade; (vi) aggregate profits that are a constant share of
aggregate revenues, as well as (vii) a CES import demand system, are nested by the
general model (11.10) and can be consistently estimated by multi-dimensional fixed
effects.

While these assumptions seem rather restrictive at first glance, several well-
known trade models – including most quantitative trade models – are covered by
the structure in (11.10) and an associated general equilibrium analysis. Specifically,
let us briefly discuss two of the most influential trade models of recent years that
are both nested by the structural gravity expression (11.10) but are subject to very
different economic frameworks.

4 Pöyhönen (1963) used fixed exporter and importer-country effects to estimate a cross-sectional
gravity equation, but the fixed effects there did not have a footing in general equilibrium, unlike
the work of Eaton and Kortum (2002); Anderson and van Wincoop (2003).
5 Egger and Nigai (2015) illustrate that the customary extraction of trade costs from trade flows
in structural calibrated models corresponds to ”estimating” the model in (11.10) by estimating
as many parameters as there are observations, which is a saturated model, where the variance-
covariance matrix of the parameters is degenerate.
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The seminal model of Eaton and Kortum (2002) is based on Ricardian com-
parative advantage, where productivity in each industry is drawn from a Frechet
distribution. Since goods within an industry are perfect substitutes, the lowest-price
seller to a specific destination will serve all demand for that particular industry.
The probability of selling to a specific market is, hence, a function of the exporting
country’s location parameter of the productivity distribution, the prevailing costs of
inputs in the exporting country, and the iceberg-type trade costs between exporter
and importer weighted by the price distribution across all other potential exporters.
Within this framework, the trade elasticity, κ , that governs the impact of a change
in trade costs on trade flows depends on the shape of the productivity distribution –
hence, a supply-side parameter.

In contrast to this setting, Melitz (2003) relies on a Dixit-Stiglitz preference struc-
ture. Each firm produces a variety of a good, and varieties are imperfect substitutes
with the elasticity of substitution being governed by σ . Firms draw their productiv-
ity from a country-specific distribution and compete in a monopolistic competition
setting with constant mark-ups over marginal costs and fixed costs of exporting.6

Firms are heterogeneous and charge a price depending on their productivity level
and the country-specific costs of inputs. Consumers choose the consumption quan-
tity of a variety conditional on the price of this particular variety relative to the price
of all other varieties and the substitutability between varieties. The more expensive a
variety is due to low productivity, high input costs, or high trade costs of that variety,
the lower its potential sales are in an export market. Firms with a higher productivity
will ceteris paribus make higher profits. As exporting involves fixed costs, the least
productive producers in a market will only serve domestic customers. Importantly,
the consumption bundle of each consumer contains every available variety with the
consumed quantity being determined by its price and the substitutability across va-
rieties. Clearly, in this setting, the impact of trade costs on trade flows κ depends on
the elasticity of substitution between varieties – hence, a demand-side parameter.

Since the trade elasticity κ – despite its different structural interpretation across
theoretical models – is a sufficient statistic to recover welfare gains in all the models
characterized in Arkolakis et al. (2012) and Head and Mayer (2014), proper estima-
tion of the empirical model is absolutely crucial.

11.3 Specific Problems with Estimating Gravity Models

In this section, we focus on a selected set of issues in the estimation of gravity
models that appears particularly important in view of the number of applications
associated with them. Due to space constraints, we do not explicitly address issues
related to the estimation of fixed versus random effects models and of the retrieval of
parameters on variables which are collinear with fixed effects in a particular dimen-
sion. We refer the reader to Baltagi et al. (2015) for a treatment of these problems.

6 Due to its simple tractability, the dominant assumption of the form of the productivity distribution
is a single-parameter Pareto.
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11.3.1 Heteroskedasticity

One problem with the estimation of gravity models is that the theoretically founded
specification of bilateral trade flows in modern international economics is one where
data on bilateral trade flows in levels are assumed to be generated by a multiplica-
tive function of determinants as in (11.2) and (11.3). A log-transformation of an
originally exponential form of the data-generating process may lead to biased re-
sponse parameters of interest on observable determinants, if the disturbances are
heteroskedastic and are a function of the conditional mean (see Nelder and Wed-
derburn, 1972; McCullagh and Nelder, 1989). Rather than log-transforming such
models, it is preferable to estimate them in their original, exponential form upon
specification of the density function of the disturbances and the link function be-
tween the disturbances and the conditional mean of the model (i.e., the nature of
heteroskedasticity).

Santos Silva and Tenreyro (2006) emphasized this general issue in the context of
gravity models, illustrating for a cross section of bilateral trade data that, depend-
ing on the degree of heteroskedasticity of the disturbances, ordinary least squares
(with or without fixed exporter and importer effects) obtains biased estimates of the
parameters of interest, e.g., on trade-cost variables. They assumed a Poisson distri-
bution for the disturbances and a log-linear link function, where the variance of the
disturbances is proportional to the conditional mean of the data.

Following Egger and Staub (2016), an exponential-family, generalized-linear
version of the gravity model in (11.10) is given by

Yi jt = exp(λt + ᾱi + ᾱ
∗
j +αit +α

∗
jt + γi j)εi jt , or (11.11)

Yi jt = exp(λt + ᾱi + ᾱ
∗
j +αit +α

∗
jt + γi j)+νi jt , (11.12)

where εi jt = 1 + νi jt/exp(λt + ᾱi + ᾱ∗j + αit + α∗jt + γi j). A log-linear transfor-
mation of this model will only obtain consistent ordinary-least-squares estimates
of the parameters of interest, such as {λt , ᾱi, ᾱ

∗
j ,αit ,α

∗
jt} and a parametrization

of γi j, if E(lnεi jt) conditional on {λt , ᾱi, ᾱ
∗
j ,αit ,α

∗
jt} and the parametrization of

γi j is zero. However, εi jt is a function of the conditional mean of the model,
E(Yi jt) = exp(λt + ᾱi + ᾱ∗j +αit +α∗jt + γi j) and depends on the ingredients of the
conditional mean as well as on νi jt . Hence, except for very special cases, OLS will
be inconsistent if the conditional expectation function of bilateral trade flows is ex-
ponential.

In conventional gravity models, the interior of the exponential term on the right-
hand side of (11.11) is additive. In general, one speaks of this function as the link
function, and since it is log-linear in gravity models, they are said to have a log-link.
The first-order conditions of the model are inverse-proportional to the conditional
variance of the dependent variable, Yi jt . Hence, for estimation the functional form
of this variance may be crucial. Egger and Staub (2016) emphasized that statistical
tests should be consulted in choosing the functional form within the exponential
family in applications. However, they performed a set of simulation exercises, con-
structing data from a calibrated structural multi-country gravity model and found
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that in such simulations there was little difference between Poisson, the negative
binomial, the Gaussian, the inverse Gaussian, and the gamma model in the sim-
ulated data. Nevertheless, here were relatively sizable differences in these models
with their empirical application. Moreover and quite interestingly, in the simulated
data, an old-style empirical gravity without fixed country effects (and without their
structural theoretical equivalents of them) – i.e., a model which simply included
log exporter GDP, log-importer GDP, and log trade costs in the linear index as the
determinants of bilateral exports akin to Tinbergen (1962) – obtained virtually unbi-
ased estimates of the parameter on trade costs (the trade elasticity, κ). This was not
the case with their empirical application, using observed rather than generated trade
data. Given that the simulated data had been generated in accordance with empirical
data on (factor) endowments and trade costs, the results in Egger and Staub (2016)
suggest that the sizable differences between different exponential-family models, on
the one hand, and the old-fashioned gravity model, on the other, with real-world data
originate in problems beyond the standard structural gravity model, in particular, the
endogeneity of trade costs.

In the data, the sources of heteroskedasticity may be manifold. One reason for
heteroskedasticity could be a mass point at certain levels of trade flows. E.g., such a
mass point could emerge with truncated or censored data, and an empirically impor-
tant mass point is the one at zero bilateral trade flows. However, while zero bilateral
trade flows will not be dropped or lost with an exponential model formulation as in
(11.11), it should be emphasized that exponential-family models are incapable of
treating any mass point unless it is specifically modelled (see Egger et al., 2011).
Hence, the exponential-family-model estimation per se may only be a suitable rem-
edy of the bias addressed above in the absence of mass points in the data. Therefore,
the next subsection is explicitly devoted to a treatment of excessive zeros in the data.

11.3.2 Modelling the Mass Point at Zero Bilateral Trade Flows

Consider once again the equation explaining bilateral trade flows in the Armington
model (11.3). Clearly, all countries with a positive value of production and expen-
diture will trade with each other even if the trade value might be small for coun-
tries that are far apart or have small domestic production. However, the data teach
us otherwise, and there are many zero bilateral trade flows. Helpman et al. (2008)
show that around 50% of potential trade relationships are subject to zero trade flows
in a cross section of data, and the evidence in Egger and Pfaffermayr (2011) sug-
gests that, while the percentage of zeros is falling, it is still non-negligible even in
recent years. Clearly, the evidence in Helpman et al. (2008) and Egger and Pfaffer-
mayr (2011) is for aggregate trade data, and the numbers for more disaggregated,
product-level data are even worse.

Many standard gravity approaches simply neglect the presence of zeros and es-
timate the empirical model on positive trade flows only. This practice, however,
might lead to severely biased parameter estimates of interest. Helpman et al. (2008)
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make two contributions to the literature. First, they develop a theoretical model that
leads to zero trade flows between countries. Second, they take this selection explic-
itly into account when estimating trade flows. They build on a Melitz (2003) type
trade model with fixed costs of exporting between pairs of countries and a truncated
Pareto distribution for firms’ productivity. In this model, the maximum productiv-
ity drawn by firms in a country may be too low to profitably export to a particular
other country at a given level of fixed trade costs. As before, the cross section bilat-
eral export flows between country i and country j can be explained by importer and
exporter fixed effects, ᾱi and ᾱ∗j , as well as a bilateral component which in this par-
ticular case consists of standard iceberg-type trade costs ci j and a bilateral variable
that depends on the share of exporters from i to j and can potentially be zero, wi j:

yi j = λ + ᾱi + ᾱ
∗
j +κ · ci j +wi j + εi j. (11.13)

By including wi j, Helpman et al. (2008) control for the share of exporters in i that
serve customers in j (and their average productivity and the price they charge). How-
ever, by taking logs of aggregate trade flows, any zero trade flow observations are
dropped. Since zeros do not emerge at random, but for those country pairs where
fixed trade costs are high and/or delivery prices are high, Helpman et al. (2008)
and Egger and Pfaffermayr (2011) account for the self-selection of firms and coun-
try pairs into positive exports. Helpman et al. (2008) do so with a Heckman-type
model in a cross section of data, and Egger and Pfaffermayr (2011) employ a dy-
namic panel-data selection model. In any case, wi j involves an inverse Mills’ ratio
to account for selection. The share of firms in i exporting to j (at a given point in
time) as well as the inverse Mills’ ratio are modelled as functions of a set of vari-
ables zi j informed by the zero profit condition of the theoretical model. Beyond the
standard gravity variables, it is customary to include identifying instruments in zi j,
which are suggested by the zero-profit market-entry condition for firms in i about
market j. Such variables are supposed to reflect fixed market-entry costs. Helpman
et al. (2008) rely on data on the regulation cost of firm entry and alternatively a
variable that indicates a common religion between two countries as instruments. In
a first stage, Helpman et al. (2008) and Egger and Pfaffermayr (2011) use a Probit
model to estimate the probability of positive exports from i to j (in year t), ρi j(t). In
a second stage, they estimate gravity equations of the form

yi j(t) = ᾱi(t)+ ᾱ
∗
j(t)+κ ·ci j(t)+ ŵi j(t)(ρ̂i j(t),δ )+γM̂illsi j(t)(ρ̂i j(t))+εi j(t), (11.14)

where ŵi j(t)(·) is a non-linear function of its argument reflecting the share of ex-

porters from i to j with the parameter δ to be estimated,7 and M̂illsi j(t)(ρ̂i j(t)) is
the Mills’ ratio that accounts for self-selection into positive exports (sample selec-
tion). Santos Silva and Tenreyro (2015) show that consistent estimation of a standard
Helpman et al. (2008) approach relies on strong homoskedasticity assumptions that

7 Note that ŵi j(t)(ρ̂i j(t)) is present only in Helpman et al. (2008) but not in Egger and Pfaffermayr
(2011), who use a model with homogeneous firms.
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are typically violated in trade data,8 and that the instruments proposed in Helpman
et al. (2008) are weak.

Egger et al. (2011) specify a two-part gravity model to account for zero trade
flows (see Cragg, 1971; Duan et al., 1984) in a model with homogeneous firms. In
contrast to a log-linearized model as in Helpman et al. (2008) or Egger and Pfaffer-
mayr (2011), they use an exponential specification of the gravity equation

Yi j = Ii j(zi j)exp(ᾱi + ᾱ
∗
j +κ · ci j)+ εi j, (11.15)

where zi j denotes the determinants of participation in exporting that could poten-
tially include other determinants beyond the covariates in (11.15). Since Egger et al.
(2011) examine the effects of a binary variable that indicates membership in prefer-
ential trade agreements (PTA), they model the probabilities of positive exports and
PTA membership by a bivariate Probit that allows for the endogenous nature of the
explanatory variable PTA membership.9

In contrast to the two-step Heckman approach in Helpman et al. (2008), two-part
models do not explicitly model the correlation structure between the errors in the
participation equation and the outcome equation but allow for stochastic interdepen-
dence between the errors under some general class of joint distributions (see Egger
et al., 2011; Duan et al., 1984). Therefore, two-part models are more efficient un-
der the interdependence of the disturbances, while strongly correlated disturbances
might call for an explicit treatment of this relationship between the errors.10

In contrast to the approaches outlined in this subsection, many authors follow
Santos Silva and Tenreyro (2006) in allowing for zero trade flows in an exponential
specification of the gravity equation without explicitly modeling the mass point at
zero. In these models, the extensive country margin and the intensive country margin
of trade cannot be disentangled, and, with many zeros, the regression parameters of
interest may be biased (see Sect. 11.3.1).11

11.3.3 Dynamics

Dynamic gravity models with a lag order of S – when log-linearized – would gener-
ally be of the form

yi jt =

(
S

∑
s=1

λsyi jt

)
+αit +α

∗
jt +κ · ci jt + εi jt . t = 1,2, ..,T. (11.16)

8 Compare section 11.3.1.
9 See Sect. 11.3.5 for a detailed treatment of endogenous regressors in gravity equations.
10 In order to tackle a potential correlation between the disturbances, Egger et al. (2011) employ
an inverse Mills’ ratio similar to Helpman et al. (2008) in an alternative specification.
11 Some authors have accounted for zero export flows by adding constants to bilateral exports and
then using a Tobit approach (compare Felbermayr and Kohler, 2006). Santos Silva and Tenreyro
(2006) illustrate that this practice is likely to lead to parameter bias and should not be used.
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Depending on whether εi jt contains error components – in particular, i j-indexed
ones – or not, the usual problems with the levels-estimation of dynamic models
emerge (see Hsiao, 2015; Arellano and Bond, 1991; Baltagi, 2013). Clearly, either
instrumental-variables estimation of the model in levels or the model in differences
is the estimation strategy to use in this case. Such models have been estimated by
Egger (2001), Bun and Klaassen (2002), Olivero and Yotov (2012), Nuroglu and
Kunst (2014), to mention a few.

However, whether gravity models in differences require any instrumentation of
the lagged dependent variable or not depends on the underlying assumptions. While
the bilateral trade data used in most applications are characterized by a cross section
of country pairs that is much larger than the time series, it is possible to track trade
flows between most country pairs for several decades. Hence, for large T the Nickell
(1981) bias is of a small order, and the chance to induce more bias by using an ill-
suited set of instruments than when ignoring the endogeneity of the differenced
lagged dependent variable is not negligible. But whether pursuing this strategy is
possible or not depends on the assumptions about parameter stability. We know
that fundamental parameters, such as the relative importance of geography, culture
and other variables, change over time and are not constant for decades (see Disdier
and Head, 2008; Egger and Lassmann, 2012). Then, pooling the data for very long
periods is not possible. When estimating this model for shorter sub-sets of time
periods, the usual estimation methods to control for lagged-dependent-variable bias
can be used.

11.3.4 Spatial Data: Interdependence of Bilateral Trade Flows
Conditional on Exogenous Determinants

Modern quantitative gravity models of international trade all postulate that the bi-
lateral demand and supply of goods (and services) add up to aggregate income and
aggregate expenditures (at least up to some constraint as in Dekle et al., 2007). Ac-
cordingly, aggregate income and expenditures are an endogenous common factor for
bilateral trade flows of any country, as is recognized in, e.g., (11.10). Moreover, any
bilateral demand depends on the prices charged by firms in every source country,
since consumers in these models compare the prices at which they buy from a given
country or firm to the prices charged by all other countries or firms. This establishes
a generic interdependence of all bilateral trade flows, and it means that a shock –
to demand, supply, or trade costs – in any country or country-pair in the world in-
duces effects on all other country-pairs, whether the partners in a given pair were
directly exposed to the shock or not. In most empirical models (structural or reduced
form), this kind of generic and ubiquitous interdependence of the world trading net-
work is specified exclusively in terms of observables. In applications, however, it is
doubtful whether all relevant explanatory variables are included in the model, and
hence, whether all elements establishing interdependence are included in the empir-
ical specification. Parting with the latter assumptions requires specifying an inter-
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dependence structure at least of the stochastic process (in an error-interdependence
model) if not the dependent variable (in a dependent-lag model). To the extent that
interdependence in the error term of the dependent variable is modelled as to relate
to geography and distance between countries, we may then speak of spatial error or
spatial lag models of bilateral trade.

Rewriting the deterministic part of the right-hand side of (11.10) as Hi jt in order
to focus on the spatial part this model, we may reformulate the estimating equation
for (11.10) as

yi jt = Hi jt +ui jt , (11.17)

where ui jt is a generic disturbance term (any fixed effects would be included in
Hi jt ). E.g., the disturbance term might contain four components, namely ui jt = uit +
u jt +ui j + εi jt . Any more restrictive version of the stochastic process can easily be
obtained.

Towards formulating a spatial model, let us introduce so-called weights matri-
ces. Let us use w to refer to elements of weights matrices W pertaining directly
to the dependent variable in logs, yi jt , and use m to refer to elements of weights
matrices M pertaining to the stochastic process, ui jt . All examples of these generic
weights matrices have the property that (at least) their diagonal elements are zero,
and that the blocks pertaining to different time periods are zero, W = diag(Wt) and
M = diag(Mt). Hence, these matrices all capture the notion of contemporaneous in-
terdependence in the cross section. Moreover, let us assume that the elements of the
weights matrices are normalized such that either the sum of elements in any row
is unity or that the minimum of the maximum row and columns sums is unity (see
Kelejian and Prucha, 2010). In principle the weights matrices and their elements
are allowed to vary with time. Then, let us consider three forms of geography: one
that pertains to the dependence among exporting countries in year t (captured by
elements wit

i jt and mit
i jt ); one that pertains to the dependence among importing coun-

tries in year t (captured by elements w jt
i jt and m jt

i jt ); and one that pertains to the
dependence among country pairs beyond exporter and importer dependence in year
t (captured by elements wi jt

i jt and mi jt
i jt ). Then, we may formulate the general spatial

process pertaining directly to the dependent variable as

yi jt =

(
N1

∑
i=1

λ
itwit

i jtyi jt +
N2

∑
j=1

λ
jtw jt

i jtyi jt +
N1

∑
i=1

N2

∑
j=1

λ
i jtwi jt

i jtyi jt

)
+Hi jt +ui jt ,

≡ λ
ityit

i jt +λ
jty jt

i jt +λ
i jtyi jt

i jt +Hi jt +ui jt , (11.18)

and we may specify the stochastic process – assuming first-order spatial autocorre-
lation – as

ui jt = uit
it +u jt

jtu
i j
i j + ε

i jt
i jt , (11.19)

where, in vector form for time period t, the right-hand-side terms are defined as
elements of
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uit = (IN2 −ρ
ituit)−1 + ũit , (11.20)

u jt = (IN2 −ρ
jtu jt)−1 + ũ jt , (11.21)

ui j = (IN2 −ρ
i jui j)−1 + ũi j, (11.22)

ε
i jt = (IN2 −ρ

i jt
ε

i jt)−1 + ε̃
i jt , (11.23)

and all terms with a tilde are independently distributed error components. One could
alternatively formulate the process in (11.19) by way of moving averages.

Clearly, the presence of a spatial lag of the dependent variable on the right-hand
side of the model as in (11.18) requires the estimation of the (nonlinear) reduced
form of the model by way of maximum-likelihood estimation (see Lee, 2004) or
of the structural form by way of generalized-method-of-moments estimation (see
Kelejian and Prucha, 1999; Kapoor et al., 2007).

For gravity models of foreign direct investment, versions of (11.18) and (11.20)–
(11.23) have been estimated by, e.g., Coughlin and Segev (2000), Baltagi et al.
(2007), and Blonigen et al. (2007). However, none of these papers consider the
general forms in (11.18) and (11.20)–(11.23), but they postulate models with a sin-
gle spatial term on the right-hand side – typically either the dependent variable or
the disturbances. Badinger and Egger (2015) consider a form with three spatial lags
(interdependence among exporters, importers, and pairs) at the same time.

There is much less work involving applications of spatial econometric methods
on gravity models of bilateral trade or migration in comparison to foreign direct
investment. The reason is that gravity models of trade and migration tend to be
structural, and many researchers analyzing such models pay little attention to the
stochastic process of the model. In any case, a few papers do consider trade and
migration flow models with spatial dependence. Examples are LeSage and Pace
(2008), LeSage and Fischer (2010), Beenstock and Felsenstein (2012), Beenstock
and Felsenstein (2015), Behrens et al. (2012), Egger and Staub (2016), LeSage and
Thomas-Agnan (2015), and Egger and Pfaffermayr (2016). As with foreign direct
investment as the outcome, empirical spatial trade and migration gravity models
tend to be much more restrictive than the process in (11.18) and (11.20)–(11.23).
For instance, the cross-sectional model in Behrens et al. (2012), includes a spatial
lag of the dependent variable on the right-hand side of the model but not a spe-
cific spatial error structure. However, they present a relatively complicated spatial-
moving-average model with country-specific coefficients and a spatial lag, as well as
a spatial moving-average error process. Egger and Staub (2016) prove, though, that
the process suggested for estimation is not consistent with the assumptions made
by the authors. It turns out that the actual stochastic process flowing from their as-
sumptions is one that can be handled without any spatial econometric methods. The
reason is that the spatial weights matrices they assume do not have zero diagonal
elements and contain identical weights per country. As outlined in Egger and Staub
(2016), respecting this structure leads to a much simpler process than the one pro-
posed in Behrens et al. (2012).

The empirical models proposed by LeSage and Pace (2008), LeSage and Fischer
(2010), and LeSage and Thomas-Agnan (2015) explicitly focus on several spatial
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lags of the dependent variable (bilateral migration) as in (11.18) but not the distur-
bances, and they are not derived from general equilibrium theory. On the contrary,
Egger and Pfaffermayr (2016) focus on various forms of spatial dependence in the
disturbances in bilateral trade-flow equations as in (11.20)–(11.23) in a structural
gravity model of bilateral trade.

11.3.5 Endogenous Regressors

Multi-dimensional panel techniques can solve several endogeneity problems arising
in the context of estimating bilateral trade flows. The most obvious endogeneity
problem arises in naive specifications of the gravity model, where bilateral trade
flows are regressed on importer and exporter-GDP, as well as on some bilateral
trade cost variable ci jt

yi jt = α · yit +β · y jt +κ · ci jt + εi jt . (11.24)

This naive specification of the gravity equation does not include the multilateral
resistance terms that relate the bilateral variables to the situation relative to the rest
of the world as in (11.3). If the customary economic theory underlying (11.3) is
correct and the number of countries is not too small (see Egger and Staub, 2016),
estimating (11.24) will lead to biased estimates due to an omitted variables bias.
Consider again the structural gravity (11.3). Assuming balanced trade, Yit = Eit ,
equation (11.3) can be rewritten in log-terms

yi jt = yit − log(Pit)+ y jt − log(P∗
jt)+κ · ci jt + εi jt . (11.25)

As already alluded to, including fixed-effects αit and α∗jt can easily resolve the omit-
ted variable bias in this particular case. However, endogeneity remains to be solved
if ci jt includes an endogenous variable whose variation is not fully captured by fixed
effects αit and α∗jt .

Two of the main research lines of empirical studies in international trade based
on variants of the gravity equation are evaluating the role and economic effects
of trade policy instruments and estimating trade elasticities which are a sufficient
statistic for the welfare effects of trade frictions as targeted in many theoretical trade
applications and counterfactual analyses. In both lines of research, the coefficient
of interest is estimated on trade policy variables such as tariffs, monetary unions
or preferential trade area (PTA) indicator variables which form part of ci jt . These
variables are not captured by the fixed effects αit and α∗jt .

Let us reconsider the standard structural gravity equation (11.3) (assuming bal-
anced trade) and extend it in order to examine the effect of a binary policy variable
such as a PTA12

12 Clearly, the binary variable could be any other binary policy treatment, such as a monetary union,
and specific type of PTA, such as a free trade area or a customs union. Note that we consider
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yi jt = yit − log(Pit)+ y jt − log(P∗
jt)+βPTAi jt +κ · c̃i jt + εi jt , (11.26)

with c̃i jt denoting the other observable bilateral components that are observable to
the econometrician, such as distance, common language dummies or a common
colonial history. Estimation of β is consistent iff

E(εi jt |PTAi jt ,yit ,y jt ,Pit ,P
∗
jt , c̃i jt) = 0, (11.27)

hence, if there are no unobservable determinants of PTAs that are at the same time
determining trade flows.

Baier and Bergstrand (2004) examine the determinants of forming a PTA and find
mostly the same driving factors behind PTA membership that are also direct drivers
of trade: two countries tend to select into a PTA if they have larger and more similar
GDPs, are geographically closer to each other but remote to the rest of the world,
and if they are different in their respective relative factor endowments. Apart from
these observable factors, one could think of several unobservable factors that might
influence trade policy and trade flows jointly. E.g., any domestic trade impediment,
such as internal shipping regulations that might be alleviated especially by so called
“deep” trade agreements, is likely to bias the estimates on PTAs when omitted. The
general result that countries have “chosen well” their PTA partners shows the very
strong connection between basically all determinants of trade flows and trade policy
and makes it hard to believe that the remaining unobservables are uncorrelated.13

Given these severe endogeneity issues, it is not surprising that the trade policy ef-
fects found in a myriad of studies vary substantially across specifications and years,
are highly unstable, and often yield implausible results (see Frankel, 1997; Baier
and Bergstrand, 2002, 2004, 2009; Magee, 2003; Ghosh and Yamarik, 2004).

The attempts to solve the endogeneity problem for binary policy variables can
be broadly classified into two subfields: one strand of the literature considers cross-
sectional data and applies matching techniques, instrumental variables or control
function approaches in a two-dimensional panel spanned by the bilateral nature of
the trade variables; another strand of the literature relies on multi-dimensional panel-
data techniques to solve the endogeneity problem.

For convenience, let us drop the time index t when considering cross-sectional
techniques. Then, in the case of a binary policy variable, the estimation can be re-
stated as a treatment evaluation problem (see Wooldridge, 2010 or Angrist and Pis-
chke, 2009 for an introductory overview). For every (PTA) treated bilateral trade
flow there are two potential outcomes, one with PTA assignment and a counterfac-
tual (unobserved) one without PTA assignment, yi j(PTAi j = 1) and yi j(PTAi j = 0).
Denoting all observable covariates by the vector xi j, the so called average treatment
effect (ATE) – the average effect of being a member of a PTA on bilateral exports –

a binary variable here since binary policy variables have been the main focus of the empirical
literature. The endogeneity is rarely tackled in the case of continuous policy variables. For an
exception see Egger and Erhardt (2016).
13 Compare Baier and Bergstrand (2007) for an extensive discussion of potential endogeneity is-
sues of PTAs.
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can be stated as

AT E(xi j) = E [yi j(PTAi j = 1|xi j)− yi j(PTAi j = 0)|xi j,PTAi j] . (11.28)

For every bilateral trade flow, only one of the two potential outcomes is observ-
able. Therefore, consistent estimation of (11.28) requires random assignment of a
PTA such that it would actually not matter that different bilateral trade flows are
compared. Since the assignment to a certain trade policy regime is, however, non-
random, we have to make use of either instrumental variables estimation (see Eg-
ger et al. (2011)) or comparison group refinement (through weighting regression,
matching, etc.; see Persson, 2001; Egger et al., 2008; Baier and Bergstrand, 2009).

The main requirement for a consistent estimation by instrumental variables is
a set of suitable identifying instruments, zi j, which is exogenous to the level of
bilateral trade flows but is correlated with the probability of engaging in a PTA.
Then, in a first step, the probability of engaging in a PTA can be estimated using
standard binary choice models such as Probit or Logit

P(PTAi j = 1) = F(xi j,zi j,η ,δ ), (11.29)

where xi j denotes the set of variables that determines the probability of forming a
PTA jointly with the level of bilateral trade flows, zi j are identifying instruments,
and η and δ are the respective parameters on these variables. In a second step, one
can use the fitted probability, F(zi j,xi j, δ̂ , η̂) in estimating the role of PTAs on trade
flows consistently14

yi j = αi +α
∗
j +κ · c̃i j +β (F(zi j,xi j, δ̂ , η̂))+ εi j. (11.30)

Clearly, instrumental variables methods hinge on the selection of suitable identify-
ing instruments that do increase the likelihood of a PTA membership but do not at
the same time impact trade flows. The set of identifying instruments typically used
in the literature is a combination of economic variables such as relative factor en-
dowment differences between the bilateral trade partners, the relative factor endow-
ment differences between the bilateral trade partners and the rest of the world and
measures of intra-industry trade, geographic variables such as a measure of remote-
ness of continental PTA partners and political variables such as democracy indices
(see Baier and Bergstrand, 2002, 2007; Magee, 2003). However, at least some of
these measures have previously been shown to be also relevant in determining trade
flows eroding confidence in their suitability as instruments (Baier and Bergstrand,
2007; Egger et al., 2011). Egger et al. (2011) conduct a conventional test for overi-
dentifying restrictions in order to determine suitable instruments and find historical
variables such as past colonial relationship, a common colonizer indicator and a

14 Baier and Bergstrand (2007) suggest an intermediate step in which the estimated probability
of forming a PTA is regressed on the PTA dummy together with zi j and xi j . The predicted values
of this intermediate stage are then used in the last stage. Note that the standard errors have to be
corrected in the usual 2SLS manner (compare Wooldridge, 2010 or Greene, 2003).
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dummy for having been part of the same country, as relevant in determining PTAs
but being uncorrelated to trade flows.

Further attempts at solving the endogeneity problem using cross-sectional data
sets have been conducted using matching techniques (see Persson, 2001; Egger
et al., 2008; Baier and Bergstrand, 2009). The basic idea behind the matching ap-
proach is selecting a control group that is very similar to the treatment group in all
observable variables, such that the control group’s trade flows can be seen as the un-
observed counterfactual outcome of the treatment group. A comparison of the mean
effects between control and treatment group allows one to identify the treatment ef-
fect of the trade policy - assuming an appropriate choice of treatment and control
group.15 Control and treatment groups are “selected on observables”, where theo-
retical models leading to gravity equations are of invaluable help in choosing those
variables xi j. The matching technique hinges on three core assumptions: first, un-
confoundedness, which requires that conditional on the covariates xi j the assignment
of treatment (PTAi j = 1) is independent of the (log) level of bilateral trade flows yi j;
second, the stable unit treatment value assumption (SUTVA), whereby the PTA treat-
ment assignment does not impact bilateral trade flows other than the treated country
pair; third, covariate balancing, whereby the propensity of PTA membership is a
meaningful compact comparison metric capturing similarity between treated and
control observations in all columns of xi j. Under these assumptions, a matching
procedure combines those bilateral pairs that are most similar in their covariates but
are subject to a different treatment and constructs artificial counterfactual outcomes
for the – in the data – unobserved counterfactuals, y∗i j(PTAi j = 1) or y∗i j(PTAi j = 0),
from the observed outcomes of the matched trade flows.16 The effect of a PTA on
bilateral trade flows can then be consistently estimated by

AT E(xi j) = E
[
y∗i j(PTAi j = 1)− y∗i j(PTAi j = 0)

]
. (11.31)

Depending on the specific data situations, the three requirements for matching – un-
confoundedness, SUTVA, and covariate balancing – might be difficult to achieve.
Regarding unconfoundedness, there might be important covariates unobservable to
the econometrician whose omission might violate unconfoundedness. Specifically,
the fact that we cannot use fixed effects in order to account for multilateral resis-
tance terms in the matching process, it becomes crucial to find proxies for those
terms. Baier and Bergstrand (2009) use a Taylor-series expansion of the general
equilibrium trade flows to generate reduced-form proxies for these multilateral resis-
tance terms from exogenous determinants, such as distance, adjacency and common

15 Compare Rosenbaum and Rubin (1983) and Abadie and Imbens (2006) for a detailed econo-
metric treatment of the topic.
16 There are many different ways of selecting the matched trade flows. Common metrics to compare
covariates are propensity scores (Rosenbaum and Rubin, 1983) and Mahalanobis distance metrics
(Rosenbaum and Rubin, 1985; Rosenbaum, 2002). Based on the similarity metric, trade flows are
matched using e.g., k-nearest neighbors or employing an interval within the metric-space. Abadie
and Imbens (2006) derive the large sample properties of a matching estimator that employs a
Euclidian vector norm as a metric of similarity of covariates and matches k-nearest neighbors with
replacement.
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language dummies. Egger et al. (2008), in contrast, use a difference-in-difference
approach on matched pairs in order to account for time-invariant confounders in a
difference-in-differences matching framework. Regarding SUTVA, general equilib-
rium models of trade tell us that any change in bilateral trade costs will also im-
pact all other trade flows through the multilateral resistance terms – in which case
SUTVA would be violated. Baier and Bergstrand (2009) argue that, when looking at
the Central American Common Market, which is comprised mainly of small and re-
mote economies, expected general equilibrium effects should be small enough to be
ignorable. Regarding covariate balancing, Egger and Tarlea (2016) demonstrate that
the similarity of covariates between treated and untreated observations is rejected
for most joint determinants of trade flows and PTA membership in most years. They
propose a structural gravity approach with entropy balancing (which enforces co-
variate balancing). Their results suggest that the bias of the partial causal effect of
PTAs on trade flows due to the lack of covariate balancing with matching is of the
same order of magnitude as the bias when ignoring the endogeneity of PTA mem-
bership altogether.

In recent years, it has become customary to exploit the time-dimension of data
on bilateral trade flows to solve the endogeneity problem of endogenous policy
variables (see Baier and Bergstrand, 2007; Egger et al., 2008; Eicher et al., 2012;
Bergstrand et al., 2015; Anderson and Yotov, 2016). Assuming that all unobserv-
able joint determinants of PTAs and trade flows are time-invariant, a standard grav-
ity equation extended to allow for bilateral (time-invariant) fixed effects, γi j, as in
Baltagi et al. (2003), will yield consistent results (Baier and Bergstrand, 2007)

log(yi jt) = αit +α
∗
jt + γi j +βPTAi jt + εi jt . (11.32)

Bergstrand et al. (2015) argue that the role of time-varying bilateral components
might still be relevant. Especially in the context of modern trade models featuring
heterogeneous firms, the theory-consistent gravity equation includes fixed costs of
entering a foreign market that might well be varying over time and at the same
time be correlated with the decision to form a PTA, hence introducing a potential
endogeneity bias that is not solved by (11.32).

Since only international trade flows are subject to these fixed costs of exporting,
Bergstrand et al. (2015) include domestic trade flows, (yiit), in their estimation and
create a time-varying dummy INT ERi jt that indicates non-domestic trade flows in-
teracted with time dummies. By this methodology, they aim at controlling for any
time-varying changes in fixed costs of exporting that are potentially correlated with
the choice of forming a PTA. However, this procedure only provides a remedy for
the problem if the self-selection bias is invariant across all country pairs (which it
should not be according to economic theory).
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11.3.6 Ratio Estimators

Most approaches in the gravity literature rely on the estimation of a substantial num-
ber of (multi-dimensional) fixed effects. While the fixed effects are important to
account for endogeneity and potential omitted variables bias, two problems arise.
First, the large number of parameters to be estimated (explicitly or implicitly) might
considerably reduce the efficiency of the estimated parameters of interest. Second,
one might be interested in isolating effects of covariates which are fully collinear
with the fixed effects.

Instead of estimating a standard gravity model of bilateral trade flows such as
(11.9), some authors have estimated normalized versions of the latter in order to
avoid having to estimate numerous (multi-dimensional) fixed effects. Eaton and
Kortum (2002),17 for example, normalized bilateral trade flows by the importer’s
domestic sales18

Yi j

Yj j
=

Yi

Pi

P j

Yj
(Ci j)

κ . (11.33)

Rewriting (11.33) when using fixed effects yields

yi j− y j j = αi−α j +κ · ci j + εi j. (11.34)

In contrast to the standard gravity equation, the number of fixed effects is reduced by
half, since the fixed effect αi is the same if country i is importing or exporting. Note
that (11.34) allows for including additional fixed effects in ci j. For instance, Eaton
and Kortum (2002) allow for an importer-fixed effect in the trade costs which might
capture non-tariff trade barriers. This fixed effect can be isolated separately since
it appears only for imports but not for consumption from domestic firms. Waugh
(2010) and Simonovska and Waugh (2014) use a similar specification but isolate an
exporter-specific component of trade costs instead.19

A way to obtain a country-(time-)fixed-effects-free formulation of the gravity
equation is to take ratios of ratios (Anderson and Marcouiller, 2002; Romalis, 2007;
Hallak, 2006; Martin et al., 2008; Head et al., 2010).20 Consider the exports from i
to j, as well as the exports of m to k and rewrite them in multiplicative form

Yi j×Ymk =

(
Yi

Pi

E j

P∗
j
(Ci j)

κ

)
×
(

Ym

Pm

Ek

P∗
k
(Cmk)

κ

)
. (11.35)

17 Eaton and Kortum (2002) substitute for prices to obtain a measure of “competitiveness”. The
ratio approach, however, remains the same as described here.
18 Note that we – as is common in the literature – assume that domestic trade costs are zero so that
C j j = 1.
19 Clearly, such an approach allows the identification of only one fixed effect contained in trade
costs (either importer- or exporter-specific), and it generally permits modelling an asymmetry in
trade costs for i j- versus ji-trade.
20 The methodology is also known as the “tetrads” method (Head et al., 2010).
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Repeating that exercise for the exports from i to k as well as the exports of m to j
yields

Yik×Ym j =

(
Yi

Pi

Ek

P∗
k
(Cik)

κ

)
×

(
Ym

Pm

E j

P∗
j
(Cm j)

κ

)
. (11.36)

Dividing (11.36) by (11.35) and rearranging terms yields

Yi j×Ymk

Yik×Ym j
=

(Ci j)
κ × (Cmk)

κ

(Cik)κ × (Cm j)κ
. (11.37)

Taking logs, equation (11.37) can be easily estimated without relying on any
country-(time-)-specific fixed effects. However, allowing for the full set of com-
binations dramatically increases the set of observations. Most authors rely on refer-
ence countries to reduce the set of observations. Clearly, estimating equation (11.37)
may lead to severely biased parameters in the presence of self-selection into posi-
tive trade flows.21 To accommodate zeros, Charbonneau (2012) and Egger and Staub
(2016) apply a consistent GMM estimator to (11.37). Rewriting (11.37) and taking
conditional expectations yields

E
[
Yi j×Ymk−Yik×Ym j ∗ eκ∗(ci j+cmk−cik−cm j)|ci j,cmk,cik,cm j,αi,αm,α

∗
j ,α

∗
k

]
= 0.

(11.38)
The respective unconditional moment conditions read

E
[(

Yi j×Ymk−Yik×Ym j ∗ eκ∗(ci j+cmk−cik−cm j)
)
(ci j + cmk− cik− cm j)

]
= 0.

(11.39)
Instead of using four different countries to construct ratios of ratios as in (11.37),

Caliendo and Parro (2015) use three countries to construct the product of trade flows
from i to j, from j to k, and from k to i, and divide it by the product of the trade
flows in the opposite direction, respectively

Yi j×Yjk×Yki

Yji×Yk j×Yik
=

(Ci j)
κ × (C jk)

κ × (Cki)
κ

(C ji)κ × (Ck j)κ × (Cik)κ
. (11.40)

As before, importer-(time-) and exporter (time) specific components of trade flows
(and trade costs) cancel out with this approach. Additionally, using (11.40), all sym-
metric bilateral trade costs and symmetric trade-cost variables such as distance or
PTA membership cancel out.

However, there are two general drawbacks with ratio estimators. First, the de-
grees of freedom have to be adjusted properly in order to avoid deflating standard
errors on the parameter estimates of interest. Second, the mechanical dependence
structure which emerges due to the repeated occurrence of specific trade flows in
the various ratios must be accounted for, e.g., by using appropriate cluster-robust
standard errors in order to avoid biased standard errors and test statistics.

21 Compare Sect. 11.3.2 for an outline of this issue.
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11.4 Conclusion

The econometric analysis of data on bilateral trade flows is exciting, since these
data are easily available for many country pairs and years, and the economic theory
establishing sound foundations for the model specification is well established and
still thriving. An interesting aspect to the econometrician is the dimensionality of
the data, where trade flows are at least double or triple, if not quadruple-indexed (by
exporter and importer, and eventually also by time and product).

This high dimensionality of the data permits a rich treatment of fixed effects,
of dynamics, of cross-sectional interdependence, and other issues, and eventually
calls for methods which are not readily developed. The present chapter provides
an overview of the state of the art of methods dealing with these issues. Future
work on the econometrics of gravity models may fruitfully address combinations of
these problems. For instance, the exponential-family applications of gravity mod-
els tend to ignore dynamics, as well as cross-sectional dependence. The dynamic
models tend to ignore cross-sectional dependence. Ratio estimators tend to ignore
interdependence and the complex non-independent structure of the transformed dis-
turbances due to repeated observation of units.
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Chapter 12
Modelling Housing Using Multi-dimensional
Panel Data

Badi H. Baltagi and Georges Bresson

Abstract This chapter surveys housing models using multi-dimensional panels.
While there is a vast literature on housing models using two-dimensional panel data,
there are few papers using multi-dimensional panels. This chapter focuses on hous-
ing models, residential mobility and location choice models derived from discrete
choice theory, utilizing multi-dimensional panels. Examples include nested or hi-
erarchical error components models, where a house is located in a street, within a
block, within a city, within a county, etc. This chapter introduces some basic con-
cepts of utility functions and discrete choice models used for hedonic functions, and
residential mobility and location choices. Then it surveys some significant papers
on multi-dimensional models of residential mobility and location choice. The paper
concludes by surveying a few papers on dynamic housing models. It shows that both
spatial and temporal dimensions in dynamic systems should be included for hedonic
housing models and discrete models of residential location in a multi-dimensional
framework. However, the inclusion of these multiple dimensions greatly compli-
cates the specification and modeling of such systems.

12.1 Introduction

This chapter surveys housing models using multi-dimensional panels. For more than
a decade, a huge literature within the New Economic Geography has emerged to
study the causes of temporal and spatial variations in house prices, residential mobil-
ity and location choice. These are major household decisions connected with many
activities and travel aspects of households’ lives. These concepts have been widely
researched in various fields including economics, sociology, geography, urban plan-
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ning, transportation, etc. Location choices and housing investments are inherently
dynamic decisions. Moreover, the choice for a household to locate in a given area
is a complex decision that is influenced by, among other things, the structural ele-
ments of a dwelling, as well as the property’s spatial relationship to certain ameni-
ties. One source of spatial heterogeneity comes from the natural hierarchical and
nested structure of the locations of houses: whether they located in a street, within
a block, within a city, within a county, within a region, etc. There is a vast literature
on such topics mainly using time series and longitudinal (two-dimensional (2D))
data, but only a few papers using a multi-dimensional (three-dimensional (3D) and
more) framework. In this chapter, we will focus on housing models, residential mo-
bility and location choice models derived from discrete choice theory, focusing on
examples that use multi-dimensional panels.

Baltagi et al. (2014), for example, focus on the estimation of UK house prices in
which spatio-temporal variations in house prices are driven by supply and demand
conditions, with spatial effects coming from two distinct sources. One is the direct
dependence of house prices in a given locality on house prices in nearby localities.
The second source of spatial heterogeneity comes from the presence of hierarchical
error components which represent the impact of local (district) effects embedded
within wider (county) effects. The panel data includes 353 local authority districts
in England over the period 2000–2007. This is done using instrumental variable es-
timation. Another example is Baltagi et al. (2015), who estimate a hedonic housing
model based on flats sold in the city of Paris over the period 1990–2003. This is
done using maximum likelihood estimation, taking into account the nested structure
of the data. Paris is historically divided into 20 arrondissements, each divided into
four quartiers (quarters), which in turn contain between 15 and 169 blocks (ı̂lot, in
French) per quartier.

In Sect. 12.2, we introduce some basic concepts of utility functions and dis-
crete choice models used for hedonic functions, residential mobility and location
choices. Section 12.3 deals with multi-dimensional models of housing hedonic price
functions, their estimation methods and some results. Section 12.4 analyses some
multi-dimensional models of residential mobility and location choice. Section 12.5
focuses on multi-dimensional dynamic models of housing models and Sect. 12.6
concludes.

12.2 Discrete Choice Models and Hedonic Price Functions: A
Quick Overview

The pioneering work by Daniel McFadden on location choice is an obvious starting
point for a discussion on housing models. One generally considers a household i
who chooses to locate in neighborhood j and buy house type k. A standard random
utility model (see, e.g., Holmes and Sieg, 2014) assumes that the indirect utility of
household i for location j and house k is given by
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ui jk = X ′jβ +Z′kγ +(yi− p jk)α + εi jk = fi jk(.)+ εi jk , (12.1)

where X j is a vector of observed characteristics of location j, Zk is a vector of ob-
served characteristics for house k, yi is the household income and p jk is the price of
housing type k in location j. Each household chooses the neighborhood-housing pair
that maximizes utility. Under the assumption that the error terms εi jk are indepen-
dent and identically distributed (i.i.d.) across i, j and k and follow a type I extreme
value distribution, McFadden (1973) (see also McFadden, 1974, 1978), derived the
well-known conditional logit choice probabilities

Pr
[
di jk = 1

]
=

exp
(

fi jk(.)
)

∑
J
j=1 ∑

K
k=1 exp

(
fi jk(.)

) , (12.2)

where di jk = 1 if household i has chosen neighborhood j and house type k and
zero otherwise. However, the independence of irrelevant alternatives (IIA) property
of this model is unattractive. McFadden (1978) proposed the use of a generalized
extreme value distribution for the error terms, which gives rise to the nested logit
model and allows one to relax the assumption that idiosyncratic tastes are indepen-
dent across locations and houses. However, we need to choose the nesting structure
before estimation, mainly if the nested structure is not natural and if we do not have
knowledge about the neighborhood structure. One solution is to use random coeffi-
cients βi, γi and αi instead of fixed coefficients β , γ and α . Estimation with random
coefficients is challenging and needs the use of simulation-based estimators (SBE)
(see Newey and McFadden, 1974 or Judd, 1998).

Moreover, Bayesian estimators are also well suited for the estimation of dis-
crete choice models with random coefficients. One application of such a model with
SBE has been done by Hastings et al. (2006), who study the effects of open en-
rollment policies under a particular parent choice mechanism, sorting households
among schools within the Mecklenburg Charlotte school district, North Carolina.
Bajari and Kahn (2005) used Bayesian methods to study housing demand explain-
ing racial segregation in cities.

Demand estimation has also focused on the role of unobserved neighborhood
characteristics or housing quality ζ j. In this case, the indirect utility function is
written as

ui jk = X ′jβ +Z′kγ +(yi− p jk)α +ζ j + εi jk . (12.3)

Unobserved neighborhood characteristics can be recovered by matching the ob-
served market shares of community j. Then, the remaining parameters can be es-
timated by a generalized method of moments (GMM) estimator using instrumental
variables (IV) to deal with the correlation between housing price p jk and unobserved
neighborhood characteristics or housing quality ζ j. Bayer et al. (2007), using two-
dimensional (2D) panel data, estimate household preferences for school and neigh-
borhood attributes in the presence of sorting. The model embeds a boundary dis-
continuity design in a heterogeneous residential choice model, addressing the endo-
geneity of the school and neighborhood characteristics. Their application concerns a
restricted-access version of the 1990 U.S. Census, that links detailed characteristics
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for nearly a quarter of a million households and their houses in the San Francisco
Bay Area with their precise residential locations. Bayer et al. (2016), using three-
dimensional panel data (3D), develop a dynamic model of neighborhood choice (see
Sect. 12.5). They capture observed and unobserved preference heterogeneity across
households and locations of housing transactions in the San Francisco Bay Area
from 1994 to 2004.

We now turn to hedonic measures with a strong theoretical grounding (see,
among others, Griliches, 1971; Rosen, 1974; Nelson, 1977; Blomquist and Wor-
ley, 1981, 1982 among others). In addition, we show the use of regression tech-
niques to control for compositional and quality change (see, e.g., Witte et al., 1979;
Brown and Rosen, 1982; Meese and Wallace, 1997, to mention a few). The hedonic
pricing method is based on the fact that prices of goods (in our case, houses) in a
market are affected by their characteristics. This method estimates the value of a
commodity based on people’s willingness to pay for the commodity as and when
its characteristics change. In real estate economics, hedonic pricing is used to adjust
for the problems associated with looking for a dwelling that is as heterogeneous as
buildings. The hedonic pricing function, which explains the price of a house, will
be affected by, among other things, the structural characteristics of the house, and
neighborhood and environmental characteristics.

Since the seminal work of Rosen (1974), we have generally used a two-stage
procedure for estimating the hedonic price function of the dwelling and for the re-
covery of marginal willingness to pay functions of heterogeneous individuals for
the characteristics of differentiated products. Basically, hedonic models of housing
price relate the price (or the logarithm of the price per square meter) to, among other
things, the characteristics of the dwellings p jk = f (Z′k, ...). The price gradient asso-
ciated with this hedonic price function ∂ p jk/∂Zkl denotes the implicit price of the
amenity Zkl (number of rooms, quality of air, etc.). The second stage of Rosen’s pro-
cedure seeks to recover the coefficients of demand (or marginal willingness to pay)
and supply (or marginal willingness to accept) functions for the attribute Zkl from the
first-order conditions of the equilibrium relationships: ∂ p jk/∂Zkl = fd (Zk,Bk) for
demand and ∂ p jk/∂Zkl = fs (Zk,Sk) for supply, where Bk and Sk represent attributes
of the buyer and seller of house k. Bartik (1987) and Epple (1987) have described
a source of endogeneity in the second stage of Rosen’s procedure that is difficult to
overcome without exclusion restriction arguments or the use of IV methods. This
has led researchers to avoid altogether the estimation of marginal willingness to pay
functions, relying instead on the first-stage hedonic price function and limiting the
analysis to the evaluation of marginal changes in amenities (see Gayer et al., 2000;
Bishop and Timmins, 2011 to mention a few).

In some studies, dwellings were assumed to be stratified into blocks or communi-
ties j, where prices are homogeneous and price trends are roughly parallel. Ideally,
a model could be estimated in each neighborhood and the elementary geographic
zones could be very small sub-markets. In this case, each model is estimated in
a particular block, all variables are de facto interacted with the block. Thus, spa-
tial location is not without consequences and hedonic housing price models should
incorporate spatial effects. In the econometric literature, spatial effects may result
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from spatial dependence or from spatial heterogeneity. Spatial dependence means
that observations at location j depend on other observations at locations l 6= j. Spa-
tial heterogeneity refers to variation in relationships over space and, more precisely,
over every point in space. The distinction comes from the structure of the depen-
dence, which can be related to location and distance, both in a geographic space,
as well as in a more general economic or social network space (see Anselin, 2001;
Anselin et al., 2008).

For spatial effects in real estate, many housing models have been estimated in a
2D framework on panel data with two indexes j and t generally for location and time
associated with spatial weight matrices (see for instance Baltagi and Bresson, 2011;
Bresson and Hsiao, 2011; Fingleton, 2008; Glaeser, 2008; Holly et al., 2010, to men-
tion a few). However, very few models have been developed in a three-dimensional,
or higher dimensional panel data setting. In the next section, we present some of
these models and their associated results for these multi-dimensional frameworks.

12.3 Multi-dimensional Models of Housing Hedonic Price
Functions: Some Examples

Baltagi et al. (2015) estimate a hedonic housing model based on flats sold in the
city of Paris over the period 1990–2003. This is done using maximum likelihood
estimation, taking into account the nested structure of the data. Paris is historically
divided into 20 arrondissements, each divided into four quartiers (quarters), which
in turn contain between 15 and 169 blocks (ı̂lot, in French) per quartier. The data
set used is an unbalanced pseudo-panel data containing 156,896 transactions. The
real estate literature emphasizes the importance of neighborhoods in determining the
value of a house or a flat. While one can try and include as many as possible of the
neighborhood characteristics in the regression to capture these effects, most attempts
may fall short because many neighborhood characteristics are not observed, as in
our case. One simple method of capturing the effect of neighbors’ prices used by
Baltagi et al. (2015) is to estimate a spatial lag regression equation with time-varying
coefficients:

ptaqi f = λt p̃taqi f +Ztaqi f β + εtaqi f , | λt |< 1 , (12.4)

where t = 1, ...,T for years, a = 1, ...,N for arrondissements, q = 1, ...,Qta for
quartiers, i = 1, ...,Mtaq for ı̂lots and f = 1, ...,Ftaqi for flats. p is the transaction
price (in logs) for flat f , in ı̂lot i nested in quartier q, which in turn is nested in
arrondissement a at time t. Ztaqi f denotes the vector of K explanatory variables
describing the characteristics for this flat (surface in m2, count data as number of
rooms, bedrooms, bathrooms, garage plots, and dummy variables such as balcony,
whether it is located in a street, boulevard, avenue, or place, period of construc-
tion (<1850, 1850–1913, ...,1981–2003), etc). This unbalanced panel is made up
of N = 20 top-level arrondissements, each containing Qta second-level quartiers.
The second-level quartiers in turn contain Mtaq third-level ı̂lots, which contain the
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innermost Ftaqi observations on flats. The number of observations in the higher level
groups are Ftaq = ∑

Mtaq
i=1 Ftaqi and Fta = ∑

Qta
q=1 Ftaq. The total number of observa-

tions is H = ∑
T
t=1 ∑

N
a=1 Fta. The number of top-level groups is NT, the number of

second-level groups is L = ∑
T
t=1 ∑

N
a=1 Qta, and the number of bottom-level groups

is G = ∑
T
t=1 ∑

N
a=1 ∑

Qta
q=1 Mtaq. Thus, we have a five-dimensional pseudo-panel data

structure. The spatial lag coefficient λt may be time varying or constant over time
and the spatial lag variable p̃taqi f is defined as

p̃taqi f =
N

∑
a=1

Qta

∑
q=1

Mtaq

∑
i=1

Ftaqi

∑
p=1

wtaqip ptaqip , (12.5)

where wtaqip denotes the elements of the spatial weights matrices Wt , which vary
with t. Elements on the diagonal of Wt are set to zero, while the off-diagonal ele-
ments define the connexion (contiguity or distances) between dwellings. There are
at least two reasons why a positive spatial correlation may exist. First, dwellings in a
neighborhood tend to have similar structural characteristics and second, dwellings in
a neighborhood share the same location amenities (see Basu and Thibodeau, 1988).
However, many of the price determining factors shared by neighborhoods are dif-
ficult to explicitly explain, but these “omitted” factors are contained in the neigh-
borhood prices. For each year, Baltagi et al. (2015), using the “Delaunay triangle
algorithm”, define first-order contiguity matrices Wt for the nearest neighbors (i.e.,
from 10 to 140 nearest sold flats). According to the nested structure, the disturbance
term is given by

εtaqi f = δta +µtaq +νtaqi +utaqi f , (12.6)

where δta is the arrondissement effect, µtaq is the quartier effect naturally nested in
the respective arrondissement and νtaqi is the ı̂lot effect naturally nested in the re-
spective quartier. These could be fixed or random. The remainder disturbance term
for the particular flat is random utaqi f ∼ iiN(0,σ2

u ). For the random specification,
we assume that δta ∼ iiN(0,σ2

δ
), µtaq ∼ iiN(0,σ2

µ) and νtaqi ∼ iiN(0,σ2
ν ).

Following Antweiler (2001), Baltagi et al. (2015) use block-diagonal matrices of
size (H×H) corresponding in structure to the groups or subgroups they represent.
They can be constructed explicitly by using “group membership” matrices consist-
ing of ones and zeros that uniquely assign each of the H observations to one of the G
(or L or NT ) groups. Let Rν be such an (H×G) matrix corresponding to the inner-
most group level. Then the block-diagonal (H×H) matrix Jν can be expressed as
the outer product of its membership matrices: Jν = Rν R′ν . The inner product R′ν Rν

produces a diagonal matrix L̃ν of size (G×G), which contains the number of ob-
servations of each group. Similarly, let Rµ be such an (H×L) matrix corresponding
to the second-level groups. Then the block-diagonal (H×H) matrix Jµ can be ex-
pressed as the outer product of its membership matrices: Jµ = Rµ R′µ . Last, let Rδ

be such an (H×NT ) matrix corresponding to the top-level groups. Then the block-
diagonal (H×H) matrix Jδ can be expressed as the outer product of its membership
matrices: Jδ = Rδ R′

δ
.
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If we pool the observations, the log-likelihood is given by

ln l =−1
2

H ln(2π)− 1
2

ln |Ω |+ ln |A|− 1
2

ε
′
Ω
−1

ε , (12.7)

where
ε = Ay−Xβ , A = IH −λW , (12.8)

with W = diag(Wt) and λ = diag(λt), where W is the block-diagonal spatial weight
matrix of size (H×H). Wt is the spatial weight matrix1 of size (Fta×Fta) changing
at each time period t. λ is the spatial lag matrix of size (T ×T ) whose elements λt
change at each time period t. IH is an identity matrix of size (H×H).

The variance-covariance matrix of the disturbance is defined as follows

Ω = E
[
εε
′]= σ

2
u
[
IH +ρν Jν +ρµ Jµ +ρδ Jδ

]
, (12.9)

with

ρδ =
σ2

δ

σ2
u

, ρµ =
σ2

µ

σ2
u

, ρν =
σ2

ν

σ2
u
. (12.10)

Extending the derivations of Antweiler (2001) to the case of the spatial lag model
(12.4), Baltagi et al. (2015) get

ln l =−1
2

[
H ln

(
2πσ

2
u
)
+

T

∑
t=1

{
ln |It −λtWt |+

N

∑
a=1

{
lnθta +Cta−

ρδ

θta

U2
ta

σ2
u

}}]
,

(12.11)

with Cta =
Qta

∑
q=1

{
lnθtaq +Ctaq−

ρµ

θtaq

U2
taq

σ2
u

}
, (12.12)

and Ctaq =
Mtaq

∑
i=1

{
lnθtaqi +

Vtaqi

σ2
u
− ρν

θtaqi

U2
taqi

σ2
u

}
, (12.13)

where It is an identity matrix of size (Fta×Fta) and

1 Baltagi et al. (2015) use a block-diagonal weight matrix W of (156,896×156,896) whose small-
est sub-block is a weight matrix Wt of (6,643× 6,643) for the year 1992 and whose largest sub-
block is a weight matrix Wt of (17,098×17,098) for 1999.
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θtaqi = 1+ρν Ftaqi Vtaqi =
Ftaqi

∑
f=1

ε2
taqi f ,

θtaq = 1+ρµ φtaq with φtaq =

(
Mtaq

∑
i=1

Ftaqi
θtaqi

)
Utaqi =

Ftaqi

∑
f=1

εtaqi f ,

θta = 1+ρδ φta with φta =

(
Qta
∑

q=1

φtaq
θtaq

)
Utaq =

Mtaq

∑
i=1

Utaqi
θtaqi

,

Uta =
Qta
∑

q=1

Utaq
θtaq

,

(12.14)

with εtaqi f = ytaqi f −λt ∑
N
a=1 ∑

Qta
q=1 ∑

Mtaq
i=1 ∑

Ftaqi
p=1 wtaqipytaqip−Xtaqi f β .

A gradient of this log-likelihood function (12.11) is obtained analytically, but it can
also be obtained through numeric approximation. In carrying out this maximiza-
tion, it is necessary to constrain the optimization such that |λt |< 1, the variance σ2

u
remains positive, and that the variance ratios ρδ , ρµ and ρν remain non-negative.

Baltagi et al. (2015) report several ML estimation results. One for the random
effects (RE) model ignoring the nested effects, one for the nested RE model ignor-
ing the spatial lag effects, and one for the spatial nested RE model.2 Baltagi et al.
(2015) found significant spatial lag effects as well as significant nested random error
effects. They emphasize the importance of nested effects in the Paris housing data
as well as the spatial lag effects. In fact, they show that the impact of the adjacent
neighborhoods becomes relatively small when one takes care of the nested random
effects. In addition, due to the unbalanced pseudo-panel aspect of these transactions,
they show that one should allow the spatial weight matrix as well as the spatial lag
coefficients to vary over time, and that the likelihood ratio tests confirm that they fit
the Paris housing data better.

Following LeSage and Pace (2009), Baltagi et al. (2015) compute the marginal
effects – which are decomposed into direct, indirect and total marginal effects – and
show that the marginal spillover effects due to the neighbors are negligible relative
to the direct effects. Moreover, empirical results show that the marginal effect for a
specific housing characteristic is lower on average once the nested effects are taken
into account.

Baltagi et al. (2014) estimate a nested random effects spatial autoregressive panel
data model to explain annual house price variation across 353 local authority dis-
tricts in England over the period 2000–2007. The nested error components represent
the impact of local (district) effects embedded within wider (county) effects. Baltagi
et al. (2014) propose new estimators based on the instrumental variable approaches
of Kelejian and Prucha (1998) and Lee (2003) for the cross-sectional spatial au-
toregressive model. The estimation methods allow for the endogeneity of the spatial
lag variable producing the simultaneous spatial spillover of prices across districts

2 For the estimation of a nested error components model with unbalanced panel data using simple
analysis of variance (ANOVA), maximum likelihood (MLE) and minimum norm quadratic unbi-
ased estimators (MINQUE)-type estimators of the variance components, see Baltagi et al. (2001).
For Lagrange multiplier testing of a nested error components model with unbalanced panel data,
see Baltagi et al. (2002).



12 Modelling Housing Using Multi-dimensional Panel Data 357

together with the nested random effects in a panel data setting. Monte Carlo results
show that these estimators perform well relative to alternative approaches and pro-
duce estimates based on real data that are consistent with the theoretical house price
model underpinning the reduced form. The empirical results show that there is a sig-
nificant spatial lag term indicating a positive correlation between prices locally and
prices in “nearby” districts and that income within commuting distance has a posi-
tive effect, while the stock of housing has a negative effect on housing price. They
also show that the nested error components attributable to district and county effects,
like the spatial lag term, are necessary elements in modeling UK house prices.3

From hedonic price functions, we can derive temporal and/or spatial price in-
dexes. This has been done, for instance, by Syed et al. (2008) for the Sydney region.
Their data concern 15 regions in Sydney on a quarterly basis from 2001 to 2006
from a data set consisting of 418,877 house sales. As 60% of sales observations are
missing for one or more of the core characteristics, they first use multiple-imputation
techniques to fill in the gaps in the data set, prior to estimating the hedonic model.
In a second stage, they specify and estimate a non-nested three-dimensional hedo-
nic price function. They pool across all the regions and periods in the sample and
estimate the region-time specific fixed effects and shadow prices of housing charac-
teristics. This method was first proposed by Aizcorbe and Aten (2004), who refer to
it as the “time-interaction-country product dummy” method.

p jth = α +
T

∑
τ=2

βτ qτh +
J

∑
κ=2

γκ rκh +
T

∑
τ=2

J

∑
κ=2

δτκ bτκh

+
Mκ

∑
m=2

ηκmdκmh +Z jthθ + ε jth , (12.15)

for j = 1, ...,J, t = 1, ...,T and h = 1, ...,H jt ,

where p is the log of the price of a dwelling h belonging to region-period jt, qτh
(resp. rκh) are dummy variables such that qτh = 1 (resp. rκh = 1) if the observation
h is from period t (resp. from region j) and zero otherwise. The dummy variables
bτκh denote interactions between periods and regions taking the value of 1 if the
observation h is from region-period jt and zero otherwise. The postcode dummies
are denoted by dκmh, where dκmh = 1 for observation h’s postcode and zero other-
wise. Z is a set of quality characteristics including the dwelling type, the number
of bedrooms, bathrooms, lot size, etc. Spatial correlation between observations is

3 Baltagi and Pirotte (2014) derive the Best Linear Unbiased Predictor (BLUP) for a spatial nested
error components panel data model. This predictor is useful for panel data applications that exhibit
spatial dependence and a nested hierarchical structure. The predictor allows for unbalancedness in
the number of observations in the nested groups. This could be interesting for forecasting average
housing prices located in a county nested in a state. When deriving the BLUP, this paper takes
into account the spatial correlation across counties, as well as the unbalancedness due to observing
different numbers of counties nested in each state. Ignoring the nested spatial structure leads to
inefficiency and inferior forecasts. Monte Carlo simulations show that the resulting feasible pre-
dictor is better in root mean square error performance than the usual fixed and random effects panel
predictors which ignore the spatial nested structure of the data.
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defined by a spatial autoregressive process on the error term: ε jth = λWε jth + u jth
where u jth ∼ N(0,ω jthσ2). The spatial weight matrix W is a contiguity matrix and
the variance of u jth is subscripted with jt allowing for heteroskedasticity. The co-
efficients δ jt measure the region-period specific fixed effects for the logarithms of
the price level after controlling for the effects of the attributes of the dwellings. The
model is estimated using the maximum likelihood method. The advantage of this
region-time-dummy model is that the temporal and regional price indexes are de-
rived directly from the estimated coefficients β̂t , γ̂ j, δ̂ jt , η̂ jm and θ̂ . Let Pj,t,s the
price index for region j in year t and quarter s. Then, the relative prices are given by

Pj,t,s

Pj,t,1
= exp

(
β̂t,s + δ̂ j,t,s

)
for s = 2,3,4 ,

and
Pj,t+1,1

Pj,t,1
= exp

(
β̂t+1,1 + δ̂ j,t+1,1

)
. (12.16)

Therefore, it is possible to construct a temporal price index for each region j over
the entire time period of the dataset. Results are normalized such that the price
index for the initial region (Inner Sydney) is equal to 1 for the first quarter of 2001.
One can also construct a spatial price index for each quarter s of a specific year t
for the entire set of regions. For a given quarter (t,s), spatial price indexes can be
constructed from the estimated coefficients γ̂ j, δ̂ jt , η̂ jm and θ̂ . The starting point is
a comparison between a postcode m in region l and a postcode n in region j for a
particular dwelling h with amenities vector Zch. This spatial price index is defined
as

Plmts, jnts(Zch) = exp
[
(γ̂ j− γ̂l)+

(
δ̂ jt − δ̂lt

)
+(η̂ jn− η̂lm)

]
×

[
C

∏
c=1

exp
[
Zch
(
θ̂ jc− θ̂lc

)]]
, (12.17)

and the spatial index can be generalized to take into account all dwellings sold in
postcodes lm

Plmts, jnts = exp
[
(γ̂ j− γ̂l)+

(
δ̂ jt − δ̂lt

)
+(η̂ jn− η̂lm)

]
×

[
Hlmts

∏
h=1

C

∏
c=1

exp
[
Zch
(
θ̂ jc− θ̂lc

)]]1/Hlmts

. (12.18)

This is close to a Laspeyres price index.
Combining the temporal and spatial indexes allows a price comparison of dwell-

ings between different location-year-quarter triplets. Syed et al. (2008) found that
their hedonic house price indexes rose significantly from 2001 to 2003, after which
they fell slightly. This finding is consistent with the Australian Bureau of Statistics
(ABS) index. Their indexes, however, are less volatile than their ABS counterpart,
rising noticeably less in the boom and falling less thereafter. In the spatial dimen-
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sion, they found large and systematic differences in the price of housing across
regions of Sydney. The regional dispersion narrowed during the boom period but
appears to have increased again since then.

Several authors have shown that values of complex assets are difficult to ac-
curately quantify and information asymmetry affects asset prices through various
channels (see, e.g., Agarwal and Hauswald, 2010; Baker and Wurgler, 2007; Carlin
et al., 2013; Kelly and Ljungqvist, 2012). The subprime crisis (poor household mort-
gage decisions and subsequent foreclosure), and the housing market collapse in the
US, followed by the financial crisis have revealed that uninformed buyers overpay.
The house buying mechanism is a field in which households’ ability (or inability)
to use market information may have strong effects on housing decisions. This could
be through the choice of mortgage product and through the purchase transaction
(see Carlin et al., 2013; Turnbull and van der Vlist, 2015). House purchases may
involve residential mortgages and associated complex financial instruments, which
have been identified as a major cause of waves of foreclosures during and after the
2007–2008 financial crisis. Turnbull and van der Vlist (2015) show that buyers who
are uninformed of the housing market pay more for houses than buyers who are
informed. They use pseudo-panels of repeated sales based on neighborhood census
block-level. This data is for 426,021 parcels located in Orange County, Florida, over
the period 2000–2012. The authors split fair market value and uninformed buyer ef-
fects by first identifying for each of the market sales in the period 2000–2006 which
of the units foreclosed in 2007–2012. The future foreclosure dummy FF equals
1 if a market transaction completed in 2000–2006 is followed by a foreclosure in
2007–2012 and equals zero otherwise. Turnbull and van der Vlist (2015) estimate a
hedonic price function of the log of market price in first differences on the neigh-
borhood block-level j

pit j− pls j =
(
Zit j−Zls j

)
βZ +

(
FFi j−FFl j

)
βFF + εit j− εls j , (12.19)

for t,s = 1, ...,T , i, l = 1, ...,N, j = 1, ...,J for all i 6= j and t 6= s ,

where pit j is the log of the price of property i sold at time t located in area j. Z is the
vector of relevant house characteristics, and amenities and FF is the penalty associ-
ated with being foreclosed ex post (over 2007–2012). The model of first differences
at the neighborhood block-level basically treats sales within the neighborhood block
as repeat sales while accounting for observed structural differences. This is a model
on pseudo-panels of repeated observations “à la Deaton (1985)”. This model also al-
lows for clustered errors at the neighborhood block-level j. Results show that buyers
who are later foreclosed paid a 2.7% (resp. a 4.6%) premium for properties bought
between 2000 and 2006 (resp. between 2005 and 2006). Estimation on different
sub-periods also reveal a strong correlation between home buyers’ house prices and
future foreclosures. To check whether effects vary across housing market segments,
Turnbull and van der Vlist (2015) estimate quantile regression models. Results show
that the effect for the penalty associated with being foreclosed is larger for the lower
end of the housing market. Buyers in 2005–2006 who ended up foreclosed paid up
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to 3.5% above the fair market value in the lower end of the housing market, while
foreclosed owners paid a little over 1% percent more in the higher end of the housing
market.

12.4 Multi-dimensional Models of Residential Mobility and
Location Choice: Some Examples

Residential mobility and location choice are significant household decisions and
have been widely researched in various fields including economics, sociology, ge-
ography, regional science, urban planning, housing policy, transportation, etc. Deci-
sions of residential mobility and location choice are closely related to the household
housing process with a large range of factors that contribute to each choice. Due
to the vastness of the literature on such topics, we will focus on a few examples
of residential mobility and location choice. Readers could profitably read the sur-
vey by Dieleman (2001) on residential mobility. Since the seminal works of Rossi
(1955) and Alonso (1964), a huge amount of research on residential location choice
has been published. “Reasons for moving are divided into those which pertain to the
decision to move out of the former home - ‘pushes’ - and those reasons pertaining to
the choice among places to move to - ‘pulls’ ” (Rossi, 1955, p. 8). For instance, push
factors may include negative externalities like noise, pollution or crime, changes in
housing affordability, dissatisfaction with the current dwelling, changes in house-
hold structure, etc. Pull factors often include better access to good quality public
services (schools and health care facilities), employment, leisure and recreational
opportunities, etc. (see Lee and Waddell, 2010; Hoang and Wakely, 2000 for a re-
view). Our purpose is not to review the main factors of residential mobility and
relocation but to summarize a few multi-dimensional studies of residential mobility
and relocation.

One interesting study has been done by Davies and Pickles (1985) in a multi-
dimensional framework. They propose a model that conceptualizes residential mo-
bility as a sequence of choices between staying and moving. Household i will move
in time period t if and only if random utility derived from the most-favored alterna-
tive dwelling available uitb is larger than the random utility derived from the current
dwelling uita:

uita = V (yit ,Zta)+ εita =Vita + εita with εita = µia +g(dit)+νita , (12.20)
uitb = V (yit ,Ztb)+ εitb =Vitb + εitb with εitb = µib +h(t)+νitb ,

where yit is a vector of observed characteristics of household i at time t, Zta (resp.
Ztb) is a vector of the observed characteristics of the current dwelling (resp. the
most-favored alternative dwelling available). Vita and Vitb are the systematic utilities
while εita and εitb are the random components of utilities. These random compo-
nents are likely to be correlated over time for each household. εita is the sum of the
unexplained household heterogeneity µia, a function g(dit) of the duration of stay
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for household i at time t and a remainder term νita, independently distributed over
both households and time. For the other random component εitb, the unexplained
household heterogeneity µib also applies. Moreover, a time trend h(t) represents
fluctuations in market conditions. Davies and Pickles (1985) used a quadratic spec-
ification for the duration of stay g(dit) = β1dit +β2d2

it , and a cubic specification for
the housing market function h(t) = β3t +β4t2 +β5t3.

The likelihood L(zit) of the observed sequence of outcomes is the product of the
probabilities of the observed choice for each time period:

L(zit) =
T

∏
t=1
{Pr [uitb > uita]}zit {1−Pr [uitb > uita]}1−zit , (12.21)

with Pr [uitb > uita] =
∫

∞

−Vit−µi+g(dit )−h(t)
φ (νitb−νita)d (νitb−νita) ,

where zit = 1 if household i moves in time period t and zero elsewhere, Vit =Vitb−
Vita, µi = µib−µia and φ (.) is the probability density of the difference between the
two random components. Assuming that they follow Weibull distributions, leads to
the following likelihood with a household-specific error term µi:

L(zit) =
T

∏
t=1

exp [−Vit −µi +g(dit)−h(t)]zit

1+ exp [−Vit −µi +g(dit)−h(t)]
. (12.22)

Three problems arise with this likelihood: the integration over the error term dis-
tribution is almost analytically intractable; the initial observation complicates the
handling of endogenous variables such as duration of stay dit , and numerical meth-
ods are required for parameter estimation. To overcome these problems, Davies and
Pickles (1985) derived an approximation of the likelihood using the generalized
Beta-logistic approach developed by Davies (1984).

The panel data is for 887 households participating in the Michigan Panel Study
of Income Dynamics over the period 1968–1977. The dependent variable was a res-
idential move within the county or an intercounty move with no change in the head-
of-household’s job. Among the main explanatory variables were the duration of stay,
a room adequacy index (actual rooms / required rooms), an income adequacy index
(actual income / needs), the age of the head of household, and the education level.
First, they show that the room adequacy index has a U-shaped relationship with
residential mobility. Renters have the shortest initial duration status, while owners
have the longest. But, there is no evidence of a similar U-shaped relationship an-
ticipated for the income adequacy index. Second, they show that changing financial
circumstances does not seem to play any role in the life cycle variation in residen-
tial mobility in the United States. Moreover, they are unable to show any effect of
income surplus on residential mobility.

These are unexpected results. Davies and Pickles (1985) argue that these results
may be due to the housing market being highly segmented, not just between renting
and owner-occupation, but between different types of property and their location. It
could be interesting to redo this study with more recent data. It will probably give
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different conclusions for the last decade which has known troubled financial peri-
ods. Davies and Pickles (1985) found a strong negative relationship between the age
of the head of household and residential mobility. This strong negative relationship
is present even when changing space requirements and financial pressures are ac-
counted for. The age of the head of household is the dominant life cycle and acts
as a proxy variable for changing needs and financial circumstances through the life
cycle.

Explaining the factors which determine housing tenure choices is important. For
instance, Fu et al. (2015) estimate multilevel multinomial logistic regressions for
housing types to study home ownership in urban China. They base their estima-
tion on a sample data of 2,585,480 households from the 2005 National Population
Sample Survey of China and available information for 205 urban areas (prefecture-
level data) (see Huang and Clark, 2002 for a similar study in China but in a 2D
framework). For one household i in prefecture j, the within-prefecture multinomial
logistic model for the odds of housing type m are given by

ln

[
Pr
(
housing typemi j

)
Pr
(
private rental housingi j

)]= βm j0 +
K

∑
k=1

βkm
(
Zh,ki jm−Zh,k jm

)
+ εi j .

(12.23)

The m= 1, ..,5 housing types refer to owning self-built housing, owning commodity
housing, owning affordable housing, owning privatized danwei housing and public
rental housing. Zh,ki jm is the value of household-level covariate k associated with
household i in prefecture j for the m-th housing type. Zh,k jm is the sample mean of
covariate k within prefecture j. The household-level error term εi j is assumed to be
i.i.N(0,σ2). The between-prefecture model for housing types is

βm j0 = γ00m +
S

∑
s=1

γ0smZp,s jm +η0 jm , (12.24)

where Zp,s jm is the prefecture-level covariate s in prefecture j for the m-th housing
type and η0 jm is the prefecture-level error term, which is assumed to be i.i.N(0,σ2

m).
Using a generalized linear mixed model with random effects estimation meth-

ods (GLMM), Fu et al. (2015) show at the household level that redistributors (e.g.,
cadres) and supporting clerical staff were more likely to achieve home ownership
than manual workers did. Both non-agricultural status and working in state sectors
confer benefits in obtaining reform-era housing with heavy subsidies or better qual-
ity. When one takes into account education and earnings, the advantage of redistrib-
utors (e.g., cadres) over manual workers in home ownership could be explained by
work units. At the prefecture-level, they show that the marketization only reduced
the local home ownership of self-built housing, affordable housing and privatized
danwei housing but not that of commodity housing. In contrast, political and mar-
ket connections promote all types of home ownership except self-built housing, and
have a significant positive association with the odds of renting public housing.
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Numerous studies focus on how neighborhoods change in terms of income level,
housing values, environment amenities or different racial preferences, etc. Racial
and ethnic composition may have effects on neighborhood economic change (see
for instance Sykes, 2003). Some studies have examined how neighborhood minor-
ity composition is associated with change in neighborhood relative economic status.
For instance, the paper by Jun (2016) in a 3D framework uses the Neighborhood
Change Database (NCDB), which includes the decennial census data across the
USA from 1970 to 2000 at the census tract level. The multilevel modeling fits the
data structure that a neighborhood is nested in a metropolitan area and allows for an-
swering the research question whether the effect of neighborhood racial/ethnic com-
position on neighborhood economic change is conditioned by metropolitan-level
factors. Jun (2016) shows that both neighborhood percentages of Blacks and His-
panics are negatively related to neighborhood economic gain and are conditioned by
metropolitan-level factors. Although this negative effect of neighborhood minority
composition has been consistent over the four ten-years panel, – the 1970s, 1980s,
1990s, and 2000s – its impact level is lower in the latest panel compared to the earli-
est. The negative effect of neighborhood minority composition has also declined as
a result of the interactions with metropolitan minority composition. In the later pan-
els, metropolitan minority composition turned out to moderate the negative effect of
neighborhood minority composition.

Explaining residential choices and residential mobility is not sufficient. It seems
important to jointly model residential mobility and the duration of stay at a location
preceding relocation. A considerable amount of research has treated the decision
to move as a binary choice decision (move/no-move) and modeled this decision as
a function of various factors (see above). Others have used duration models (see
Deng et al., 2003) to represent the stay at a location between moves, treating the
reason for a move as an exogenous variable. An interesting study done in a multi-
dimensional framework by Eluru et al. (2009) has extended these previous studies
in three ways. First, the move decision is treated as an endogenous variable in a
multinomial unordered choice modeling framework. Second, the duration of stay is
modeled as a grouped choice, supposing that households treat the duration of stay at
a residential location in terms of time-period ranges as opposed to exact continuous
durations. Third, they consider heterogeneity of exogenous variables using random
coefficients in both the equation for the move as well as the equation for the duration
of stay preceding a relocation. In sum, Eluru et al. (2009) estimated a joint unordered
choice-grouped choice model system with random coefficients.

Let the households be represented by the index i = 1, ...,N, let the different move
reasons (e.g., personal reasons, employment reasons, etc.) be represented by the
index m = 1, ...,M and let the duration categories (e.g., < 2 years, 2−5 years, 5−
−10 years, etc.) be represented by the index j = 1,2, ...,J. The specification of
Eluru et al. (2009) allows the possibility of multiple move records per household
to be defined by the index t = 1,2, ...,T as the different moving choice occasions
for households i. The system of equations jointly models the reason for move and
the duration of stay as follows
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uimt = X ′itβim +ηim + εimt ,
dimt = j if ψm, j−1 < d∗imt < ψm, j ,

(12.25)

with d∗imt = X ′itαim±ηim +ζimt . (12.26)

The first equation of the system is associated with the random utility uimt for
a household i corresponding to the reason to move m at choice occasion t. The
(Q× 1) vector Xit is the vector of attributes associated with household i and its
choice environment (e.g., sex, age, employment status, family type, transportation
mode to work, etc.) at the t-th choice occasion. The (Q×1) random coefficient vec-
tor βim = βm + γim is the sum of a vector βm of mean effects of the elements of Xit
for move reason m and a random vector γim with its q-th element (q = 1, ...,Q) rep-
resenting unobserved factors specific to household i and its choice environment. ηim
expresses unobserved individual factors that simultaneously impact the propensity
of moving for a certain reason m and the duration of stay. εimt is an idiosyncratic
random error term assumed to be identically and independently standard Gumbel
distributed across individuals, move reasons and choice occasions.

The second equation of the system is associated with d∗imt , being the latent (con-
tinuous) duration of stay for household i before moving for reason m on the t-th
choice occasion. This latent duration is mapped to the grouped duration category
dimt by the ψ thresholds (with infinite bounds as in the usual ordered-response mod-
eling framework). dimt is observed only if the end of the duration of stay at a res-
idential location is associated with alternative m. The (Q× 1) random coefficient
vector αim = αm + δim is the sum of the vector αm of mean effects for category m,
and the random vector δim of unobserved factors specific to household i and its du-
ration of stay. ζimt is an idiosyncratic random error term, assumed identically and
independently distributed with a logistic distribution across individuals, reasons for
move, and choice occasions, with variance λ 2. The elements of the random vec-
tors γ , δ and η are normally distributed: γimq ∼ N(0,σ2

γmq), δimq ∼ N(0,σ2
δmq

) and

ηim ∼ N(0,σ2
ηm) for q = 1, ...,Q.

Correlation in unobserved individual factors between the reason to move and the
duration of stay may be positive or negative, it is indicated by the ± sign in front of
ηim in the duration category equation. If a positive sign seems logical for the propen-
sity of a move for a given reason m in the first equation, a negative sign in the second
equation suggests that unobserved individual factors will decrease the duration of
stay preceding such a potential move. In the estimation, Eluru et al. (2009) consid-
ered both the positive and negative signs on the ηim terms in the second equation
of the system. But the negative sign for all m provided statistically superior results.
Conditional on γim and ηim for each (and all) m, the probability of a household i
choosing to move for reason m on the t-th choice occasion is given by

Pimt =
exp(X ′itβim +ηim)

∑
M
m=1 exp(X ′itβim +ηim)

. (12.27)
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Conditional on δim and ηim, the probability of a household i choosing to stay for
a particular duration category j preceding a move for reason m on the t-th choice
occasion is given by

Rimt j = G
(

ψm, j−{X ′itαim±ηim}
λ

)
−G

(
ψm, j−1−{X ′itαim±ηim}

λ

)
, (12.28)

where G(.) is the cumulative distribution of the standard logistic distribution. Let
Ω be a vector that includes all the parameters βm, αm, λ , σγmq , σδmq and σηm for
m = 1, ...,M and q = 1, ...,Q. Let ci be a vector stacking the coefficients γim, δim
and ηim across all m for household i. Let Σ be another vector stacking the standard
error terms σγmq , σδmq and σηm and let Ω−Σ represent a vector of all parameters
except the standard error terms. Then, the unconditional likelihood function for all
the households is given by

L(Ω) =
N

∏
i=1

Li (Ω) =
N

∏
i=1

∫
ci

{Li (Ω−Σ | ci)}dΦ (ci | Σ) , (12.29)

with Li (Ω−Σ | ci) =
M

∏
m=1

T

∏
t=1

J

∏
j=1

[PimtRimt j]
Dimt Ei jt ,

where Φ (.) denotes the multi-dimensional cumulative normal distribution and
Li (Ω−Σ | ci) is the likelihood function, for household i and for a given value of
Ω−Σ and ci. Dimt (resp. Ei jt ) is a dummy variable taking the value of 1 if house-
hold i chooses to move for reason m (resp. chooses to stay for duration category
j) on the t-th choice occasion and 0 otherwise. Equation (12.29) needs the eval-
uation of a multi-dimensional integral of size equal to the number of rows in ci.
Eluru et al. (2009) apply Quasi-Monte Carlo simulation techniques based on the
Halton sequence to approximate this integral in the likelihood function and maxi-
mize the logarithm of the resulting simulated likelihood function across individuals
with respect to Ω (see Bhat, 2001, 2003). Eluru et al. (2009) use a longitudinal data
set of households from a stratified sample of municipalities in the Zurich region
of Switzerland over the period 1985–2004. The data set includes 1012 households
and 2590 move records. They found that several demographic, socioeconomic, and
commute related variables (e.g., age, gender, family reasons, education/employment
reasons, accommodation related reasons, surrounding environment related reasons,
vicinity to family and friends, etc.) have a significant influence on the reason for
move and the duration of stay. In the duration of stay model, Eluru et al. (2009)
found that household size creates heterogeneity across the sample of households.
They show that people who own dwellings have a lower probability of moving for
surrounding vicinity related reasons than those renting their units. Likewise, people
who live in smaller homes have higher probabilities of short duration stays probably
because they are looking for larger homes. Having a mix of job opportunities located
close to residential neighborhoods increases the duration of stay in the dwelling. Re-
ducing commute distances promotes longer durations of stay, etc. Eluru et al. (2009)
found that common unobserved factors jointly affect the reason to move and the du-
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ration of stay and call for a joint modeling framework that allows error correlation
structures.

Endogeneity (or simultaneity) is a fundamental aspect of modelling housing that
should be taken into account both for hedonic housing price functions and for choice
models of residential location. This is the object of the next section.

12.5 Multi-dimensional Dynamic Models of Housing Models

In hedonic housing price functions, some explanatory variables, in addition to the
dependent variable and its spatial lag, may be endogenous following the simultane-
ous choice of the house price and of the quantities of attributes. This is particularly
true for floor space (see Fingleton and LeGallo 2008, who extended Kelejian and
Prucha’s 1998 feasible generalized spatial two-stage least squares estimator to ac-
count for endogenous variables due to system feedback, given an autoregressive
or a moving average error process). As for hedonic price functions, endogeneity is
expected to occur mainly as a result of the omission of attributes in discrete choice
models of residential mobility. In the literature, several methods have been proposed
to consider endogeneity. Berry et al. (1995) proposed a fixed effects procedure by
product and market to solve market-level endogeneity in the automobile sector. Gue-
vara and Ben-Akiva (2006) applied to residential location choice models the control
function method, which is based on the inclusion of an additional variable that con-
trols for the endogeneity problem (see Heckman, 1978; Blundell and Powell, 2004).
They applied residential location choice models based on 630 households of renters
who had moved to their present location between 1999 and 2001 in Santiago (Chile).
The results show that price endogeneity is significant in choice models of residential
location and that the control function method can account for it.

Endogeneity is not limited to the correlation between the dependent variables and
attributes (in the equation or omitted) or to the simultaneity of demand and supply,
the marginal willingness to pay and the marginal willingness to accept. Location
choices and housing investments are fundamentally dynamic decisions over multi-
ple time periods. In the 2D panel data literature, some dynamic models have been
applied to real estate topics. For instance, Engle et al. (1985) used a version of a
dynamic multiple-indicator multiple-cause (DYMIMIC) model for a hedonic price
model of the resale housing market for a suburb of San Diego, California, during
the period 1973–1980. The specification of the model features hedonic equations
for each house sale and a dynamic equation for the capitalization rate, which is
taken to be an unobservable time series to be estimated jointly with the unknown
parameters. Engle et al. (1985) used maximum likelihood with an EM algorithm
based upon Kalman filtering.

Some authors have used, in a 2D framework, the dynamic factor models (DFM)
and/or large-scale Bayesian vector autoregressive (LBVAR) models to forecast
housing prices. These models are interesting to study the “ripple effect”, i.e., the
propagation of shocks to house prices across regions. For instance, Das et al. (2010)
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forecast regional house price inflation for five metropolitan areas of South Africa,
using principal components obtained from quarterly macroeconomic time series in
the period 1980 to 2006. In the majority of cases, the dynamic factor model statisti-
cally outperforms the vector autoregressive models, using both the classical and the
Bayesian treatments. They also considered spatial and non-spatial specifications.
Das et al. (2010) indicate that macroeconomic fundamentals in forecasting house
price inflation are important. Li and Leatham (2011) investigate moving trends of
house prices in 42 metropolitan areas in the United States from the perspective of
large-scale models, which are also DFM and LBVAR models. These models accom-
modate a large panel data comprising 183 monthly series for the U.S. economy, and
an in-sample period of 1980 to 2007 are used to forecast the one to twelve-months-
ahead house price growth rate over the out-of-sample horizon of 2008 to 2010. Li
and Leatham (2011) show that DFM consistently outperforms its LBVAR alterna-
tive for forecasting the house price growth rate for the overall U.S. housing market.
The forecasting power of DFM does not decrease as the number of forecast periods
ahead increases, while LBVAR has its best performance for the two-months-ahead
forecast and then its forecasting accuracy decays.

Beenstock and Felsenstein (2015) using data from 9 regions of Israel over 1987–
2010, apply spatial panel cointegration methods for a dynamic model of regional
housing markets in which people prefer to live where housing is cheaper and build-
ing contractors prefer to build in regions where construction is more profitable.
Based on dynamic hedonic price functions, the analysis of nonstationary spatial
panel data shows that although housing starts vary directly with profitability as
measured by house prices relative to building costs, they vary inversely with prof-
itability in neighboring regions. Beenstock and Felsenstein (2015) show that there
is a non-negligible spatial substitution in housing construction and this substitution
effect suggests that contractors have local building preferences since they regard
neighboring regions as close substitutes but not more distant regions. Abate and
Anselin (2016) investigate the interactions between house price fluctuations and
output growth rate across 373 metropolitan statistical areas in the US over the pe-
riod 2001–2013. In a panel data context, they use time varying spatial econometric
hedonic price functions. They show that the spatial correlation coefficient across
metropolitan areas has been increasing over time, indicating an increasing synchro-
nization of house prices across metropolitan statistical areas during the sample pe-
riod.

Spatio-temporal models of hedonic price functions have recently been proposed
to jointly take into account time effects and spatial effects either through multifactor
error structure or through specific weight matrices. For instance, Holly et al. (2010)
considered the determination of real house prices in a panel made up of 49 US States
over 29 years. An error correction model with a cointegrating relationship between
real house prices and real incomes is found once they take proper account of both
heterogeneity and cross-sectional dependence (see also Latif, 2015 for a study on
the impact of new immigration on housing rent, using Canadian province-level panel
data from 1983 to 2010). Latif (2015) uses panel cointegration regressions and panel
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vector error correction models and shows that immigration flow has a significant
positive impact on housing rent both in the short and in the long run.

There are also extensions of the spatial hedonic price functions which use a
weight matrix that expresses spatio-temporal rather than purely spacial relations.
A general (N ×N) spatio-temporal weight matrix W is obtained by splitting its
construction into two separate matrices of the same dimension. The first matrix, S,
captures the spatial relations among the N observations and a second matrix, T , ex-
presses the temporal direction of observations. Smith and Wu (2011) have proposed
a spatio-temporal weight matrix defined as the Hadamard product between two spa-
tial and temporal distance weight matrices W = S�T =

[
s jl
]
�
[
t jl
]
. It identifies the

spatio-temporal neighbors that affect hedonic price determination. The elements s jl
indicate the way observation j is spatially connected to observation l. The elements
on the diagonal s j j are set to zero, while the off-diagonal elements are defined by
an inverse distance function: s jl = d−γ

jl if d jl < d and 0 elsewhere, where d jl is the
geographic distance between locations j and l, d jl < d is a critical cut-off and γ ≥ 0.
The elements t jl represent the time that elapsed between the realization of observa-
tions j and l. One assumes that observations have been ordered chronologically: the
first row of T corresponds to the earliest observation, while the last row corresponds
to the latest observation. The elements on the diagonal t j j are set to zero, while the
off-diagonal elements are defined by an inverse function of the time that elapsed
between two observations: t jl =| t j− tl |−α if | t j− tl |< t and 1 elsewhere. t j (resp.
tl) is the time when dwelling j (resp. l) is sold. t is a critical cut-off value and α is a
penalty parameter to be fixed.

Several authors have used spatio-temporal models of hedonic price functions
with standard spatial specifications (spatial autoregressive (SAR), spatial error
(SEM), spatial Durbin model, etc.) but with different spatio-temporal matrices W .
They got better results in terms of estimation and/or forecasting as compared to
those obtained with the usual purely spatial weight matrices. See for instance, Pace
et al. (2000) for an application on the residential market of Bâton Rouge, Louisiana,
during 1984–1992, Liu (2013) for an application of housing in Randstad, the Nether-
lands, during the years 1997–2007, Nappi-Choulet and Maury (2011) for the resi-
dential market of Paris for the years 1995–2005, or Thanos et al. (2016) for the
Aberdeen, Scotland, housing market during 2004–2007, to mention a few. To our
knowledge, unfortunately, nobody has used these spatio-temporal multifactor error
structures or the spatio-temporal weight matrices in a three-dimensional framework.
However, this could be a promising development for future research.

The developments in the dynamics of modelling housing are focused not only on
hedonic price functions. Some authors have been interested in dynamic versions of
discrete models of location choice. Forward-looking behavior in the housing market
justifies dynamic considerations in a model of location choice. Several authors have
underlined the need to use dynamic specifications for modelling housing. For in-
stance, Case et al. (2012), using questionnaire surveys for home buyers in four U.S.
cities over 2003–2012, have shown that the root causes of the speculative bubble can
be seen in their long-term home price expectations, which reached abnormal levels
relative to the mortgage rate at the peak of the boom and have sharply declined since.
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The downward turning point around 2005 of the long boom that preceded the crisis
was associated with the changing public understanding of speculative bubbles. But
estimating dynamic discrete models of location choice is a rather challenging and
stimulating objective and is technically difficult. Bayer et al. (2016) noted that first,
the estimation of residential sorting and hedonic equilibrium models needs to match
a large sample of households, their characteristics to the location and the features
of their housing choices. Second, the high dimensionality of the state space (con-
sisting of current lifetime utilities and neighborhood characteristics) – required to
define the evolution of an urban system – leads to the curse of dimensionality, which
puts a brake on the estimation of an acceptable sized dynamic model of residential
location decisions.

Diao et al. (2015) propose a real-option based dynamic model to simulate real
estate developer behavior. In a three-dimensional framework (property, type of prop-
erty and time for private residential housing in Singapore during 1995–2012), they
extend the standard discrete choice model approach by adding an explicit proba-
bilistic representation of development templates available to developers to take into
account both the developers’ option to hold the land undeveloped and the market
volatility of different development types. In their proposed simulation framework,
Diao et al. (2015) suppose that a developer making investment decisions for a par-
cel faces a set of alternative development templates in a market with uncertainty. In
each time period, the developer estimates future revenue and the construction cost
of feasible development templates under planning constraints and related real op-
tion values. He chooses the template based on the principle of profit maximization,
but only does so if the return of the development template is higher than a threshold
level (value of the call option), which is a function of the market volatility of the
built property as suggested by the real option theory, otherwise, he keeps the status
quo. The model components in the proposed simulation framework are calibrated
with private housing data in Singapore. The results show significant volatility in
housing prices and construction costs, relevant differences in volatility across hous-
ing types, and good fit in the hedonic model of market prices and construction costs.
This kind of research contributes to the microsimulation literature by proposing an
interesting approach which takes into account the dynamic and volatile nature of the
real estate market but, unfortunately, this remains a simulation study.

Bayer et al. (2016) have proposed a new approach for estimating a three-
dimensional dynamic model of demand for houses and neighborhoods that is com-
putationally tractable. Using a semi-parametric estimation approach, they control
for unobserved household and neighborhood heterogeneity. Their model adapts dy-
namic demand models for durable goods in a housing market context. They treat
houses as assets and allow households’ wealth to evolve endogenously. Households
anticipate selling their homes at some point in the future and then consider the
expected evolution of neighborhood amenities and housing prices when deciding
where and when to purchase or sell their house. They relax the index sufficiency
assumption which is standard in the dynamic demand literature.

This assumption helps to deal with the computational challenges posed by the
large state space typically arising in models of dynamic demand. Instead of treat-
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ing the logit inclusive value as a sufficient statistic for predicting future continua-
tion values, Bayer et al. (2016) define the continuation value from predicted future
lifetime utilities, which depend on the state space in a flexible manner. Last, they
use stable and uniform realtor fees to estimate the marginal utility of consumption
without the need for a price instrument. They use the fact that households face a
monetary trade-off both in the standard sense of deciding which product (neighbor-
hood) to purchase, but also in terms of deciding when to move. They take advantage
of the fact that realtor fees during the sample period were quite uniform (6% of the
house value) in order to identify the marginal utility of consumption when estimat-
ing each resident’s move-stay decision. The decision variable, dit , denotes both of
the choices made by household i in period t, whether to move and where to move,
conditional on deciding to move. If a household decides to move, the decision is
denoted dit = j, j = 0,1, ...,J, where j indexes neighborhoods, J denotes the total
number of neighborhoods in the region and 0 denotes the outside option. The data
concern housing transactions in the San Francisco Bay Area from 1994–2004 for
more than 220,000 households and 2398 neighborhoods. We give only some re-
sults as the paper is highly technical. However, the model and estimation procedure
presented in this paper are very general and can be applied to a broad range of dy-
namic studies in housing markets. The model uses a two-stage estimator. In the first
stage, Bayer et al. (2016) use the household location and the mobility decisions to
estimate the value of lifetime expected utility for each neighborhood, time period,
and household type, as well as an unobservable characteristic that captures a house-
hold’s preference for sub-regions within the San Francisco Bay Area. In the second
stage, they recover fully-flexible estimates of per-period utility and regress them on
a set of observable attributes. They use a semi-parametric estimation approach to
control for the endogeneity of price in this second stage, utilizing outside informa-
tion relating to the financial cost of moving to pin down the coefficient on house
prices.

The results indicate that the downward biases associated with static demand
estimation are significant for three important non-marketed amenities: air quality,
crime, and neighborhood race. For instance, for a 10% change in each amenity,
the static model overestimates the willingness to pay for living in close proximity
to neighbors of the same race for low-income households. The static estimation is
$1,627.03, whereas the corresponding dynamic estimation is $612.09. For high-
income households, the bias runs in the opposite direction and the static model un-
derestimates the willingness to pay by a factor of more than two. The static model
always underestimates the willingness to pay for living in close proximity to crimes.
For low-income households and for a 10% increase in violent crime, the static esti-
mation is -$291.14, while the corresponding dynamic estimation is -$350.18. This
is also true for air pollution.
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12.6 Conclusion

The development of modelling housing in multi-dimensional frameworks (3D, 4D
or more) is still in its infancy, as compared to the huge literature in a 2D framework,
which explains why there are relatively few multi-dimensional housing studies. The
limitation comes from the availability of data and the complexity of methods rela-
tive to time series or longitudinal dimensions. The previous papers show that both
spatial and temporal dimensions in dynamic systems should be included for hedonic
housing models and discrete models of residential location in a three-dimensional
framework. But the inclusion of these multiple dimensions substantially complicates
the specification and modeling of such systems. Extending models with unobserved
neighborhood characteristics to deal with the endogenous neighborhood character-
istics or introducing rationing in housing markets (see Geyer and Sieg, 2013) is not
trivial.

Part of the attractiveness of a neighborhood may be due to the characteristics
of neighbors (for instance, higher-income households attract higher-income house-
holds, while lower-income households repel higher-income households). As Kumi-
noff et al. (2013) said “households ‘sort’ across neighborhoods according to their
wealth and their preferences for public goods, social characteristics, and commut-
ing opportunities ... These ‘equilibrium sorting’ models use the properties of market
equilibria, together with information on household behavior, to infer structural pa-
rameters that characterize preference heterogeneity. These results can be used to
develop theoretically consistent predictions for the welfare implications of future
policy changes. Analysis is not confined to marginal effects or a partial equilib-
rium setting. Nor is it limited to prices and quantities... These capabilities are just
beginning to be understood and used in applied research” (p. 1007).

Over three decades, econometric methods have made significant progress and
considerably improved to eliminate non-credible assumptions, such as homogenous
preferences and exogenous amenities. But now, in a 2D framework, the structural es-
timators still rely on parametric assumptions for utility functions, on specific statis-
tical distributions (log-normal, Type I extreme value, generalized extreme value, etc.
) used to capture sources of unobserved heterogeneity and some strong assumptions
to eliminate potential sources of market frictions. As suggested by Kuminoff et al.
(2013), one approach could be to refine the current estimators through the lens of
the econometric literature on partial identification (see Manski, 2007), which views
economic models as sets of assumptions, some of which are plausible and some of
which are “esoteric” (according to Tamer’s (2010) expression) and are needed only
to complete a model. One of the key advantages of this approach is that it could
characterize the potential sensitivity of outcomes to the least credible assumptions.
However, the presence of numerous latent variables, omitted variables, the defini-
tion of dynamic and spatial structures within multi-dimensional frameworks (3D,
4D or more) and the econometric complexity that results will not make things any
better and must move us towards the use of flexible models and methods. One of the
many other promising future pathways is probably the use of variational Bayesian
approximations (see, for instance, Ormerod and Wand, 2010; Lee and Wand, 2016).
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These methods facilitate approximate inference for the parameters in complex sta-
tistical models and provide fast, deterministic alternatives to Monte Carlo methods
to potentially overcome many problems in the applied modelling of housing.
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Chapter 13
Modelling Migration

Raul Ramos

Abstract The use of three-dimensional models as a tool to analyse migration flows
has substantially increased during the last decade. These models are very popular
in analysing economic phenomena related to the movement of goods and services,
capital and people. In fact, while gravity models have been used extensively in the
analysis of trade determinants, only due to the recent availability of time-varying
origin-destination migration data, have multi-dimensional panel data models been
applied in order to improve our understanding of migration flows. Recent contri-
butions have also provided the micro-foundations of gravity models in the context
of migration analysis and, nowadays, the literature is expanding by considering the
role of different factors and policies under the framework provided by Random Util-
ity Maximization (RUM) models. The aim of this chapter is to provide a survey of
recent developments in multi-dimensional panel data models in the context of mi-
gration analysis, to identify the problems that researchers face when using these
models and to review potential new directions in this field of research.

13.1 Introduction and Objectives

As shown in Chap. 11, multi-dimensional data in the context of international eco-
nomics has been mainly used to analyse the determinants of international trade.
Only due to the recent availability of time-varying origin-destination migration data,
have multi-dimensional panel data models been applied in order to improve our un-
derstanding of the drivers of international migration flows.

Earlier research related bilateral migration to the relative size of the origin and
destination countries (measured by population or GDP) and the distance between
them, a specification that clearly resembles Newton’s 1687 law of gravity. However,
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as richer datasets have become available, simpler specifications of the gravity mod-
els have beeen enlarged with variables related to different migration pull and push
factors; for instance, better economic opportunities in the destination country, safer
conditions, or higher political freedom, among others (see Beine et al., 2016 for a
review).

The aim of this chapter is to provide a survey of recent developments in multi-
dimensional panel data models in the context of migration analysis, to identify some
of the problems that researchers face when using these models and to review poten-
tial new directions in this field of research.

The chapter is structured in three sections. First, Sect. 13.2, briefly describes Ran-
dom Utility Maximization (RUM) models that have provided the micro-foundations
of gravity models in the context of migration analysis. Second, Sect. 13.3 focuses on
some of the problems and challenges that researchers face when estimating multi-
dimensional panels to analyse the determinants of migration flows. In particular, the
section starts describing data limitations and considering how the transformation of
the multiplicative specification of RUM based models into a log-linearised specifi-
cation introduces the problem of how to deal with the potential presence of zeros.
Next, potential ways of dealing with multilateral resistance to migration through the
inclusion of different types of fixed effects are described. The section ends with a
discussion on how the migration literature has dealt with endogeneity and spatial
interactions in the context of multi-dimensional panels. Last, Sect. 13.4 provides
some concluding remarks.

13.2 Micro-foundations of the Gravity Model of Migration

Following Beine et al. (2016), the Random Utility Maximization (RUM) model de-
scribes the utility that individual i located in country j at time t − 1 derives from
moving to country k that belongs to a particular choice set D at time t

Ui jkt = w jkt − c jkt + εi jkt , (13.1)

where w jkt represents a deterministic component of utility, c jkt is the cost of moving
from j to k between t− 1 and t, and εi jkt is an individual specific stochastic term.
When we assume that εi jkt follows an iid extreme value distribution as in Grogger
and Hanson (2011),1 we can apply the results in McFadden (1974) and write the
expected probability that individual i opts for country k as

E(p jkt) =
ew jkt−c jkt

∑l w jlt − c jlt
, (13.2)

1 As shown by Beine et al. (2016), similar results are obtained under alternative distributional
assumptions.
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where l represents any country belonging to the choice set D. Assuming that the
deterministic component of utility does not vary with the origin j, this allows us to
define the expected gross migration flow from country j to k, m jkt , as the product of
the stock of population in j at time t, s jt , by the expected probability E(p jkt)

E(m jkt) = s jt
ewkt

ec jkt

1
∑l wlt − c jlt

. (13.3)

Specification (13.3) clearly looks like the traditional gravity model, as expected
gross migration flows from one country to any other depend in a multiplicative way
on origin characteristics, the attractiveness of the destination, and they are inversely
related to the accessibility of the destination for potential migrants (the costs of
moving from j to destination k). As highlighted by Poot et al. (2016), in the most
commonly applied form, the gravity law of population usually considers population
at origin and destination as the main factors related to attractiveness, while distance
captures accessibility. However, (13.3) also includes a last term related to the attrac-
tiveness of this destination compared to the different alternatives in the choice set
D including the option of not migrating. This last term is related to multilateral re-
sistance to migration, the influence that the attractiveness of alternative destinations
exerts on bilateral migration flows (Bertoli and Fernández-Huertas Moraga, 2013).

However, the simplest empirical specification of (13.3) that has been used in
several applications is the following one

m jkt =
β ′jx jtβ

′
kxkt

γ ′jkx jkt
ε jkt , (13.4)

where x jt are time-varying origin characteristics, xkt time-varying destination char-
acteristics and x jkt a measure of the accessibility of destination k for residents in j.
Last, ε jkt is an error term with an expected value equal to 1. In (13.4) the multilat-
eral resistance term is ignored, an omission that generates biases in the estimation
of the coefficients of the determinants of migration. Different strategies have been
developed in order to control for multilateral resistance to migration, an issue that
will be further developed in Sect. 13.3.

In addition, it is important to highlight that one relevant assumption of the RUM
model is that the attractiveness of a destination is not supposed to be affected by
migration (Ramos, 2016). For instance, if one particular destination is attractive
due to its low levels of unemployment when compared to a particular origin, mas-
sive inflows of immigrants could increase unemployment in the destination while
at the same time decreasing it in the origin country. Empirical specifications based
on RUM models cannot capture these second-round effects, which is an important
point to consider in order to appropriately interpret the results. In any case, RUM
models provide an appropriate theoretical justification of the intuition behind em-
pirical models used in this field. The use of RUM models makes clear what the
assumptions made by researchers are, and how these assumptions yield different
empirical specifications.
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13.3 Data Limitations and Estimation Issues

Some of the problems and challenges that researchers face when estimating multi-
dimensional panels to identify the determinants of migration flows have already
been discussed in Chap. 11 for trade analysis. The transformation of the multiplica-
tive specification in (13.4) into a log-linearised specification not only introduces the
problem of how to deal with the potential presence of zeros, but could also lead to
heteroskedasticity. While the first point is discussed below for migration analysis,
regarding heteroskedasticity we refer the reader to the specific Sect. in Chap. 11.
The inclusion in the model of different types of fixed effects to control for multilat-
eral resistance and how to deal with endogeneity and spatial interactions are other
relevant aspects that have already been developed in Chaps. 9 and 11, but that are
discussed below for the specific case of international migration models.2

13.3.1 Data and Measurement Issues

Until recently, the analysis of the determinants of international migration mainly
focused on migrants arriving to and from OECD countries due to data availability.
However, the publication of global bilateral migration matrices by the World Bank
and the United Nations have opened new possibilities to researchers. In particular,
as described in Özden et al. (2011), matrices of bilateral migrant stocks for 226
countries spanning 1960–2000 and disaggregated by gender are provided by the
World Bank.3 More than one thousand census and population register records were
combined to construct decennial matrices of stocks corresponding to the five census
rounds between 1960 and 2000 based primarily on the foreign-born definition of
migrants.

However, as we have seen in Sect. 13.2, RUM models provide the basis to analyse
migration flows and rather than stocks, and it is quite clear that variations in stocks
are subjected to measurement errors and cannot be used as a proxy for gross flows.
In fact, variations in stocks are influenced by return migration or migration to third
countries, and, as a result, negative values could be obtained. For this reason, some
researchers have opted to apply indirect methods to obtain estimates of flows. For
instance, Abel and Sander (2014) obtained Maximum Likelihood estimates for the

2 This chapter focuses on the analysis of international movements of people. The interested reader
in the use of multi-dimensional panels to explain internal migration flows can consult Cushing and
Poot (2004), Faggian et al. (2015) and Poot et al. (2016).
3 Efforts have also been devoted to improve the information regarding usual controls in gravity
models. For instance, CEPII’s GeoDist database (Mayer and Zignago, 2011) provides data on
different measures of bilateral distances for 225 countries. It also incorporates country-specific
geographical variables, including capital cities coordinates, languages spoken in the country, a
variable indicating whether the country is landlocked, and colonial links. CEPII Gravity dataset
(Head et al., 2010) adds some additional time-varying variables to the GeoDist data set: GDP,
population, and other institutional variables, such as regional trade agreements or currency unions.
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number of movements required to meet the changes over time in migrant stock data
using an iterative proportional fitting algorithm. Other researchers, such as Grogger
and Hanson (2011), have opted to use migration stocks and interpret their results
as a representation of long-term equilibrium, although their analysis would not be
compatible with the theoretical basis provided by RUM models.

The literature also recognises that the key driving forces behind migration can
be very different for economic-based movements and forced displacements. The
United Nations High Commissioner for Refugees (UNHCR) has also compiled a
database on the number of refugees and asylum seekers according to their coun-
tries of asylum/residence and origin. Barthel and Neumayer (2015) and Echevarria
and Gardeazabal (2016) use this dataset in order to analyse forced migration flows.
While Barthel and Neumayer (2015) focus on asylum migration to developed coun-
tries, Echevarria and Gardeazabal (2016) study global flows. The covariates used
in both articles include additional determinants in the gravity specification than the
ones usually employed. In particular, the existence of armed conflict and the lack of
democracy or civil liberties seem to play central roles in the determination of forced
migration, aspects that are often difficult to conceptualize and measure.

Last, a new emerging literature also focuses on the analysis of temporary migra-
tion flows. As Dustmann and Görlach (2016) emphasize, many migrations are not
permanent: ten years after arrival, close to 50 percent of the original arrival cohort
leaves the destination country in the case of Europe and 20 percent in the case of the
United States and Canada, but also in Australia and New Zealand. However, data
limitations are (again) an important barrier as it is common to register new immi-
grants but not even feasible to register out-migration. The solution to this problem
has consisted in combining multiple data sources at destination and origin countries,
but also compiling information about intentions to return through specific surveys,
as in Artuç and Özden (2016), to explain transit migration to the United States. The
more than probable availability of multi-dimensional panels in the near future will
allow researchers to analyse the patterns of repeated and circular migration and other
types of temporary movements of people like international students (Beine et al.,
2014, Perkins and Neumayer, 2014 and Abbott and Silles, 2016), tourists (Eilat and
Einav, 2004, Morley et al., 2014, among others) and high-mobile inventors (Fink
et al., 2017).

13.3.2 Missing and Incomplete Data

Although as previously explained, the availability and quality of migration data has
significantly improved, in almost all cases collected datasets are unbalanced (a com-
mon feature of the empirical applications covered in this book – see Chap. 1). How-
ever, in the specific case of migration analysis, researchers have faced the additional
difficulty that censuses are only available on a decennial basis, while data related
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to the main factors of interest in the analysis usually refer to relatively short time
periods, but they are available on an annual basis.4

For this reason, several authors have used interpolation methods to overcome this
difficulty.5 In some cases, interpolation affects a small number of cases, as in Or-
tega and Peri (2013), where they interpolate observations to fill in missing values
in intermediate years. They apply a linear interpolation method when a data point
for a bilateral migration flow is missing and both the previous and following years
are available. A similar approach is adopted by Docquier and Bhargava (2007), who
build an annual panel data set on medical brain drain from all countries in the world
from 1991 to 2004. The medical brain drain is defined as the proportion of physi-
cians trained in their country and working abroad. Annual data on foreign-trained
doctors were available from national medical associations in the most important host
countries, representing 75 per cent of their sample, but they need to interpolate 10-
year or 5-year data where the data source used was national censuses. In this case,
they used a log-linear adjustment to obtain annual data from the two or three data
points available. For domestic physicians, only a few missing observations were
found and they interpolated them on the basis of regional trends or using the figures
obtained in neighbouring countries with similar economic and health records.

In other cases, more sophisticated interpolation methods are applied to obtain an-
nual estimates of migration flows or stocks for the period between Census years. For
instance, in order to obtain annual estimates of the foreign-born stock by country,
Clark et al. (2007) interpolate between the benchmarks established from the cen-
sus using a stock adjustment equation: St+1=Mt+dSt , where St is the stock at the
beginning of year t, and Mt is the flow during that year. The parameter d reflects
deaths, return migration, and illegal immigration, which subtract or add to the stock
independently of the additions through gross immigration. This depreciation rate is
calculated for each interval between censuses using an iterative procedure beginning
with St , such that the value of St+10 obtained by cumulating forward is reconciled
with that of the next census benchmark. This procedure allows to calculate a dif-
ferent value of d for each country for each interval between benchmarks. Variants
of this method are still applied nowadays. Fitzgerald et al. (2014) apply a similar
method but they estimate the parameter d by non-linear least squares.

13.3.3 Logs and Zeros

Taking as a starting point the specification in (13.4), researchers usually estimate a
log-linearised form of this model:

4 Baltagi et al. (2015) focus on the implications of non-random missing values in multi-dimensional
panels for trade. In this case, sample selection models or two-part models should be used. However,
this problem does not seem to be as frequent in the case of migration analysis as it is in trade.
5 One notable exception is Llull (2016), who prefers to work with grouped data for missing pairs
rather than interpolating country-specific values.
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ln[m jkt ] = β
′
j ln[x jt ]+β

′
k ln[xkt ]− γ

′
jk ln[x jkt ]+ ε jkt . (13.5)

However, as already explained in Chap. 11 in the context of trade, one problem with
this approach is how to deal with the potential presence of zero values for bilateral
flows (or even negative values as due to data problems some researchers work with
stocks or net flows, the variation in stocks). As in the case of trade, when analysing
migration, most researchers exclude these values from the sample but others pre-
fer to correct them as in Beine et al. (2016) or Figueiredo et al. (2016).6 However,
by deleting zero flows, relevant information on the pair of countries where there
are no migratory movements is not taken into account. For these reasons, and sim-
ilarly to the trade literature, migration researchers are considering two alternative
procedures: first, to use count data models such as Poisson, negative binomial and
zero-inflated models and, second, to apply Heckman’s selection model in order to
correct for the probability of migration in (13.5). However, in the case of migration,
Poisson Pseudo Maximum Likelihood (PPML) has become the standard procedure
in the literature (Santos Silva and Tenreyro, 2006) hereby avoiding the need to take
natural logarithms. The problem with this approach is that it tends to over-weight
high flows, and the estimation procedure might face problems of convergence to-
wards the optimal values of the parameters (Burger et al., 2009).

Regarding Heckman’s selection model, the two-step procedure is only applied by
a reduced number of authors (opposed to the case of trade).7 The first step involves
the estimation of the selection equation, a probit model for a given country pair to
have a positive migration flow. The usual procedure implies the use of an instrument
in the probit equation, i.e., a bilateral variable that influences the probability of ob-
serving a positive migration flow between the two countries but does not influence
the size of the flow, although it is not strictly required (Puhani, 2000). However, as
highlighted by Beine et al. (2011), the drawback of not using an additional instru-
ment in the selection equation is that the Mills’ ratio might become highly collinear
with the explanatory variables of the flow equation, which in turn lowers the signif-
icance of the coefficients. In the second step, (13.5) is enlarged with the inverse of
the Mills’ ratio to account for selection

ln[m jkt ] = β
′
j ln[x jt ]+β

′
k ln[xkt ]− γ

′
jk ln[x jkt ]+λ m̂ills jkt + ε jkt . (13.6)

Using data on migration flows disaggregated by gender and educational attain-
ment from 195 source countries to OECD countries, Beine et al. (2011) use the
existence or not of diplomatic representation among the countries considered as an
instrument to explain positive migration flows. Their argument is that in the absence
of any diplomatic representation of country k in country j, the cost of obtaining
a visa could discourage citizens of country j from trying to migrate to country k.
However, while it seems clear that this variable could affect the probability of initial

6 Adding a positive number is also problematic as small variations in the selected number produce
big variations in the results, as demonstrated by Burger et al. (2009).
7 As highlighted by Baltagi et al. (2015), a nonparametric control function approach can also be
applied, as suggested by Cameron and Trivedi (2005).
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migration, it does not necessarily modify the magnitude of the flows between the
two countries.

13.3.4 Multilateral Resistance to Migration

As previously mentioned in Sect. 13.2, a relevant aspect when specifying a gravity
model is to consider multilateral resistance to migration. This term is related to the
influence of third countries in determining migration flows between two particular
countries. Following the explanation by Krugman (1995) regarding trade flows and
introduced in the migration literature by Bertoli and Fernández-Huertas Moraga
(2013), if two European countries were moved to Mars, migration flows between
them would clearly increase, due to the current lack of alternative destinations, al-
though their relative characteristics remain unchanged. Therefore, not considering
the influence of alternative destinations could bias the results of the analysis. For
instance, if there is some degree of coordination in migration policies in destination
countries, controlling for multilateral resistance to migration tends to find much
larger effects of these policies than the ones that would have been obtained without
controlling for it.

Earlier attempts to control for multilateral resistance to migration consisted in
including origin-year fixed effects, α jt , as in Ortega and Peri (2013). In particular,
(13.5) is modified as follows

ln[m jkt ] = α jt +β
′
k ln[xkt ]− γ

′
jk ln[x jkt ]+ ε jkt . (13.7)

Origin-year fixed effects capture all terms that vary across origin and year but not
across destinations. This identification strategy is consistent with their underlying
RUM model and, as highlighted by Bertoli and Fernández-Huertas Moraga (2013),
“the underlying pattern of substitution across alternative locations is richer than in
the traditional approach: an increase in the attractiveness of destination l can draw
from another destination k more than it does from the origin country j, so that the
bilateral migration rate m jkt falls”. However, it is not clear that this solution would
be enough to account for all potential sources of unobserved heterogeneity.

According to Beine and Parsons (2015), the inclusion of destination-year fixed
effects, αkt in (13.5) is a valid approach to account for multilateral resistance in
destination countries as the migration policies are defined at that level

ln[m jkt ] = αkt +β
′
j ln[x jt ]− γ

′
jk ln[x jkt ]+ ε jkt . (13.8)

More complex fixed effects specifications have also been adopted in the liter-
ature (Bertoli and Fernández-Huertas Moraga, 2013).8 For instance, extending to

8 Although it is common practice in other fields of research to include different types of fixed
effects from the initial specification, migration researchers have tried to link their empirical spec-
ification with the one derived from their RUM-based model. It is worth mentioning that control-
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the multiple origin and multiple destination case, the specification in Bertoli et al.
(2016) would yield the following expression

ln[m jkt ] = α jk +λt +β
′
j ln[x jt ]− γ

′
jk ln[x jkt ]+ ε jkt , (13.9)

where α jk are time-invariant fixed effects for all country pairs considered in the anal-
ysis, also called dyadic fixed effects, and λt are time fixed effects that are also intro-
duced to account for common shocks in origin and destination countries. However,
one inconvenience of this approach is that the parameters of time-invariant dyadic
explanatory factors of migration flows such as distance, common language or com-
mon border, among others, can no longer be identified. Moreover, as suggested by
Bertoli and Fernández-Huertas Moraga (2013) and Bertoli et al. (2016), the Com-
mon Correlated Effects (CCE) estimator by Pesaran (2006) can also be applied pro-
viding some advantages when compared to (13.9). In particular, it is possible to
identify the effect of determinants of bilateral migration flows that are specific to
each origin or destination country. It is not required to have data on multiple origins
and multiple destinations to be able to control for multilateral resistance to migra-
tion, although it cannot be applied in short panels. As demonstrated by Bertoli et al.
(2016), a last advantage of the CCE estimator is that “it delivers unbiased estimates
even in the presence of the confounding influence exerted by the future attractive-
ness of the various options in the choice set, while the fixed effects specification,
does not”. This method consists in introducing the cross-sectional averages of the
dependent and independent variables as additional regressors together with dyadic
fixed-effects as in Bertoli and Fernández-Huertas Moraga (2013). In particular, the
following regression can be estimated

ln[m jkt ] = α jk +λt +β
′
j ln[x jt ]− γ

′
jk ln[x jkt ]+θ

′
jk z̃t + ε jkt , (13.10)

where z̃t represents the vector of auxiliary regressors formed by the cross-sectional
averages of migration flows and all the regressors.

Although the use of fixed effects has been predominant in the literature, other
authors, such as Egger (2000), have defended the use of random effects models.9

As highlighted by Shepherd (2016) in relation to trade analysis, this approach is
only consistent under restrictive assumptions as to the pattern of unobserved hetero-
geneity in the data. In the context of RUM models, accounting for both origin and
destination multilateral resistance requires the specification of a two-dimensional
random effects model and to assume that multilateral resistance is normally dis-
tributed. For this reason, dyadic random effects are usually only estimated for com-
parison with fixed effects models (Baltagi et al., 2015).

ling for multilateral resistance to migration by the inclusion of different types of fixed effects can
also capture a large part of the omitted factors making instrumentation unnecessary unless reverse
causality is also present (Beine et al., 2016).
9 Baltagi et al. (2015) discuss the estimation of fixed effects versus random effects models in the
context of panel data gravity models of international trade.
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13.3.5 Endogeneity

Another challenge that researchers in the field have tried to solve is related to the
potential presence of endogeneity of some of the regressors. In order to solve this
problem, one possibility would be to apply instrumental variables estimators, al-
though as usual, it is quite difficult to find appropriate instruments. We need to find
variables related to the policy we want to analyse but at the same time they should
not be correlated to the rest of the regressors in the model. For this reason, the use
of internal instruments, such as past bilateral flows, does not always solve the prob-
lem, and the identification of external instruments is always difficult unless there are
some historical events that can help us to identify the instrumental variable.

Beine et al. (2014) consider the role of migration networks to explain the mobility
of international students, using data for 13 OECD countries. Networks are proxied
by the stock of educated migrants in destination countries at the beginning of the pe-
riod considered. The idea is that students engaged in higher education benefit from
the support of skilled migrants in the destination country. However, if the destina-
tion countries favour migration from some particular origin countries, it stands to
reason that they will also favour the arrival of students from those countries. As a
result, the observed positive impact of networks on migration flows will actually
be the result of students simply following the general pattern of economic migrants
or those affected by family reunification programs that come from the same origin
countries as the students. In order to disentangle the effects of networks on flows,
researchers use the following instrument: the existence of guest worker programs
after the Second World War that attracted economic migrants to work in some spe-
cific industries, like coal mines or steel factories. These guest worker agreements
led to important diasporas in the destination countries, and are good independent
predictors of migrant networks. The results of using this instrument still support
the positive impact of networks on international student flows. The second variable
upon which they apply an instrument is enrolment fees. According to their initial
results, there is a positive correlation between higher fees in destination countries
and higher flows of international students. Although this unexpected result could
be explained as a signal for the presence of higher quality education in the desti-
nation country, it could also be related to reverse causality. Those universities that
are more attractive for international students can afford to charge them higher fees.
As this policy can be easily implemented by private universities, researchers use the
following instrument: the private sector’s share of total expenditures in the higher
education systems in destination countries, a variable that is related to the capacity
of universities to charge higher fees, but not necessarily explaining international stu-
dent arrivals. When using this instrument, they obtain no significant effect of fees on
flows, a result that could also be related to the existence of grants for international
students.

An additional example in this context relates to the analysis of visa policies and
irregular immigrant flows by Czaika and Hobolth (2016). The authors’ objective is
to analyse if restrictive asylum and visa policies in Europe have triggered an unin-
tended behavioural response of potential and rejected asylum seekers shifting into
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irregular migrants (deflection effect). In particular, although more restrictive asylum
policies might discourage potential immigrants from entering the country, it is also
likely that this policy has the unintended effect of pushing asylum seekers into an ir-
regular status. With the aim of testing if the European asylum and visa policies have
triggered this unintended effect, they estimate a three-dimensional gravity model
using Eurostat’s data on irregular migrant flows into 29 European states from more
than 200 origin countries over the period 2008 to 2011. As their policy variables
can be potentially endogenous either due to reverse causality or an omitted variable
bias, they employ an instrumental variable approach using as a first instrument the
share of the Muslim population in origin countries. They assume this instrument
to be relevant in order to define bilateral asylum and visa policies due to security
and terrorism concerns from Muslim countries after the September 11 2001 attacks.
As a second instrument, they employ the size of the informal sector in the origin
country. The results obtained support the hypothesis that a significant number of re-
jected asylum seekers seem to opt for the irregular stay option: a 10 percent increase
in rejected asylum seekers results in a 2 percent increase in on-territory arrests of
irregular immigrants when using PPML and in a 7 percent increase according to
IV-GMM estimates. In both cases, origin and destination fixed effects have been
considered.

13.3.6 Spatial Models

Chap. 9 has already shown how the increasing availability of spatial data at different
levels has allowed to consider new theoretical and empirical analysis in the context
of multi-dimensional nested spatial panel data.

The literature on migration has also advanced in this context from two perspec-
tives that are not explicitly considered in Chap. 9. First, researchers have been con-
cerned about the validity of their analysis if flows are not spatially independent. A
failure to account for spatial dependence may lead to biased parameter estimates
and misleading inferences. One solution to this problem, originally developed by
Griffith (2003), consists in the use of eigenvector spatial filtering variants of multi-
dimensional Poisson or negative binomial gravity models along with pseudo ML
estimators as suggested by Chun and Griffith (2011). Eigenvector spatial filtering
relies on the spectral decomposition of the spatial weight matrix W into eigenvalues
and eigenvectors, and then using a subset of the eigenvectors as additional regressors
in the gravity model. In particular, spatial filtering uses the spectral decomposition
of the spatial weight matrix W

W = EΛE ′, (13.11)

where E is a matrix of eigenvectors and Λ is a matrix containing the corresponding
eigenvalues on the diagonal. For multi-dimensional models, the eigenvectors need
to be concatenated T times so that the resulting eigenvectors match the total number
of observations. This process is based on the assumption that the underlying spatial
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process does not change over time. Eigenvector selection is then undertaken with
stepwise regression procedures, and the Q selected eigenvectors are then used as
additional regressors in (13.5)

ln[m jkt ] = β
′
j ln[x jt ]+β

′
k ln[xkt ]− γ

′
jk ln[x jkt ]+

Q

∑
q=1

Eqθq + ε jkt . (13.12)

Term ∑
Q
q=1 Eqθq is known as a spatial filter and it reduces the potential bias in the

parameter estimates associated to origin-destination spatial dependence.
The second direction that migration researchers have followed in this context

has been to apply spatial models considering “substantive” spatial dependence in
a similar vein to Fingleton and Lopez-Bazo (2006) regarding spatial interactions
in growth models. While most specifications described below and the estimation
methods used resemble those described in Chap. 9, the main difference is the way
authors justify the inclusion of spatial spillovers.

In particular, Neumayer and Plümper (2010) introduce five different options for
modelling spatial dependence when analysing “directed” dyadic data. According
to these authors, in directed dyadic data, two actors, j and k, have an asymmetric
interaction and one can distinguish dyad jk, where in the case of migration, j would
be the sending country and k the receiving one, from dyad k j, where these roles
are reversed. Although these authors define different types of contagion effects in a
cross-sectional setting, their proposal can be easily extended to multi-dimensional
gravity models, as also developed in the case of trade in Chap. 11. In particular,
Neumayer and Plümper (2010) define directed dyad contagion as follows

m jkt = ρ ∑
ml 6= jk

ω mmlt + ε jkt , (13.13)

where, following a similar notation as the one used in Chap. 9, ρ is the spatial lag
parameter to be estimated, and ω is a time-invariant spatial weight matrix. (13.13)
describes a situation where migration flows between j and k at time t depend on
the weighted sum of all other migration flows between source countries m and tar-
get countries l. In the remaining four forms of contagion, Neumayer and Plümper
(2010) assume that only a subset of the sources or target flows could be relevant
for the particular dyad. When flows between the dyad jk spatially depend only on
the aggregate flows of the other sources m ( 6= j), that is on their relationship with
all other targets l and not just the specific target k, they define aggregate source
contagion as

m jkt = ρ ∑
m 6= j

∑
l

ω mmlt + ε jkt . (13.14)

Alternatively, when flows between the dyad jk spatially depend on the aggregate
flows of the other targets l with all other sources m, then this leads to aggregate
target contagion

m jkt = ρ ∑
m

∑
l 6=k

ω mmlt + ε jkt . (13.15)
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The next possibility is that, instead of spatially depending on the aggregate
choices of all sources and targets, migration flows between j and k depend on the
choices of sources in relation to the specific dyad under consideration, a situation
that Neumayer and Plümper (2010) term specific source contagion

m jkt = ρ ∑
m6= j

ω mmkt + ε jkt . (13.16)

In comparison to the aggregate source contagion, (13.16) represents a situation
in which other sources m affect j’s spatial interaction with k only if countries m have
non-zero migration flows with k.

The last form of contagion introduced by Neumayer and Plümper (2010) is the
specific target contagion, a situation in which other targets l affect k interaction with
j only if countries l have non-zero migration flows with country j

m jkt = ρ ∑
l 6=k

ω m jlt + ε jkt . (13.17)

The different possible spatial lags of directed dyadic data described in (13.13)–
(13.17) could be combined into a single equation and different spatial weight ma-
trices could also be introduced for the different type of spatial interactions (Lesage
and Pace, 2008; Neumayer and Plümper, 2016). However, Neumayer and Plümper
(2010) recommend that “researchers should not mine the data for potential evidence
of all types of contagion but test only those types of contagion specified by their
theory”.

Properly identifying the spatial weight matrix is also an important point. Neu-
mayer and Plümper (2016) argue that the specification of ω should take into account
the causal mechanism through which spatial dependence works, while most applied
researchers often use proxies for connectivity, such as geographical contiguity or
proximity. Moreover, as shown in Chap. 9 it is common practice by spatial econo-
metricians to row-standardise the spatial weight matrix,10 but Plümper and Neu-
mayer (2010) demonstrate that row standardisation changes the relative influence
of other units on the spatial effect, thereby altering the estimation results. For this
reason, they argue that this procedure should not be applied by default unless there
are theoretical justifications to do so. Plümper and Neumayer (2010) also demon-
strate that the functional form of the spatial weight matrix for matrices depending
on continuous variables, like distance, also matters: small changes can lead to very
different results. For instance, it is not the same to use the inverse of distance, the in-
verse of squared distance or a dichotomous weighting matrix in which units beyond
a certain threshold distance (or bandwith) exert no influence at all. Last, according
to Neumayer and Plümper (2016), it is also important not to assume that there is
only a unique causal mechanism to explain spatial dependence. They argue that the

10 In a row-standardised matrix, the sum of all cells in the same row adds up to one (each cell of
the original matrix has been divided by its row sum). When using the row-standardised matrix, the
spatial lag is a weighted average of the lagged dependent variable. If the spatial weight matrix is
not row-standardised, then the spatial lag is a weighted sum of the lagged dependent variable.
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assumption of uni-dimensionality could be correct in some research areas such as
epidemiology, in which a spatial effect may depend on a unique type of contact as a
causal mechanism. However, in other fields such as migration research, there could
be different channels that should be considered in order to specify the spatial weight
matrix.

Barthel and Neumayer (2015) justify the consideration of different types of con-
tagions effects in their empirical analysis of asylum seekers and refugees flows by
the fact that if one country introduces restrictive migration policies, flows are going
to increase in other destination countries. Moreover, in addition to these negative
externalities among destination countries, there could also be potential spillover ef-
fects among source countries. The existence of networks reduces the uncertainty for
potential migrants and, in fact, these networks do not need to be strictly related to
the migrants’ country of origin but to a wider geographical area sharing the same
language, religion and culture.

For this reason, they consider the possibility of spatial interdependence not only
between destination countries, but also between origin countries (specific target con-
tagion and specific source contagion in terms of Neumayer and Plümper (2010)
terminology). Barthel and Neumayer (2015) also consider different spatial weight
matrices for specific target contagion and for specific source contagion. In the first
case, they consider two matrices obtained by the product between the change in
asylum policy and the inverse of the squared distance. One matrix captures linkages
among targets, where policy became relatively more restrictive while the second is
related to linkages among targets where policy became relatively less restrictive. Re-
garding specific source contagion, they used three different spatial weight matrices:
The first one is based on the inverse of the squared distance, the second on sharing a
common language (spoken by at least 9 percent of the population in both countries)
and, the third on common colonial experience.

Their estimation results show that spatial lag variables capturing spatial depen-
dence among target countries have the expected negative sign, although spillover
effects are quantitatively small. A 10 percent decrease in the number of applica-
tions from a source country in geographically proximate targets that have become
relatively more restrictive in their asylum policies in the previous year leads to an
increase of 0.23-0.26 percent in the number of asylum applications from this source
in the target country under observation. In a similar way, a 10 percent increase in
the number of applicants from a country of origin to geographically proximate tar-
gets that have become less restrictive in their policies in the previous year leads to a
decrease of 0.61-0.69 percent in the number of asylum applications from this source
in the target country considered.

By contrast, regarding spatial dependence among source countries, a 10 percent
increase in asylum seekers from other geographically proximate source countries to
a specific destination is estimated to increase the flow of asylum seekers from the
source country considered to this same destination by 4.4 percent. Spatial source
contagion based on sharing a common language is statistically significant but of a
modest size, while Barthel and Neumayer (2015) find no evidence of statistically
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significant spatial dependence among source countries sharing similar previous ex-
perience of having been colonised by the same target country.

13.4 Concluding Remarks

The dyadic dimension of recently available international migration data allows to
analyse many new questions that could not be previously addressed. Using multi-
dimensional panels, researchers are now improving our knowledge about the impact
of traditional pull and push factors on migration flows, such as distance (Abbott and
Silles, 2016) or income.

Regarding income, Llull (2016) presents evidence on the existence of heteroge-
neous effects of income gains in destination countries on migration depending on
distance (individuals from closer countries can easily move back if they do not suc-
ceed in the new country). For example, according to his results, a 1000$ increase in
US per capita income would increase the stock of Mexican immigrants in the US
by a percentage that is 2.6 times larger than the percentage increase in the stock
of Chinese immigrants. This differs from the standard gravity equation predicting
positive linear effects of income gains on immigrant stocks. As Llull (2016) high-
lights, this result is clearly relevant for immigration policy design as after a positive
income shock in a particular country, the migration response from the rest of the
world would be very different and it could imply a significant change in the na-
tionality composition of the immigrant population in that country. In a similar vein,
Beine et al. (2016) question the traditional view that low-income in origin countries
always acts as a push factor. In particular, they explain that low average income
in a country may work as a push-factor, but at the same time it can act as a credit
constraint, so that fewer people can afford to migrate. Only after a certain level of
financial resources is reached, can people living in low-income countries and will-
ing to migrate effectively do so. Bergh et al. (2015) find evidence supporting this
hypothesis. The same authors analyse the asymmetric role of institutional quality
depending on the income level of the country considered, a dimension that was not
considered in the literature previously due to data limitations. According to Bergh
et al. (2015), individuals may accept to stay in relatively poor countries if institu-
tions are good, as this is one of the basic enhancers of economic growth. Accord-
ingly, people could also be willing to migrate to a country with better institutions
even if income differentials are not very high. Their empirical analysis suggests that
the quality of institutions matters more as a push factor for migration in non-OECD
than in OECD countries.

However, the main contribution of this new literature is related to the consid-
eration of new factors affecting migration flows such as networks (Beine, 2016),
linguistic proximity (Adserà and Pytliková, 2015), cultural barriers (Belot and Ed-
erveen, 2012), climatic factors (Beine and Parsons, 2015), and different policy mea-
sures such as visa restrictions (Czaika and Hobolth, 2016) that could not be properly
analysed in the context of time-invariant dyadic models. Regarding networks, as
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noted by Beine et al. (2016), new empirical analyses have shed light on the impor-
tance of its effect: around one-third of the explained variability of migration flows is
associated with networks. Beine (2016) finds that, on average, a 10 percent increase
in the existing stock of migrants from a given origin country tends to increase the
bilateral flow from that country by 5 percent. However, the results obtained also
show that there are heterogenous effects depending on the types of destinations and
over time. In particular, the network effect in receiving countries with higher levels
of income is less important. The network effect has increased over time, a result that
could be related to the fact that family reunification policies have recently become
less restrictive. Some of the findings of the other studies considering the role of lan-
guage or climatic factors have already been summarised in previous sections of the
chapter.

In sum, this chapter has reviewed some recent contributions using multi-dimen-
sional panels in the context of migration analysis and has identified some method-
ological challenges such as the consideration of fixed effects and the treatment of
multilateral resistance that are not exclusive to this field but common to other analy-
ses that have already been summarised in other chapters of the book. Spatial models
and gravity trade equations that are described in Chaps. 9 and 11, respectively, are
clearer examples. For instance, dynamic models have been extensively used in the
context of trade analysis, but their use in migration modelling is still very scarce, al-
though the role of expectations in migration decisions has been highlighted both on
a theoretical and empirical basis (Beine et al., 2016; Bertoli et al., 2016). Regarding
spatial dependence, as highlighted by Patuelli and Arbia (2016), “the last 10 years
have shown a resurgence of the gravity/spatial interaction modelling literature, and
the emergence of innovative estimation approaches making use of spatial statistics
and econometrics”. Last, the triple dimension, origin, destination and time, or even
the quadruple dimension when gender or skill groups are analysed, have started to
be considered by a few authors (see, for instance, Artuç et al., 2015 or Beine et al.,
2011), but this literature will clearly expand in the future, posing new challenges for
the development of new theoretical and empirical models that could be used in this
context.

Naturally, migration researchers would, at the same time, benefit and contribute
to advances in this field. But, apart from the previously mentioned issues, future
research will certainly extend to the consideration of other topics already described
in this book. For instance, panel quantile regression models described in Chap. 8
provide an adequate tool to measure potential heterogeneous effects of different
migration drivers, while non-parametric models described in Chap. 7 could also be
used in this context extending previous research for time-invariant dyadic data (see,
for instance, Henderson and Millimet, 2008).
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Artuç, E., Docquier, F., Özden, Ç., and Parsons, C. (2015). A global assessment of
human capital mobility: The role of non-OECD destinations. World Development,
65:6–26.
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Chapter 14
Modeling Heterogeneity in
Country-Industry-Year Panel Data: Two
Illustrative Econometric Analyses

Jimmy Lopez and Jacques Mairesse

Abstract The macroeconomic empirical literature based on three-dimensional coun-
try-industry-year panel data, such as the widely used OECD STAN and EUKLEMS
databases, has become extremely abundant, providing more observations for studies
previously investigated on two-dimensional country-year panels. However, a large
part of this literature does not take advantage of the development of panel data meth-
ods to deal with heterogeneity and dynamic and non-stationarity issues. We explain
in this chapter how one can put them into practice and circumvent the lack of vari-
ability left in the data once one controls for simple and two-way interacted fixed
effects in these industry-country-year panels. We illustrate what to do in the con-
text of two econometric analyses, in which we first try to estimate the productivity
impacts of ICT and R&D, and second the productivity impacts of product market
anticompetitive regulations.

14.1 Introduction

The macroeconomic literature on economic growth and productivity has greatly
benefited from country-industry panel databases, notably the widely used OECD
STAN and EU KLEMS databases, allowing cross-country comparative investiga-
tions, based on easily accessible information, to study important issues that were
previously only considered at a national level. Many of these studies, however, do
not take advantage of the panel data methods that have been largely developed
for two-dimensional (2D) panels, to deal, for example, with heterogeneity issues
on non-stationary variables, and most ignore the possibilities opened with three-
dimensional (3D) panels, in order to overcome major difficulties due to the rela-
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tively short duration and the lack of exogenous data variability over time.1 In this
chapter, we use the EUKLEMS and OECD STAN databases and show how various
heterogeneity issues can be investigated by considering the 3D structure of these
data rather than treating them as individual (country×industry) and year 2D panels.

We present our simple approach on country-industry level data via two applica-
tions: (i) an estimation of the Information and Communication Technology (ICT)
and Research & Development (R&D) capital effects on productivity; and (ii) an
investigation of the impact of Non-Manufacturing Regulations (NMR) on produc-
tivity.2 We believe that apart from these applications, our approach may be useful
for many other macroeconomic issues. Through these applications, we mobilize 3D
estimation methods, notably the 3D fixed effects and 3D Pooled Common Corre-
lated Effect (3D-PCCE) estimators presented in this book (see Chaps. 1 and 10),
paying special attention to variable non-stationarity and cointegrated relationships.

Since Paul Douglas’s work beginning in the 1920s and the famous production
function Douglas proposed with Charles Cobb (Cobb and Douglas, 1928), there
has been an impressive amount of literature on the “laws of production”. The in-
creasing availability of panel data has shown the complexity of these “laws” result-
ing from heterogeneous behaviors. We begin the presentation of our approach from
within this well-known framework. More specifically, we use a knowledge produc-
tion function including R&D capital as well as a breakdown of physical capital
between ICT and other assets. Thus, this first application fills a gap between two
bodies of literature, one focusing on R&D and the other on ICT.

The second application emphasizes the impact of regulations in non-manufactur-
ing industries, producing intermediate inputs on the productivity of industries using
these inputs (called upstream and downstream industries, respectively). Regulations
that protect rents in upstream industries can reduce incentives to implement effi-
ciency improvements in downstream industries, since downstream firms will have to
share the rents expected from such improvements with upstream industries. This ap-
plication introduces a major advantage of investigations on country-industry panel
data in tackling issues that were previously investigated using national data: the
possibility of testing whether the effects of national level variables differ between
industries depending on industry-specific characteristics. In this application, we test
whether the impact of upstream NMR on downstream productivity grows with the
more intensive use of regulated intermediate inputs. This method solves empirical
issues, such as reverse causality if public authorities change the NMR depending on
industry activity, but introduces difficulties in the treatment of heterogeneity, which
we discuss.

Both applications mobilize the OECD STAN and EU KLEMS databases to mea-
sure productivity and physical production factors, whereas R&D investments are

1 The EU KLEMS and OECD STAN databases provides annual unbalanced panels covering the
period 19702014 for EU KLEMS and 1970 2011 for STAN. However, the lack of data on specific
country-industry variables may result on shorter estimation periods. For instance, applications pre-
sented in this chapter cover the period 1987–2008, with an average length of 18 years.
2 These applications borrow from Cette et al. (2013), but extend that analysis to take into account
various heterogeneity issues.
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taken from the OECD ANBERD database. The second application also requires the
OECD indicators of NMR. Thus, both our analyses are grounded on almost the same
unbalanced panel of about four thousand observations covering 15 countries and 18
industries for the period 1987 to 2008.

Through the two applications, we show how the methodology dealing with the
heterogeneity of unobserved individual effects, unobserved common factor effects,
and explanatory variable coefficients takes account of our country-industry data
characteristics. However, prior to this, we must discuss the dynamic issues. As
we will see further, estimations of dynamic models through an Autoregressive Dis-
tributed Lag (ADL) specification on our panel suffers from: (i) autocorrelated resid-
uals, leading to endogeneity of the lagged dependent variable; and (ii) very unlikely
estimation results in many cases. Therefore, we focus on the long-term relationship
and take advantage of the non-stationarity of our data through the Dynamic Ordi-
nary Least Squares (DOLS) estimator.

The country, industry, and time effect heterogeneity may be taken into account
by various possible sets of fixed effects (see Chap. 1 on fixed effects models). These
different sets may lead to marked differences in estimation results, as shown by the
literature and our applications. We explain our specific choices based on variance
analysis, potential omission bias, and – for the second application – the requirement
of our approach to prevent reverse causality. Notably, we show that considering
only two dimensions (individual and time) when choosing the set of fixed effects
would account for a huge part of our data variability, leading to serious difficulties in
identifying the estimated coefficients, while leaving several omission bias sources.

Time fixed effects specifications assume homogeneous impacts of unobserved
common factors. Under this constraint, our estimators could be biased if these
common factors are correlated with explanatory variables (see Chap. 10 on cross-
sectional error dependence), so we relax this assumption. In the same way, our em-
pirical investigation must take into account the heterogeneity of explanatory vari-
ables effects, as most of our variables are non-stationary. Otherwise, the estimation
residuals would be non-stationary, even if the “true” data generating process is coin-
tegrated. Our approach is based on Pesaran’s (2006) common correlated estimator
and Pesaran et al.’s (1999) mean group estimator. Our panel is too short to estimate
the “individual” (country×industry) coefficients required by these estimators, but
considering the 3D structure of our data helps take this heterogeneity into account.
We show that industry and country coefficient heterogeneity can be taken into ac-
count when we consider them as two different dimensions and this heterogeneous
specification appears essential to prevent spurious regression when variables are
non-stationary.

Our estimation results confirm previous studies on country-industry panel data
and show their sensitivity to heterogeneity issues. In the first application, the ICT
and R&D elasticities are strongly robust to the various heterogeneity issues, with
values ranging from 9% to 10% for ICT and from 6% to 7% for R&D. In the second
application, we find that our approach is necessary to detect the impact of NMR on
productivity. More specifically, according to our estimation results, the impact of
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upstream NMR on downstream productivity increases with the intensity of the use
of regulated intermediate inputs.

This chapter is organized in two parts around the two applications (Sects. 14.2
and 14.3), both starting with a literature review (Sects. 14.2.1 and 14.3.1) and a
presentation of the model and data (Sects. 14.2.2 and 14.3.2).3 The first applica-
tion continues with the dynamic specification used (Sect. 14.2.3), before setting out
how we consider the 3D structure of our data in order to take account of hetero-
geneity through fixed effects (Sect. 14.2.4) or common correlated and mean group
estimators (Sect. 14.2.5). We conclude the first application by putting in perspective
our approach and usual panel cointegration tests (Sect. 14.2.6). Next, the second
application presents our estimation strategy when using national level NMR indica-
tors (Sect. 14.3.3) and the corresponding estimation results (Sect. 14.3.4), as well
as some limitations regarding heterogeneity issues (Sect. 14.3.5). A few reflections
on open issues and directions for future research conclude the chapter (Sect. 14.4).
More detailed information on data sources and calculations are provided in the Ap-
pendix, along with supplementary estimation tables.

14.2 ICT, R&D, and Productivity

14.2.1 Literature Review

We begin by investigating the impact of ICT and R&D on productivity. Both ICT
and R&D are driving forces behind modern growth that have undergone consider-
able change in recent decades. The extraordinary development of ICTs is a gen-
eral purpose technological shock: most economic activities have benefited from the
steady and sizeable fall in prices. Therefore, the economic literature devotes a great
deal of attention to ICT’s contribution to growth, mainly through accounting analy-
sis (e.g., Jorgenson et al., 2016; Timmer et al., 2011) but also econometric analysis.
Stiroh’s (2005) meta-analysis shows an average ICT capital elasticity of value-added
of 0.05, with higher values for industry level data, as ICT elasticities estimated on
industry level data take within-industry externalities into account. At the same time
as ICT has developed, R&D spending has also surged. The econometric analysis of
R&D capital elasticity provides very different results, from 0.01 to 0.25, with 0.08
on average, but generally concludes that there have been excess returns: estimated
R&D elasticity induces a higher net return (marginal productivity less depreciation
rate) than for physical capital (see Hall et al., 2010 for a survey).

ICT and R&D investment are closely linked, but few empirical analyses investi-
gate their simultaneous impact on economic growth. Kocoglu and Mairesse (2005)
provide a growth accounting analysis for France and the USA underlining the im-

3 The literature reviews may be skipped by readers interested in only the methodology without
impairing their understanding of the other sections.
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portance of R&D externalities.4 According to Venturini’s (2015) main estimation
results on national panel data for 15 OECD countries, ICT and R&D elasticities are
0.05 and 0.13, respectively, confirming previous results for ICT and strong R&D
externalities. Cette et al. (2013) mobilize country-industry panel data for 15 OECD
countries and also estimate an ICT elasticity of 0.05, but a smaller R&D elasticity
of 0.08, which is closer to the empirical literature specific to R&D. This difference
with Venturini’s (2015) estimated elasticities may be explained by inter-industry
externalities.

14.2.2 Model and Data

In order to investigate the impact of ICT and R&D on productivity, we assume a
Cobb-Douglas production function including R&D capital as well as a breakdown
of physical capital between ICT and other assets (country, industry, and year indices
omitted to alleviate the equations):

Y = A ·Lλ
∏

a
Cγa

a , (14.1)

where Y is the value added, A disembodied technical change, L total employment,
Ca the capital stock of asset a, λ and γa the output elasticities. We distinguish four
capital assets: ICT equipment (CI), non-ICT equipment (CNI), non-residential con-
struction (Cc), and R&D capital (Ck).

In order to estimate ICT and R&D elasticities parsimoniously, we define and
calibrate the following partial MultiFactor Productivity (MFPp) taking account of
the non-ICT physical capital contributions only (with small letters for logarithms):

m f pp ≡ (y− l)− γ̃NI(cNI− l)− γ̃c(cc− l) . (14.2)

We calibrate the elasticities γ̃NI and γ̃c at the industry level by the average shares
of their user costs computed for the USA over the whole estimation period (our
estimation results are robust to this choice of calibration). These shares are proxies
for private returns. The Ca/L ratios are termed the capital intensities.

By introducing this partial MFP definition into our production function equation
and by assuming constant returns to scale, our main estimated specification becomes

m f pp
i jt = α + γI(cI− l)i jt + γk(ck− l)i jt + εi jt , (14.3)

where i, j, and t are country, industry, and time indices; ε is the error term.
This simple equation underlines our focus on long-term average elasticities.

However, the various estimations presented broaden this equation further by in-

4 According to Kocoglu and Mairesse’s (2005) accounting analysis, the R&D contribution to an-
nual economic growth for the 1980–2000 period was 0.08% in France and 0.10% in the USA
without externalities but 0.24% and 0.56% with externalities, respectively.
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cluding various sets of fixed effects, dynamics of the explanatory variables, and
by allowing for coefficient heterogeneity.

Our analysis of relation (14.3) is based on an unbalanced panel of 3,999 obser-
vations (4,750 for the static model) from 15 OECD countries and 18 industries,
covering the period from 1987 to 2008.5 We mobilize data from three databases:
(i) STAN for value added and total employment in numbers of persons engaged;
(ii) EU KLEMS for physical capital; and (iii) ANBERD for R&D investment (see
Appendix 1 for a more detailed presentation of the data sources and authors’ calcu-
lations).

In order to test for the non-stationarity of equation (14.3) variables, we perform
an Im et al. (2003) test. This test has the desirable characteristic of allowing for
heterogeneous roots of the variables, but assumes cross-sectional independence. To
mitigate this issue, we subtract the cross-sectional averages from the variable prior
to implementing the test. The Im et al. (2003) test is particularly sensitive to the
specification of the dynamic. As our panel is relatively short (18 periods on aver-
age), we only include up to three lags in the specifications; so we may underestimate
the relevant number of lags and greatly reduce the test’s power. According to this
test, partial MFP and ICT capital intensity are not stationary, but the results for
R&D capital intensity are more surprising: when – and only when – this variable
is demeaned and a trend is introduced into the test, does the test point to stationar-
ity. However, as a precaution we treat the three variables as non-stationary in what
follows.

14.2.3 Discussion of the Dynamic Specification

As for stationary variables, the serial correlation of the estimated cointegration
residuals leads to an inefficient OLS estimator and biased variance estimators,
but also to a biased OLS estimator when using an Autoregressive Distributed Lag
(ADL) model as lagged dependent variables are then endogenous.6 Unfortunately,
when using an ADL model for relation (14.3), residual serial correlation remains,
even with the introduction of up to four lagged dependent and explanatory variables
in the estimated specification, according to Wooldridge’s (2002) test for serial corre-
lation in the idiosyncratic errors. Moreover, the ADL model estimation results from
relation (14.3) were very unlikely (with negative elasticities).7

5 Some industries make almost no investment in R&D, in particular: wood products, energy, con-
struction, retail distribution, hotels & restaurants, and banking services. Therefore, we estimate the
R&D output elasticity on just the 12 industries investing markedly in R&D. Our estimation results
are robust to this choice of industry exclusion.
6 We assume in this section and the next that relation (14.3) variables are cointegrated, which is
tested and discussed after presenting our approach to dealing with heterogeneity.
7 See Chap. 10 for more information on estimation of ADL models on 2D and 3D panel data. The
assumption of no serial correlation of residuals is a base for estimating these models.
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We therefore preferred to use the Dynamic OLS (DOLS) estimator proposed by
Stock and Watson (1993). This estimator benefits from the non-stationarity of vari-
ables to make sure that the estimated elasticities are not biased by short-term corre-
lations between the variables and the idiosyncratic error, and that we can consider
them as long-term parameters. The DOLS estimator eliminates these short-term cor-
relations by including leads and lags of the first differences of the non-stationary ex-
planatory variables in the regressions. To choose the number of leads and lags, we
compare OLS estimates and DOLS estimates with up to three lags and leads. We
use a Hausman test to conclude that we must use the DOLS estimator rather than
the OLS estimator and that one lead and one lag are enough, but estimation results
are very similar whatever the specification (see Table 14.6 in Appendix 2).

According to Wooldridge’s (2002) test, the DOLS specification does not remove
the serial correlation of the residual. As with stationary variables, the standard prac-
tice is to compute heteroscedasticity and serial correlation-consistent standard er-
rors. However, on a sample with a small time dimension, the corrected standard
errors may lead to larger errors in test rejection than the uncorrected standard er-
rors, so it is good practice to check whether both lead to the same conclusions. We
therefore observe the following rule in the next section: we present standard errors
corrected for residual heteroscedasticity and serial correlation, using the Newey and
West (1987) method in the main text, and comment on the robustness of our infer-
ence to the use of uncorrected standard errors.

14.2.4 Three-dimensional Structure and Fixed Effects

Table 14.1 summarizes the variance analysis of our three main variables. Column 1
presents the coefficient of variation of each variable. Column 2 documents the R-
squares of their regression on the three one-way fixed effects separately, as a basic
control for the usual sources of specification errors, such as omitted (time invari-
ant) country and industry characteristics. The next columns document the additional
variability lost when we also include two-way interaction effects in order to control
for other potential sources of specification errors to be discussed in the estimation
section. The R-squares presented in this second step correspond to the regressions
on the set of two-way fixed effects of the first step residual, i.e., the residual of the
regression of our variables on the one-way fixed effects. In columns 3 to 5, the two-
way fixed effects are introduced separately. Column 6 presents the simultaneous
introduction of country×year and industry×year fixed effects (we will argue fur-
ther that this specification is particularly relevant to our data), and column 7 shows
what happens if we introduce all the possible two-way fixed effects simultaneously.

We see that the one-way country, industry, and year fixed effects taken alone al-
ready account for large (at least 85%) shares of the variability of the three variables
of our model (column 2). Among the two-way fixed effects, the country×year ef-
fects are the least expensive in terms of variability, explaining at most 9% of the
first-step residual variance (column 3). Both industry×year and country×industry
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Table 14.1 Variance analysis – application 1

(1) (2) (3) (4) (5) (6) (7)

Variable (in logarithm) Coef. of vari-
ation

First step R2 Second step R2

Partial MFP 0.142 0.975 0.052 0.542 0.373 0.583 0.913
ICT capital intensity 0.230 0.864 0.093 0.045 0.740 0.137 0.859
R&D capital intensitya 0.282 0.853 0.030 0.073 0.796 0.102 0.881
Observations 4,750 4,750 4,750 4,750 4,750 4,750 4,750
Residual degree of freedom 4,697 4,391 4,303 4,445 4,018 3,797

Fixed effects:
Country, industry, year Y - - - - -
Country×year N Y N N Y Y
Industry×year N N Y N Y Y
Country×industry N N N Y N Y

Notes: First step R2: R-squares of the regressions of our model variables on the three one-way
effects separately. Second step R2: R-squares of the regressions of the first step residuals on
two-way fixed effects.
a The analysis sample for R&D capital intensity is reduced to 12 industries as six industries make
almost no investment in R&D, thus reducing the sample size (to 3,006 observations) and degree
of freedom.

fixed effects are particularly costly, the former for the dependent variable (54% of
the first-step residual variance, column 4) and the latter for the two explanatory vari-
ables (between 74% and 80%, column 5). Introducing all the two-way fixed effects
leads us to take into account around 90% of the first-step residual variance (column
7), which is already a very small part of the variable variances. In other words, this
full set of fixed effects takes into account almost all the data variability. The omis-
sion of the country×industry fixed effects allows us to keep some data variability,
still taking into account 58% of the first-step residual for the partial MFP but only
between 10% and 14% for the explanatory variables (column 6).

We must choose among the two-way fixed effects as the introduction of the full
set of possible fixed effects in the estimated equation would take into account al-
most all the variability of the dependent and explanatory variables.8 We assume that
country×year and industry×year fixed effects, either alone or taken together, can
act as good proxies for a variety of omitted variables. In particular, they can take
into account differences between countries and/or industries in technical progress,
in the development of labor force education and skills, in changes in international
trade conditions, and so on. Moreover, variance analysis in Table 14.1 shows that
the country×year fixed effects are the least costly of the two-way fixed effects in
terms of variance. We do not expect introducing country×industry fixed effects to
prevent specific sources of omission bias, therefore we favored specifications with
country×year and/or industry×year fixed effects.

8 A mixed fixed and random-effects model would allow taking into account parsimoniously all the
specific effects, thus increasing the fitting and predictive power of our model (see Chap. 2).
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Reflecting the variance analysis, Table 14.2 presents the sensitivity of the esti-
mation results to the various sets of fixed effects. Column 5 presents the estimation
results for our preferred specification including country×year and industry×year
fixed effects. The ICT and R&D estimated elasticities are strongly statistically sig-
nificant and more so than their average shares in total costs, suggesting large social
excess returns: these elasticities are of 10% and 6%, whereas private returns, ap-
proximated by average shares in total costs, are of 3% and 4%.9 These results are
strongly robust to different sets of fixed effects for all but two: (i) if we include
the full set of fixed effects (column 6), the ICT elasticity is weakly statistically sig-
nificant and negative, confirming the lack of remaining variability to identify the
coefficients and that we must choose between the two-way fixed effects; and (ii) if
we include only the individual (country×industry) two-way fixed effects (column
4), the ICT estimated elasticity falls to 7% (but the difference with our preferred
estimate is not statistically significant) and the R&D elasticity rises to 15%, sug-
gesting omission bias and illustrating the importance of the choice of fixed effects
based on economic considerations and variance analysis results.

Table 14.2 ICT and R&D estimated elasticity sensitivity to fixed effects

(1) (2) (3) (4) (5) (6)

ICT capital intensity 0.0934∗∗∗ 0.0999∗∗∗ 0.0925∗∗∗ 0.0683∗∗∗ 0.101∗∗∗ −0.0240∗

[0.0126] [0.0132] [0.00996] [0.0228] [0.0105] [0.0129]
R&D capital intensitya 0.0740∗∗∗ 0.0691∗∗∗ 0.0645∗∗∗ 0.146∗∗∗ 0.0612∗∗∗ 0.0637∗∗∗

[0.00994] [0.00975] [0.00728] [0.0230] [0.00727] [0.0142]

Observations 3,991 3,991 3,991 3,991 3,991 3,991
R-squared 0.980 0.981 0.991 0.988 0.991 0.998
RMSE 0.258 0.258 0.185 0.203 0.182 0.0821
Residual degree of freedom 3,933 3,704 3,628 3,714 3,399 3,180

Fixed effects:
Country, industry, year Y Y Y Y Y Y
Country×year N Y N N Y Y
Industry×year N N Y N Y Y
Country×industry N N N Y N Y

Notes: Estimator: DOLS(1;1), dependent variable: Partial MFP. Newey-West standard errors in
brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
a The R&D output elasticity is estimated on 12 industries as six industries make almost no
investment in R&D.

We also test the sensitivity of the results to (i) uncorrected standard errors; (ii)
omission of ICT or R&D capital stock; and (iii) estimating rather than calibrating
the “structure” and “non-ICT equipment” capital stocks elasticities. ICT and R&D
estimated elasticities are robust to these three changes, except that the ICT estimated
elasticity is half as much and weakly statistically significant when “structure” and

9 ICT and R&D elasticities are estimated on different samples, as six industries make almost no
investment in R&D, so their average shares in total costs are also calculated on different samples.
On the whole estimation sample, R&D estimated elasticity and average share over total cost would
be 4.1% and 2.7%, respectively.
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“non-ICT equipment” capital stocks elasticities and country×industry fixed effects
are introduced (see Tables 14.7, 14.8, and 14.9 in Appendix 2). Moreover, the “struc-
ture” and “non-ICT equipment” estimated elasticities are statistically significant and
close to their calibration values, except again when country×industry fixed effects
are included in the estimated specification. These results may be explained by the
lack of remaining variability when country×industry fixed effects are included and
argue against their introduction.

14.2.5 Heterogeneity of Factor Effects

The effects of explanatory variables are generally heterogeneous. In our study, R&D
and ICT elasticity must differ between countries and industries, which explains why
some industries make almost no investment in R&D and/or little in ICT, for in-
stance. However, most econometric methods mobilized in the applied economic lit-
erature assume homogeneous effects for observable factors as well as for unobserv-
able common factors. For observable factors, the homogeneity constraint underlines
the focus on average effects as OLS regression produces variance-weighted averages
of the individual effects. Nevertheless, this constraint may be particularly harmful
for our empirical investigation inferences because we mobilize non-stationary vari-
ables; it induces non-stationary residuals even if the true data generating process
were cointegrated.10 For unobservable common factors, sources of cross sectional
error dependence, the homogeneity constraint on their effects leads to biased OLS
estimators if these common factors are correlated to the (observed) explanatory vari-
ables, whether or not they are stationary. If some of the common factors are non-
stationary, the homogeneity constraint also leads to non-stationary residuals.

It is standard practice to estimate separate individual regressions and calculate the
coefficient means. Pesaran et al. (1999) call this method the mean group estimator
and derive its asymptotic distribution for 2D panels. But this method requires panel
data with a large time dimension. When estimating separate individual regressions
on our panel with an average length of 18 years, the confidence intervals of estimated
coefficients are huge and their averages yield unlikely results. This may explain
why the empirical literature using country-industry panel data barely explores the
coefficient heterogeneity issue. We argue that considering the 3D structure of our
data provides a feasible way to take coefficient heterogeneity into account.

We are unable to take into account country and industry heterogeneity together
through individual (country×industry) coefficients, but we can do so separately;
we assume that the individual coefficients are composed by country and industry
specific components (i.e., we assume γ(I,i j) = γ(I,i)+ γ(I, j) and γ(k,i j) = γ(k,i)+ γ(k, j)
for ICT and R&D elasticities). Indeed, when estimating the industry (or country)

10 This is easy to see with a simple model yit = αi +βixit + uit , with i and t individual and time
indices, x a non-stationary variable and uit a stationary residual. Under the coefficient homogeneity
constraint, the estimated equation becomes yit = αi +βxit + vit with the residual term vit = (βi−
β )xit +uit non-stationary.
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specific coefficient, we mobilize not only a time series, but a country (or industry)
panel, leading to more precise estimation results. This sensitivity analysis increases
the confidence in our estimation results when they are robust to it, and otherwise
avoids conclusions based on spurious regressions.11

In the same way, we should not assume homogeneous effects of unobservable
common factors, which is done when the common factors are taken into account
by time fixed effects. If these common factors are correlated to the explanatory vari-
ables, the homogeneity assumption would lead to the endogeneity of the explanatory
variables. This correlation must appear in our application; for instance the quality
of the institutions may be correlated to investments in ICT and R&D. A facilitat-
ing factor to take account of this heterogeneity is that we are not interested in the
unobservable common factors for themselves, but rather in eliminating their influ-
ence on the estimation of the explanatory variable coefficients. For 2D panel data,
Pesaran (2006) proposes filtering the explanatory variables by introducing the cross-
sectional averages of dependent and explanatory variables into the estimated speci-
fications and calls this method the common correlated estimator. Chap. 10 develops
this estimator for 3D panel data. As with the fixed effects, allowing for individ-
ual (country×industry) heterogeneity of the coefficient of variables’ cross-sectional
averages would explain at least 99.8% of our data variability, preventing the identifi-
cation of the parameters. Therefore, as with the explanatory variable but for another
issue, we take into account the country and industry heterogeneity of the unobserv-
able common factors separately.

Table 14.3 presents the sensitivity of our estimation results to allowing for
the heterogeneity of factors’ effects. All estimations assume country×year and
industry×year unobserved common factors. Column 1 presents previous estimates
under the homogeneity constraint for observable and unobservable factors (as in
Table 14.2 column 5). Columns 2 and 4 present average estimation results when
ICT and R&D elasticities are allowed to differ between countries and industries.
Columns 3 and 4 present estimation results when the effects of unobserved com-
mon factors are allowed to differ. ICT and R&D elasticities are always positive and
strongly statistically significant, pushing back the spurious regression issue. The es-
timated elasticity values are robust to taking into account the heterogeneity for the
observed explanatory variables or unobserved common factors separately (columns
2 and 3), but the average estimated ICT elasticity declines markedly from 10% to
4% when the heterogeneity of the observed and unobserved factors are considered
together (column 4). We have neither economic nor empirical explanations for this
ICT elasticity reduction, except the lack of remaining data variability. We guess
that this last estimation specification is over the limit of what is feasible with our
country-industry panel data, whereas column 2 and 4 are at the limit.

11 The Random Coefficient linear Model (RCM) for 3D panels developed in Chap. 5 allows taking
into account parsimoniously coefficient individual heterogeneity, but this estimator is consistent
only under the independence assumption of coefficients with respect to the explanatory variables.
However, this approach could be mixed with our fixed coefficients in order to improve the fitting
and predictive power of our model.
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Table 14.3 Estimation of ICT and R&D elasticity allowing for heterogeneous ef-
fects

(1) (2) (3) (4)

ICT capital intensity 0.101∗∗∗ 0.0945∗∗∗ 0.0925∗∗∗ 0.0444∗∗∗

[0.00717] [0.00855] [0.00734] [0.0132]
R&D capital intensitya 0.0612∗∗∗ 0.0655∗∗∗ 0.0752∗∗∗ 0.0816∗∗∗

[0.00542] [0.00716] [0.00556] [0.0125]

Observations 3,991 3,991 3,991 3,991
R-squared 0.991 0.994 0.994 0.996
RMSE 0.182 0.151 0.138 0.123
Residual degree of freedom 3,399 3,175 3,796 3,572

Heterogeneous effects of:
Observable variables N Y N Y
Unobserved common factors N N Y Y

Notes: Estimator: DOLS(1;1), dependent variable: Partial MFP. Standard errors in
brackets - ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Country×year and industry×year
unobserved common factors are taken into account by fixed effects (columns 1 and
2) or cross-sectional averages of the dependent and explanatory variables (columns
3 and 4). Columns 2 and 4 present unweighted averages of industry and country
specific coefficients.
a The R&D output elasticity is estimated on 12 industries as six industries make
almost no investment in R&D.

14.2.6 Discussion of Cointegration

Previous sections assume that relation (14.3) variables are cointegrated. To test this
assumption, Pedroni’s (1999; 2001) panel cointegration tests are often performed
(see, for instance, Hurlin and Mignon, 2007 for a review of the various first and sec-
ond generation panel cointegration tests). The first step of Pedroni’s cointegration
tests is to estimate the long-term relationship, allowing for the individual hetero-
geneity of coefficients. Based on the first step residuals, seven cointegration tests
are calculated, taking account of different nuisance parameters. Unfortunately, on
samples with small time dimensions, we often get contradictory results. In our ap-
plication, four tests conclude that cointegration occurs (with p-values of the null
hypothesis of no-cointegration less than 1%), two that no cointegration occurs (with
p-values over 10%), and one is more ambiguous (with a p-value of 9%).

To go beyond this ambiguity, we may select our “favored” test. Under the alterna-
tive assumption of cointegration, four of Pedroni’s tests, called panel-tests, assume
homogeneous roots for the first-step estimation residual, and three tests relax this
assumption, the group-tests. As discussed in the previous section, we have no rea-
son to assume homogeneity and prefer the group-tests. Among these group-tests,
Pedroni’s (2004) Monte-Carlo simulations show that, for panels with short time di-
mensions, the two group-t tests exhibit a strong size, and the group-ρ test a weak
size. Therefore, the more cautious rule would be to favor the group-ρ test. This test
concludes that a cointegrated relationship occurs.
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However, the previous section underlines that Pedroni’s cointegration test results
are not enough to reach conclusions about the relevance of inferences made using
different (not individual specific) coefficient heterogeneity assumptions from these
tests. The residuals of the estimated relationship would be non-stationary even if the
true data generating process were cointegrated. Therefore, we would like to test the
stationarity of our main estimation residuals in addition to Pedroni’s cointegration
tests. This test could be difficult to implement, as there are many different hetero-
geneity assumptions leading to various test statistic distributions to compute. But it
may be good practice to perform a unit root test using our main estimation residuals.
If Pedroni’s tests conclude that cointegration occurs but the unit root assumption is
not rejected for our main estimation residuals, the cointegration conclusion should
be taken with caution. In our application, we perform the Im et al. (2003) unit root
test on residuals from the four Table 14.3 specifications. These tests conclude the
residuals are non-stationary, except when heterogeneous effects are allowed for both
explanatory variables and unobserved common factors (column 4). We see that pre-
venting spurious regression may require taking our data to the limit (or over) of what
is feasible.

14.3 Productivity Impact of Non-Manufacturing Regulations

14.3.1 Literature Review

After estimating the impact of ICT and R&D capital on productivity, we extend our
analysis to the effects of Non-Manufacturing Regulations (NMR). The literature
investigating the impact of competition – and policies affecting it – (see Aghion
et al., 2009 for a survey) has evolved during the last 10 years, notably to emphasize
the impact of regulations in non-manufacturing industries, producing intermediate
inputs on the productivity of industries using these inputs (referred to as upstream
and downstream industries, respectively). If firms in downstream industries have to
negotiate terms and conditions of their contracts with suppliers having market power
thanks to regulations, part of the rents expected downstream from adopting best
practices will be grabbed by intermediate input providers. This in turn will reduce
incentives to improve efficiency and curb productivity in downstream sectors.

Only a few papers have looked at this issue so far. Some of them are static
cross-sectional analyses relating manufacturing productivity outcomes to measures
of competition in services (see Allegra et al., 2004, Faini et al., 2006, and Barone and
Cingano, 2011). Others use firm level data for one country: Forlani (2010) on France
and Arnold et al. (2011) on the Czech Republic. The estimation results of these pa-
pers are not directly comparable, but conclude that Non-Manufacturing Regulations
(NMR) negatively impact innovation and productivity.

This latter application borrows from our previous papers on country-industry
panel data, but discusses and extends the analysis of heterogeneity issues. The for-
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mer investigations confirm a negative impact of NMR on productivity and that it
undergoes a decline in competition (Cette et al., 2016). Moreover, the negative im-
pact of NMR is stronger close to the technological frontier (Bourlès et al., 2013) and
stems largely (30% to 60%) from the effects of NMR on R&D and ICT investments
(Cette et al., 2013). In light of these findings, the impact of NMR on productivity
estimated in this chapter should be interpreted as the impact on an industry at the av-
erage distance from the technological frontier and a lower limit, because the impact
of NMR via ICT and R&D investment is ignored.

14.3.2 Model and Data

In this second application, we investigate the effects of regulations in non-manu-
facturing industries producing intermediate inputs (the upstream industries) on the
productivity of industries, using these inputs (the downstream industries). Thanks
to this second application, we introduce and discuss an important advantage of
country-industry panel data to tackle issues that were previously investigated on
national data; the possibility of testing whether the effects of national level vari-
ables differ between industries depending on industry-specific characteristics, thus
identifying the causality link from NMR to productivity.

In order to focus on the NMR effects, we estimate the impact of regulations
on MultiFactor Productivity (MFP), assuming the same Cobb-Douglas knowledge
production function as previously and constant returns to scale (country, industry,
and year indices omitted to alleviate equations):

m f p≡ (y− l)− γ̃NI(cNI− l)− γ̃c(cc− l)− γ̃I(cI− l)− γ̃k(ck− l) , (14.4)

with lower-case letters for logarithms. Labor productivity Y/L, asset a capital in-
tensities Ca/L, and calibrated elasticities γ̃a are computed with the same data and
method as in the first application.12 This MFP measure takes into account all the
capital asset contributions, contrary to the partial MFP defined in the previous appli-
cation. Our main estimation results are robust when factor elasticities are estimated
rather than calibrated.

The anti-competition regulations are taken into account through the OECD NMR
indicators. They try to measure the extent to which competition and firm choices are
restricted when there are no a priori reasons for government interference, or when
regulatory goals could plausibly be achieved by less coercive means. They are based
on detailed information on laws, rules, and market and industry settings and they
cover energy (gas and electricity), transport (rail, road, and air) and communications
(post, fixed and cellular telecommunications), retail distribution, and professional
services (see Appendix 1 for a more detailed presentation).

12 We assume γ̃k to be zero for the six industries making almost no investment in R&D (wood
products, energy, construction, retail distribution, hotels & restaurants, and banking services).
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We investigate the impact of upstream NMR on downstream productivity. In a
macro-econometric analysis such as ours, lack of data variability means that NMR
indicators cannot be used separately to assess this upstream regulatory impact.
Therefore, we combine these NMR indicators, considering that their individual im-
pacts are most likely to vary with the respective importance of upstream industries
as suppliers of intermediate inputs and computing the following indicator of regula-
tory impact (REG)

REGi jt = ∑
k 6= j

wk
j ·NMRk

it , (14.5)

where NMRk
it is the NMR indicator of the upstream industry k for country i in year

t, and wk
j stands for the intensity-of-use of intermediate inputs from industry k by

industry j, as measured from the US 2000 input-output table as the ratio of the
intermediate inputs from industry k to industry j over the total output of industry j.

We investigate the effects of the REG indicator on MFP using the following esti-
mated specification13

m f pi jt = α +β ·m f pUS
jt +θ ·REGi jt + εi jt . (14.6)

As in the previous application, this simple equation underlines our focus on the
long-term average, but the various estimations broaden this equation by including
different sets of fixed effects, taking into account the explanatory variables dynamic
and allowing for coefficient heterogeneity. The US MFP, measuring the technologi-
cal frontier of our sample, can be used for estimating the catch-up effect, but is also
particularly relevant for improving the estimation of the NMR impact on productiv-
ity, as discussed below.

14.3.3 Estimation Strategy with 2D Explanatory Variables

A major issue when estimating NMR effects on productivity is the endogeneity of
regulation because of reverse causality. Public authorities may react to country spe-
cific productivity shocks by implementing NMR changes. The 3D structure of our
dependent variable helps to address this issue, contrary to empirical investigations
on 2D national level data. This structure and the construction of the REG indica-
tor, which means the impact of NMR may differ between industries, allows us to
include country×year fixed effects in our estimated specifications that offset this re-
verse causality endogeneity bias. These fixed effects are essential to our estimation
strategy, and we focus hereafter on specifications including at least these fixed ef-
fects.14 Therefore, our specifications allow testing whether the impact of upstream

13 See Appendix 1 for information on this database and more detailed information on data sources
and the authors’ calculations.
14 As for the previous application, the country×year fixed effects also act as good proxies for a
variety of omitted variables (technical progress, labour-force education and skills, international
trade conditions, etc.).
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NMR on downstream productivity grows with the intensity of the use of regulated
intermediate inputs.

Table 14.4 summarizes the variance analysis of relation (14.6) variables, showing
the consequences of the choice of fixed effects. As with Table 14.1, the first column
presents the coefficient of variation of each variable, the second column documents
the R-squares of the regressions of the variables on the three one-way fixed effects
separately, and the following columns document the additional variability lost when
we also include two-way fixed effects.

Table 14.4 Variance analysis – application 2

(1) (2) (3) (4) (5) (6)

Variable Coef. of varia-
tion

First step R2 Second step R2

MFP (in logarithm) 0.183 0.984 0.046 0.557 0.468 0.910
US MFP (in logarithm) 0.177 0.990 0.019 a 0.091 a

Regulatory impact (REG) 0.427 0.925 0.358 0.560 0.767 0.949
Observations 4,624 4,624 4,624 4,624 4,624 4,624
Residual degree of freedom 4,571 4,316 3,956 4,081 3,738

Fixed effects:
Country, industry, year Y - - - -
Country×year N Y Y Y Y
Industry×year N N Y N Y
Country×industry N N N Y Y

Notes: First step R2: R-squares of the regressions of our model variables on the three one-way
effects separately. Second step R2: R-squares of the regressions of the first step residuals on
two-way fixed effects.
a The US MFP is industry×year specific and so collinear to the industry×year fixed effects.

We see that the one-way country, industry, and year fixed effects taken alone
already account for a large part of data variability, even more so than in the pre-
vious application. Fortunately, the addition of country×year fixed effects is rela-
tively inexpensive in terms of variability (column 3). This is not the case when
adding industry×year and/or country×industry fixed effects: almost all data vari-
ability is taken into account (columns 4 to 6). Therefore, we must avoid introducing
the full set of fixed effects, as with the first application, but even the sets including
industry×year (or country×industry) fixed effects must be used with caution.

Instead of industry×year fixed effects, the US MFP variable provides a parsi-
monious way to take into account a variety of omitted variables (such as industry
technical progress).15 It justifies our inclusion of US MFP in the estimated spec-
ifications at least insofar as to estimate a catch-up effect. It is worth noting that
the omission of the US MFP variable would induce the non-stationarity of the esti-

15 Inserting the average industry×year MFP rather than US MFP would play the same role.



14 Modeling Heterogeneity in Country-Industry-Year Panel Data 413

mation residual (when industry×year fixed effects are also omitted), leading to the
fallacious regression issue.16

14.3.4 Estimation Results

As with the previous production function estimation, we mobilize the DOLS esti-
mator to estimate the NMR and catch-up effects on productivity.17 Reflecting the
variance analysis, Table 14.5 presents the sensitivity of the estimation results to var-
ious sets of fixed effects (columns 1 to 5). Based on the discussion in the previous
section, our privileged estimation is with country×year and industry fixed effects
(column 2). This table also shows the effects of an alternative indicator to REG,
which is an unweighted average of the NMR OECD indicators (column 6), in order
to emphasize the importance of our estimation strategy.

Table 14.5 REG effects estimation sensitivity to fixed effects

(1) (2) (3) (4) (5) (6)

US MFP 0.907∗∗∗ 0.910∗∗∗ a 0.853∗∗∗ a 0.906∗∗∗

[0.0315] [0.0310] [0.0183] [0.0315]
Regulatory impact (REG) −0.142∗∗ −0.285∗∗∗ −0.141∗ −0.384∗∗∗ 0.0116

[0.0597] [0.0727] [0.0823] [0.0824] [0.118]
Alternative regulatory impact 0.297

[0.404]

Observations 4,099 4,099 4,099 4,099 4,099 4,099
R-squared 0.992 0.992 0.993 0.998 0.999 0.991
RMSE 0.193 0.193 0.190 0.103 0.084 0.194
Residual degree of freedom 4,044 3,807 3,519 3,519 3,301 4,044

Fixed effects:
Country, industry, year Y Y Y Y Y Y
Country×year N Y Y Y Y N
Industry×year N N Y N Y N
Country×industry N N N Y Y N

Notes: Estimator: DOLS(1;1), dependent variable: MFP. Newey-West standard errors in brackets.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
a US MFP is by definition collinear to the industry×year fixed effects.

16 As for the previous application, we perform the Im et al. (2003) unit root test and Pedroni’s
(1999; 2001) cointegration tests. According to these tests, MFP is non-stationary and cointegrated
with US MFP. We assume that the REG indicator is stationary by nature, as NMR indicator values
are limited.
17 Leads and lags of first difference of the DOLS estimator are introduced for the MFP US alone,
as the NMR (and so REG) evolves by a small number of steps in each country. Estimated effects of
US MFP and REG are robust to the use of the OLS estimator or to the number of leads and lags for
the DOLS estimator (see Table 14.10 in Appendix 2). Again, we use a Hausman test to conclude
that we must use the DOLS estimator rather than the OLS estimator and that 1 lead and 1 lag for
the first differences are enough.
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Table 14.5 shows a statistically significant and positive catch-up effect. The es-
timates are close to one, which is called the “homogeneity assumption” in terms of
convergence: any short-term divergence between country productivity should disap-
pear in the long run. The estimated effect of the REG indicator is statistically signif-
icant and negative, except when all the two-way fixed effects are included, certainly
due to the lack of the remaining variability (column 5). The values of REG effects
differ only a little depending on the various sets of fixed effects introduced (columns
1 to 4). We illustrate further the economic significance of these estimation results via
a simulation of the impact of reforms. Finally, when using the alternative regulatory
indicator calculated as an unweighted average of NMR OECD indicators, the esti-
mated effect is not statistically significant (country×year fixed effects are excluded
from this specification to avoid collinearity). This emphasizes the importance of our
estimation strategy: according to the estimation results in Table 14.5, the impact of
upstream NMR on downstream productivity increases with the intensity of use of
regulated intermediate inputs.

We also test the sensitivity of our estimation results to (i) uncorrected standard
errors; (ii) introduction of the direct impact of NMR, i.e., the impact of regulation
on the productivity of the regulated industry; and (iii) estimating factors’ elasticities
simultaneously to REG and catch-up effects rather than calibrating MFP. The esti-
mated catch-up and REG effects on productivity are robust to these changes, with a
slight increase (in absolute terms) of the REG effect when the direct impact of NMR
is taken into account (see Tables 14.11, 14.12, and 14.13 in Appendix 2). Moreover,
(i) we observe a statistically significant direct negative impact of NMR (that must
be taken with caution, because of the within industry reverse causality); and (ii) we
find believable estimated elasticities for each production factor.

To illustrate the implications of our estimation results, we propose a simple simu-
lation of the impact of NMR reforms on MFP. The reforms considered are switched
to the lightest practices, i.e., to the smallest values observed in our country sample
of 2013 OECD NMR indicators (these indicators are not available later). Based on
our privileged estimates (Table 14.5, column 2), the effects of these NMR reforms
are calculated for each downstream industry, then aggregated at the national level
using domestic industry shares in national value added.

Figure 14.1 presents the simulated MFP gains from these reforms. These gains
are very different between countries, depending on their excess regulation in 2013.
They are relatively high for some countries, with a maximum of 5.9% for Italy, but
correspond to long-term gains of very ambitious reforms. For other countries with
NMR indicators already close to the lightest practices, the expected MFP gains are
relatively small, with a minimum of 1.5% for the Netherlands, Sweden, and the
United Kingdom.
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Fig. 14.1 Long-term MFP gains from reforms to the lightest practices in 2013

14.3.5 Discussion of Heterogeneous Effects with 2D Explanatory
Variables

As mentioned in the first application, it may be particularly important to take ac-
count of the heterogeneous effects of the explanatory variables and unobservable
common correlated factors. However, the approach in the second application intro-
duces major differences with respect to this issue: (i) the construction of the REG
indicator already takes into account part of the heterogeneity of NMR effects on
MFP; (ii) the NMR indicators are 2D variables; and (iii) these indicators (and so
the REG indicator) are stationary, as their values are limited. We discuss the conse-
quences of these differences below.

As a first step, let us assume that we are concerned with only one upstream NMR
indicator and there exist country×year unobserved correlated common factors Fit .
Thus, relation (14.6) may be rewritten as

m f pi jt = α +β ·m f pUS
jt +θ ·w j ·NMRit +µ ·Fit + εi jt . (14.7)

Because the NMR indicator is 2D, this relation shows that we cannot introduce
country×year cross-sectional averages of dependent and explanatory variables to
take into account the heterogeneous effects of the unobserved common factors. It
also shows that our constraint on the impact of NMR (i.e., θ j = θ ·w j) is required
to identify this impact when country×year fixed effects are introduced. In other
words, this constraint on the coefficient may be added to other constraints depending
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on various industry specific characteristics, but we cannot introduce unconstrained
coefficients θ j because of collinearity with the fixed effects.

Our analysis focuses not on one, but on four upstream industries and we construct
the REG indicator in order to estimate the average effect of the four NMR indicators.
This REG indicator is 3D, as we just show in the example with one NMR, we see that
it is not desirable to treat for heterogeneous effects as we did in our first application:
the REG effects would be very difficult to identify and interpret.

However, we may be able to go one step further in the sensitivity analysis. If
we assume that NMR indicators are stationary, and so is the REG indicator, the
cointegrated relationship concerns only MFP and US MFP variables. So we treat
for heterogeneous US MFP effects, assuming industry and country specific effects
(βi j = βi + β j), then we augment the cointegrated relationship with the REG in-
dicator and our set of fixed effects. This approach induces a substantial reduction
of the average effect of US MFP, but the REG effect is robust to this change (see
Table 14.14 in Appendix 2).18

14.4 Conclusion

Our estimation results are consistent with the empirical literature. More importantly,
we show how confident we can be about these results, dealing with various hetero-
geneity issues despite the relatively short duration of our country-industry panel
data.

We first assume the homogeneous effects of the explanatory variables and unob-
served common factors. When the specification includes our preferred set of fixed
effects, the estimated productivity elasticities of ICT and R&D capital stocks are
10% and 6%, respectively. These elasticities suggest high social surplus returns
(in the absence of such returns, our accounting analysis would conclude there are
elasticities of 3% and 4%, respectively). Our preferred set of fixed effects includes
country×year and industry×year fixed effects to prevent specific omission bias, but
not individual (country×industry) fixed effects. Considering our data as a 2D panel
with country×industry individuals leads to almost systematically introducing indi-
vidual fixed effects, resulting in unlikely estimates: in one case a very high R&D
elasticity of 15%, in the other negative ICT elasticity.

Second, we use the 3D structure of our data to relax the homogeneous effect as-
sumptions, using specifications derived from the Common Correlated Estimator and
the Mean Group Estimator. The estimated elasticities are robust to estimating the
heterogeneous effects of the explanatory variables or unobserved common factors
separately, but the estimated ICT elasticity falls to 4% when both heterogeneities

18 Unfortunately, the Im et al. (2003) test concludes to a unit root residual of this estimation, even
though earlier Pedroni’s (1999; 2001) tests conclude there is cointegration. This may be explained
by the heterogeneous effects of the unobserved common factors if they are non-stationary. This
underlines the difficulties in making inferences from short panel data with non-stationary variables
when at least some of them are only 2D.
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are taken into account simultaneously. As there is a priori no methodological reason
for this change, this may indicate that we are over the limit of what we can do on
our data.

Finally, we benefit also from the 3D structure of our data to prevent a reverse
causality issue when estimating the NMR effects on productivity if governments re-
act to economic shocks. According to our estimates, the impact of upstream NMR
on downstream productivity grows with the intensity of use of regulated intermedi-
ate inputs, which is meaningful in terms of causality. The estimated NMR impact is
sizeable: the effect of a switch for each country of 2013 NMR to the “lightest prac-
tices” would increase MFP by 3.8% on average. However, it is the long-run effect
of extreme reforms.

This chapter shows that our simple approach to country-industry level data al-
lows us to benefit from some macroeconomic panel data econometric methods, such
as the common correlated estimator and the mean group estimator. We think that
many other macroeconomic panel methods would be used by applied researchers
on data such as ours if the three (or more) dimensional structure were taken into
account. The second application also shows the limits of our approach. When some
explanatory variables are two-dimensional, we may take benefits from the higher
dimension of the others to give more insight into causality, as for NMR, but we are
unable to relax the homogeneity assumptions on the effects of explanatory variables
and unobserved correlated common factors. This seems to underline that the 3D
structure is required to estimate heterogeneous effects on short panel data. How-
ever, more research is needed to overcome this difficulty as panels mixing two and
three-dimensional variables are widely used.
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Appendix

Appendix 1: Data

To investigate the impact of ICT and R&D or NMR on productivity, we use an un-
balanced panel of 4,750 observations (4,624 when mobilizing the regulatory indi-
cators, see relation (14.6)) from 15 OECD countries and 18 industries, covering the
period from 1987 to 2008. This sample is reduced to 3,999 observations when using
the Dynamic OLS estimator (4,099 observations for relation 2). The 15 countries
are: Australia, Austria, Canada, the Czech Republic, Denmark, Finland, France,
Germany, Italy, Japan, the Netherlands, Spain, Sweden, the United Kingdom, and
the United States. The 18 industries cover the manufacturing sector (food products,
textiles, wood products, paper, chemical products, non-metallic mineral products,
metal products, machinery not elsewhere classified, electrical equipment, transport
equipment, manufacturing not elsewhere classified) as well as network and mar-
ket service industries (energy, construction, retail distribution, hotels & restaurants,
transport & communication, banking services, and professional services).

We mobilize data from four databases: (i) STAN for value added and total em-
ployment in number of persons engaged; (ii) EU KLEMS for physical capital; (iii)
ANBERD for R&D investment; and (iv) OECD indicators of NMR for the second
application. Since R&D was not treated as investment in the national accounts col-
lected by the OECD, we have to correct both the industry value added by adding (ex-
pensing out) the intermediate consumption of their R&D activities, and the industry
number of employees by subtracting the number of R&D personnel (“avoiding dou-
ble counting”). We compute capital stock using the permanent inventory method
and assuming constant geometric rates of depreciation: 5% for non-residential con-
structions, 10% for non-ICT equipment, 15% for communication equipment, 30%
for hardware and software, and 25% for R&D.19

19 We compute separately the capital stock of communication equipment, hardware, and software,
and then aggregate them into the ICT capital stock. To compute these three ICT capital stocks, we
assume for all countries that the ratio of investment prices over the GDP price is the same as for
the USA. This is much better for comparability since the USA is the country that most extensively
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To compute the partial MFP (MFPp), we calibrate the non-ICT equipment
and non-residential construction elasticities γ̃NI and γ̃c as industry specific average
shares of their user costs computed for the USA over the whole estimation period.
Our estimation results are robust to this choice. In order to make a comparison with
estimated values, it is interesting to note the values of these cost shares for the four
capital production factors, averaged over industries: 0.13 for non-ICT equipment,
0.06 for non-residential construction, 0.04 for ICT equipment, and 0.07 for R&D.

Figure 14.2 presents the industry sample averages of the ICT and R&D coef-
ficients, i.e., the ratio of investment over value added, over the period 1987–1997
and 1998–2008. It shows big differences between industries. In particular, some
industries invest almost nothing in R&D: wood products, energy, construction, re-
tail distribution, hotels & restaurants, and banking services. Therefore, we estimate
the R&D output elasticity on just the 12 industries investing heavily in R&D (our
estimation results are robust to this choice of industry exclusion).

Fig. 14.2 ICT and R&D coefficients (ratio of investment over value added). Notes: The 2-
digit (ISIC Rev. 3) industries (with their codes in parentheses) are: food products (15-16),
textiles (17-19), wood products (20), paper (21-22), chemical products (23-25), non-metallic
mineral products (26), metal products (27-28), machinery n.e.c. (29), electrical equipment
(30-33), transport equipment (34-35), manufacturing n.e.c. (36-37), energy (40-41), construc-
tion (45), retail distribution (50-52), hotels & restaurants (55), transport & communication
(60-64), banking services (65-67), and professional services (72-74).

relies on hedonic methods for measuring these prices. Note also that we have to modify the price
index of value added, and hence its value at constant prices for the electrical and optical equipment
industry, which includes ICT equipment. We assume for ICT investment that in this industry the
ratio of value added prices to the GDP price is the same in all countries in the same way as in the
USA.
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After estimating the impact of ICT and R&D capital on productivity, we investi-
gate the effects of upstream NMR on downstream productivity. We use the OECD
NMR indicators measuring the extent to which competition and firms’ choices are
restricted where there are no a priori reasons for government interference, or where
regulatory goals could plausibly be achieved by less coercive means. These indi-
cators are based on detailed information on laws, rules, and market and industry
settings and they cover energy (gas and electricity), transport (rail, road, and air)
and communications (post, fixed and cellular telecommunications), retail distribu-
tion, and professional services (see Conway and Nicoletti, 2007 for a more detailed
presentation).

Because of lack of data variability, we combine the NMR indicators considering
that their individual impacts are most likely to vary with the respective importance of
upstream industries as suppliers of intermediate inputs, and computing the following
indicator of regulatory impact (REG)

REGi jt = ∑
k 6= j

wk
j ·NMRk

it , (14.8)

where NMRk
it is the NMR indicator of the upstream industry k for country i in year

t, and wk
j stands for the intensity-of-use of intermediate inputs from industry k by

industry i, as measured from the US 2000 input-output table as the ratio of the
intermediate inputs from industry k to industry j over the total output of industry j.

We prefer to use a fixed reference input-output table to compute the intensity-
of-use ratios, rather than the different country and year input-output tables, to avoid
endogeneity biases that might arise from potential correlations between such ratios
and productivity or ICT and R&D, since the importance of upstream regulations
may well influence the use of domestic regulated intermediate inputs. We actually
used the 2000 input-output table for the USA. For similar endogeneity, as well as
measurement error concerns, note also that in estimating REG for the upstream in-
dustries, we exclude within-industry intermediate consumption. Note that the USA
is excluded from the estimation sample.

Figure 14.3 presents the contribution of each upstream industry regulation to the
value of the REG indicator for 1987 and 2007. It shows that the reduction of the
NMR indicators leads to a marked decrease in REG over-time in every country,
but important differences remain between countries, notably when observing each
upstream industry separately.

Appendix 2: Supplementary Estimation Tables



422 Jimmy Lopez and Jacques Mairesse

Fig. 14.3 Non-Manufacturing Regulation (NMR) OECD indicators. Notes: Scale 0-6 for each
indicator, 0 for the most pro-competitive

Table 14.6 Sensitivity to the DOLS estimators – application 1

(1) (2) (3) (4) (5)

Estimator OLS DOLS
Number of leads and lags - 1 2 3 4

ICT capital intensity 0.0802∗∗∗ 0.101∗∗∗ 0.109∗∗∗ 0.116∗∗∗ 0.123∗∗∗

[0.00634] [0.00717] [0.00772] [0.00837] [0.00926]
R&D capital intensitya 0.0641∗∗∗ 0.0612∗∗∗ 0.0610∗∗∗ 0.0605∗∗∗ 0.0621∗∗∗

[0.00498] [0.00542] [0.00577] [0.00624] [0.00692]

Observations 4,750 3,991 3,531 3,041 2,548
R-squared 0.991 0.991 0.992 0.992 0.992
RMSE 0.188 0.182 0.179 0.176 0.174
Residual degree of freedom 4,068 3,399 2,998 2,568 2,135

Notes: Dependent variable: Partial MFP. Standard errors in brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05,
∗ p < 0.1. Country×year and industry×year fixed effects are included in all specifications.
a The R&D output elasticity is estimated on 12 industries as six industries make almost no
investment in R&D.
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Table 14.7 Sensitivity to fixed effects, using uncorrected standard errors – application 1

(1) (2) (3) (4) (5) (6)

ICT capital intensity 0.0934∗∗∗ 0.0999∗∗∗ 0.0925∗∗∗ 0.0683∗∗∗ 0.101∗∗∗ −0.024∗∗∗

[0.00947] [0.00995] [0.00692] [0.0161] [0.00717] [0.00891]
R&D capital intensitya 0.0740∗∗∗ 0.0691∗∗∗ 0.0645∗∗∗ 0.146∗∗∗ 0.0612∗∗∗ 0.0637∗∗∗

[0.00719] [0.00732] [0.00543] [0.0130] [0.00542] [0.00889]

Observations 3,991 3,991 3,991 3,991 3,991 3,991
R-squared 0.980 0.981 0.991 0.988 0.991 0.998
RMSE 0.258 0.258 0.185 0.203 0.182 0.0821
Residual degree of freedom 3,933 3,704 3,628 3,714 3,399 3,180

Fixed effects:
Country, industry, year Y Y Y Y Y Y
Country×year N Y N N Y Y
Industry×year N N Y N Y Y
Country×industry N N N Y N Y

Notes: Dependent variable: Partial MFP, estimator: DOLS(1;1). Standard errors in brackets.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
a The R&D output elasticity is estimated on 12 industries as six industries make almost no
investment in R&D.

Table 14.8 Sensitivity to fixed effects of the labor productivity estimations – application 1

(1) (2) (3) (4) (5) (6)

Non-ICT Eq. capital intensity 0.0950∗∗∗ 0.106∗∗∗ 0.0790∗∗∗ 0.181∗∗∗ 0.0895∗∗∗ 0.169∗∗∗

[0.0168] [0.0178] [0.0143] [0.0551] [0.0149] [0.0320]
Structure capital intensity 0.0668∗∗∗ 0.0742∗∗∗ 0.0518∗∗∗ 0.288∗∗∗ 0.0520∗∗∗ 0.0501

[0.0157] [0.0157] [0.0121] [0.0596] [0.0124] [0.0313]
ICT capital intensity 0.0850∗∗∗ 0.0838∗∗∗ 0.0996∗∗∗ 0.0396∗ 0.0989∗∗∗ −0.0256∗

[0.0136] [0.0145] [0.0108] [0.0221] [0.0115] [0.0143]
R&D capital intensitya 0.0744∗∗∗ 0.0687∗∗∗ 0.0683∗∗∗ 0.103∗∗∗ 0.0629∗∗∗ 0.0664∗∗∗

[0.0102] [0.0100] [0.00756] [0.0228] [0.00764] [0.0141]

Observations 3,991 3,991 3,991 3,991 3,991 3,991
R-squared 0.774 0.786 0.874 0.874 0.901 0.982
RMSE 0.259 0.260 0.199 0.199 0.184 0.0814
Residual degree of freedom 3,925 3,696 3,619 3,706 3,391 3,172

Fixed effects:
Country, industry, year Y Y Y Y Y Y
Country×year N Y N N Y Y
Industry×year N N Y N Y Y
Country×industry N N N Y N Y

Notes: Estimator: DOLS(1;1), dependent variable: Labour Productivity. Newey-West standard
errors in brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
a The R&D output elasticity is estimated on 12 industries as six industries make almost no
investment in R&D.



424 Jimmy Lopez and Jacques Mairesse

Table 14.9 Sensitivity to the omission of explanatory variables

(1) (2) (3)

ICT capital intensity 0.101∗∗∗ 0.116∗∗∗

[0.0105] [0.0109]
R&D capital intensitya 0.0612∗∗∗ 0.0764∗∗∗

[0.00727] [0.00799]

Observations 3,991 3,991 3,991
R-squared 0.991 0.991 0.991
RMSE 0.182 0.185 0.188
Residual degree of freedom 3,399 3,403 3,403

Notes: Estimator: DOLS(1;1), dependent variable: Partial MFP. Ne-
wey-West standard errors in brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05,
∗ p < 0.1. Country×year and industry×year fixed effects are included
in all specifications.
a The R&D output elasticity is estimated on 12 industries as six
industries make almost no investment in R&D.

Table 14.10 Sensitivity to the DOLS estimators – application 2

(1) (2) (3) (4) (5)

Estimator OLS DOLS
Number of leads and lags 1 2 3 4

US MFP 0.873∗∗∗ 0.910∗∗∗ 0.922∗∗∗ 0.927∗∗∗ 0.936∗∗∗

[0.0142] [0.0168] [0.0193] [0.0236] [0.0349]
Regulatory impact −0.293∗∗∗ −0.285∗∗∗ −0.271∗∗∗ −0.246∗∗∗ −0.222∗∗∗

[0.0523] [0.0558] [0.0590] [0.0628] [0.0679]

Observations 4,624 4,099 3,706 3,303 2,865
R-squared 0.992 0.992 0.992 0.992 0.993
RMSE 0.198 0.193 0.190 0.188 0.187
Residual degree of freedom 4,297 3,807 3,438 3,060 2,648

Notes: Dependent variable: Partial MFP. Standard errors in brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗

p < 0.1. Country×year and industry fixed effects are included in all specifications.
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Table 14.11 Sensitivity to the fixed effects using uncorrected standard errors – application 2

(1) (2) (3) (4) (5) (6)

US MFP 0.907∗∗∗ 0.910∗∗∗ a 0.853∗∗∗ a 0.906∗∗∗

[0.0168] [0.0168] [0.00886] [0.0168]
Regulatory impact (REG) −0.142∗∗∗ −0.285∗∗∗ −0.141∗∗ −0.384∗∗∗ 0.0116

[0.0451] [0.0558] [0.0641] [0.0525] [0.0891]
Alternative regulatory impact 0.297

[0.299]

Observations 4,099 4,099 4,099 4,099 4,099 4,099
R-squared 0.992 0.992 0.993 0.998 0.999 0.991
RMSE 0.193 0.193 0.190 0.103 0.084 0.194
Residual degree of freedom 4,044 3,807 3,519 3,592 3,301 4,044

Fixed effects:
Country, industry, year Y Y Y Y Y Y
Country×year N Y Y Y Y N
Industry×year N N Y N Y N
Country×industry N N N Y Y N

Notes: Estimator: DOLS(1;1), dependent variable: MFP. Standard errors in brackets. ∗∗∗ p < 0.01,
∗∗ p < 0.05, ∗ p < 0.1.
a US MFP is by definition collinear to the industry×year fixed effects.

Table 14.12 Estimation of the direct effect of NMR

(1) (2)

US MFP 0.910∗∗∗ 0.913∗∗∗

[0.0168] [0.0311]
Regulatory impact (REG) −0.285∗∗∗ −0.502∗∗∗

[0.0558] [0.0835]
Direct regulatory impact −0.0609∗∗∗

[0.00970]

Observations 4,099 4,099
R-squared 0.992 0.992
RMSE 0.193 0.191
Residual degree of freedom 3,807 3,806

Notes: Estimator: DOLS(1;1), dependent variable: MFP.
Newey-West standard errors in brackets. ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.1. Country×year and industry fixed effects
are included in all specifications.
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Table 14.13 Sensitivity to fixed effects of the labor productivity estimations – application 2

(1) (2) (3) (4) (5)
Dep. Variable MFP Partial MFP Labour productivity

US MFP 0.923∗∗∗

[0.0320]
US Partial MFP 0.886∗∗∗

[0.0288]
US LP 0.856∗∗∗

[0.0281]
Regulatory impact (REG) −0.321∗∗∗ −0.251∗∗∗ −0.270∗∗∗

[0.0762] [0.0748] [0.0749]
ICT capital intensity 0.103∗∗∗ 0.0953∗∗∗ 0.0871∗∗∗ 0.0918∗∗∗

[0.0136] [0.0105] [0.0148] [0.0115]
R&D capital intensitya 0.0698∗∗∗ 0.0541∗∗∗ 0.0691∗∗∗ 0.0550∗∗∗

[0.0102] [0.00715] [0.0105] [0.00751]
Non-ICT Eq. capital intensity 0.0999∗∗∗ 0.0863∗∗∗

[0.0178] [0.0148]
Structure capital intensity 0.0803∗∗∗ 0.0558∗∗∗

[0.0161] [0.0123]

Observations 3,857 3,857 3,857 3,857 3,857
R-squared 0.992 0.981 0.990 0.782 0.890
RMSE 0.190 0.261 0.184 0.262 0.186
Residual degree of freedom 3,584 3,581 3,576 3,573 3,568

Notes: Estimator: DOLS(1;1). Newey-West standard errors in brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05,
∗ p < 0.1. Country×year and industry fixed effects included in all specifications.
a The R&D output elasticity is estimated on 12 industries as six industries make almost no
investment in R&D.

Table 14.14 Estimation of REG effects allowing for heterogeneous effects

(1) (2)

US MFP 0.910∗∗∗ 0.347∗∗∗

[0.0168] [0.0768]
Regulatory impact (REG) −0.285∗∗∗ −0.232∗∗∗

[0.0558] [0.0584]

Observations 4,099 4,099
R-squared 0.992 0.994
RMSE 0.193 0.177
Residual degree of freedom 3,807 3,699
Heterogeneous effects of observable variables N Y

Notes: Estimator: DOLS(1;1), dependent variable: MFP. Standard errors in
brackets. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Country×year and industry
fixed effects are included in all specifications. Column 2 presents unweighted
average of industry and country specific coefficients.



Chapter 15
The Determinants of Consumer Price
Dispersion: Evidence from French
Supermarkets

Nicoletta Berardi, Patrick Sevestre, and Jonathan Thébault

Abstract In this chapter, we characterize the dispersion of grocery prices in France
based on a large original data set of prices in more than 1500 supermarkets across
the country. On average across products, the 90th percentile of relative prices is 17
percentage points higher than the 10th. The mean absolute deviation from quarterly
average product prices is 5% on average in the French retail sector, and the standard
deviation of relative prices is 7%. We show that temporary sales and promotions
offer a limited explanation of the observed price dispersion, while the permanent
component of price dispersion largely dominates. Indeed, in France price dispersion
across stores essentially results from persistent heterogeneity in retail chains’ na-
tional pricing. Consumer prices are largely determined at a national level by retail
groups’ bargaining power with producers and by retail chains’ positioning. We also
show, however, that local conditions regarding demand and local competition be-
tween supermarkets do explain prices observed in local markets, though to a much
lower extent.

15.1 Introduction

Why do prices of the same good often significantly differ across shops? Deviations
from the law of one price are among the most important issues that have attracted
the attention of economists for a long time. However, due to the scarcity of adequate
microeconomic price data, the first studies on price dispersion could only focus on

Nicoletta Berardi
Banque de France.

Patrick Sevestre
Greqam-AMSE, Université Aix-Marseille.
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specific markets. For instance, Borenstein and Rose (1994) and Gerardi and Shapiro
(2009) zoomed in on the airline industry in the US. Sorensen (2000) analyzed the
distribution of prices for several drugs across different pharmacies in two cities in
upstate New York. Hong and Shum (2006) documented the distribution of prices
posted by online booksellers for four academic textbooks. Moraga-González and
Wildenbeest (2008) did the same for online sellers of several computer memory
chips, while Woodward and Hall (2012) for mortgage brokerage services.

The last fifteen years have seen a significant improvement in researchers’ access
to microeconomic data on prices. While the access to CPI price records allowed
thorough analyses of the dynamics of consumer prices and of the link between
overall inflation and price dispersion,1 the characteristics of CPI data, as released
to researchers, most often do not allow a precise analysis of price dispersion.2 For-
tunately, household surveys or scanner data collected by marketing companies, such
as Nielsen or Kantar, have recently been made available. These data sets generally
contain prices of very precisely defined products in different outlets at different
dates, thus allowing a precise quantification of price dispersion.

This chapter mainly builds on papers studying the overall shape and structure of
price dispersion in the retail sector. Asplund and Friberg (2002) use price data from
a household survey carried out by the Swedish Pensioners’ National Organization
for five grocery products (sugar, washing-up detergent, crispbread, spread, and co-
coa) sold in about 1000 supermarkets in Sweden between 1993 and 1997 and find
that most of the price dispersion is explained by supermarket specific factors (like
supermarket size and retail chain) and, to a lesser extent, by factors related to sales
space and transport costs. Kaplan and Menzio (2015), based on the Kilts-Nielsen
Consumer Panel Data set in the US over the period 2004-2009, find that in the US
the variance of prices is mainly accounted for by idiosyncratic supermarket char-
acteristics and time variation, and only to a limited extent by the retailer to which
the supermarket belongs. They also find that the typical distribution of normalized
prices is characterized by a unique mode and by a 19% average standard deviation
for identical goods, and that it is symmetric and leptokurtic. As far as the French
retailing sector is concerned, Dubois and Perrone (2015) have been the only ones
to study price dispersion at barcode level. Their analysis is based on a household
survey about consumers’ purchases of food products over 3 years (1999, 2000, and
2001). They consider information on product and supermarket characteristics, as
well as household demographics. Based on four product categories (beer, coffee,
cola, and whisky), they show that price dispersion is prevalent in the French food
market.

This chapter assesses and analyzes consumer price dispersion in France. We are
able to characterize the overall shape and structure of price dispersion in the French
retail sector based on an original data set containing almost 40 million weekly price
records from geo-localized medium and large supermarkets in France. After trim-
ming, there are about one and a half million price trajectories regarding one thou-

1 E.g., see Nakamura et al. (2016) for the US, Dixon et al. (2014) for the UK, Alvarez et al. (2013)
for Argentina, Moen et al. (2014) for Norway, and Eyal and Eden (2004) for Israel.
2 One exception is Cheung and Fujii (2008) for Japan.
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sand products (individually identified by an EAN barcode) sold in more than 1500
supermarkets from October 2011 to September 2012.3

Our contribution in this chapter is twofold. First, we characterize the overall dis-
persion of consumer prices in the French retail sector. On average across products,
the 90th percentile of relative prices is 17% higher than the 10th. The mean absolute
deviation with quarterly average product prices as the measure of central tendency
is 5% on average in the French retail sector, and the standard deviation of relative
prices is 7%. Second, we decompose the observed price dispersion into several com-
ponents. We first assess the relative contribution of sales and temporary promotions
and that of permanent price differences across shops to the observed price disper-
sion at the barcode level. In a second stage we then show that the latter strongly
depends on retail chains, while local markets’ characteristics play a significant role
but to a much lower extent.

The remainder of the chapter is structured as follows. A detailed presentation of
the data sets is given in Sect. 15.2. Section 15.3 characterizes descriptively price
dispersion in France and investigates its structure, while Sect. 15.4 disentangles the
permanent and transitory components of price dispersion and further investigates
the role played by national and local factors as far as the former is concerned. Sec-
tion 15.5 concludes.

15.2 Data Description

Our analysis is based on the combination of two original data sets. The first pro-
vides millions of price records regarding a thousand products sold in more than
1500 medium and large supermarkets, together with precise identifiers of both prod-
ucts (through their EAN barcodes) and supermarkets (through their names and ad-
dresses). The second is an exhaustive data base of all supermarkets in France, in-
cluding their names and locations.

15.2.1 Grocery Price Data

Our analysis of price dispersion in the grocery sector is based on millions of price
records from geo-localized medium and large supermarkets in France. The price
data was collected by Prixing, a start-up that offers a mobile price comparison
app and website. Prixing has developed automatic procedures enabling it to collect
price lists from supermarkets offering “click&collect” services, known as “drives”
in France (which refers to the fact that customers drive close the supermarket). This

3 The EAN barcodes (originally European Article Number, now renamed International Article
Number even though the abbreviation EAN has been retained) are international product identifica-
tion numbers. These data were collected and made available to us by Prixing, a start-up company
providing consumers with a free mobile price comparator (see http://www.prixing.fr/).
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retail channel is a relatively recent service developed by French supermarkets over
the past 10 years.4 It has two distinctive features: customers order their shopping
on the supermarket’s click&collect website and then collect it at a drive-through
facility.5 More importantly for our analysis, prices are exactly the same as those
of the brick-and-mortar supermarket associated with the drive-through.6 Therefore,
our price data base corresponds to grocery prices in medium and large supermar-
kets, which represent more than 80% of grocery sales in France (Anderton et al.,
2011).

The original database contains slightly more than 45 million price spells, from
October 2011 to September 2012, corresponding to 2.3 billion daily prices of about
90 thousand products in about 1600 supermarkets.7 Due to computational chal-
lenges, we reduced the size of the data set. First, we based our analysis on one
price observation per week, chosen as the most frequently observed price over a
week for each specific product sold in a specific supermarket (i.e., the mode of the
weekly price distribution). This does not induce any significant loss of information
regarding price dispersion, as the within week price variance is null in almost 99%
of the cases. Second, to keep our econometric estimation feasible, we also restricted
the sample to the one thousand most widely sold products (i.e., 1000 barcodes). The
resulting weekly modal price data set contains more than 37 million observations
(almost 1.5 million trajectories) of the most widely sold products.8

One advantage of our price data with respect to those collected from scanners
or from household surveys is that each price does correspond to what the consumer
would really pay for a product on the day the data was collected and not to an
average unit value computed from several transactions recorded over a period.

4 There were around 500 drives in France at the end of 2010, their number doubled by the end
of 2011, to reach almost 2000 by the end of 2012, and about 2700 by the end of 2013 (Dauvers,
2013a,b).
5 Most click&collect drive-throughs are associated with a supermarket, but there are also a few
stand alone drive-throughs (known as “drives-entrepôt” in French).
6 One of the major retail chains in France at some point tested a different pricing strategy whereby
a few products are cheaper when bought through the click&collect than in the associated super-
markets. However, this practice was not yet implemented at the time of the collection of the data
we use here. Generally, it may happen that some discounts are available in the brick-and-mortar
store and not in click&collect and vice-versa.
7 A “price spell” is made up of the following three elements:

• the price of a precisely defined product i, identified by its barcode (e.g., a 1 liter glass bottle of
brand b pure orange juice) in a given store s (e.g., the supermarket from retail chain r, located
at a given address),

• the date when this price was first set (start date of the price spell),
• the date when this price was changed, even if only temporarily (end date of the price spell).

For instance, if the price of a product in a store decreases from 1 euro to 80 euro cents and then
increases to 90 euro cents, this will define 3 price spells.
8 We discarded spells with inconsistent start and end dates (e.g., a start date posterior to the end
date). We also dropped null prices (4 in the whole sample), as well as observations of prices when-
ever their log-difference to the average national price was larger than 2 in absolute value.
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Table 15.1 shows the category of available products based on the Classification
of Individual Consumption by Purpose (COICOP). Both in terms of the number of
products and corresponding price observations, there is a strong predominance of
food and beverages (almost 77% of barcodes); about 13% of barcodes are “mis-
cellaneous” goods like personal care products (e.g., toothpaste, shampoo, etc.) and
about 6% “furnishings and household equipment and routine maintenance” (e.g.,
washing-up liquid or dishwasher detergent) and 4% are items of “recreation and
culture” (e.g., CDs, toys, etc.). The last two columns report the number of brands
and producers by COICOP-level 1 product category.

Table 15.1 Numbers and percentages of products by COICOP product categories
and brand/manufacturer

COICOP-level 1 Prices Products Brands Manufact.

Food & non-alc.bev. 26231005 70.6% 703 70.3% 250 76
Alc.beverages 2320956 6.3% 66 6.6% 42 22
HH eqpt.&maint. 1992881 5.4% 55 5.5% 26 8
Recreation&culture 1580217 4.2% 42 4.2% 14 3
Miscellaneous 5005850 13.5% 134 13.4% 39 12
Total 37130909 100% 1000 100% 371 121

15.2.2 Supermarket Data and Competition Measures

The second source of information that we exploit is an exhaustive data base of all
medium and large supermarkets in France.9 For each supermarket it includes in
particular their name, location, retail chain and regional branch/wholesaler.10 In the
data set, we identified the supermarkets for which we have price records.11

Table 15.2 shows the retail chains of the supermarkets for which we have price
records. Those supermarkets belong mostly to the retail groups Carrefour, Systeme
U and Les Mousquetaires with more than 18% of supermarkets each (second column
of Table 15.2).12 Some retail groups are over-represented with respect to their share
in the total population of medium and large supermarkets. For instance, almost 30%
of the sample of supermarkets for which we have price records belong to the group

9 The data was bought from LSA (http://expert.lsa-conso.fr/).
10 In France, retail groups have regional branches, which in some cases operate as wholesalers,
and in other cases do not directly bargain with producers, but have a role in setting prices in their
region.
11 In about 50 cases, finding the right correspondence proved to be problematic. We then discarded
price observations relative to those stores, in order to avoid making mistakes in attributing the
wrong store specific characteristics to our data set of price observations.
12 Note that we have omitted retail chains for which no price records are available, and normalized
the percentages of the remaining ones to 100%.
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Systeme U and 14% to Leclerc, while at the national level Systeme U has 16.5%
and Leclerc 8.4% of the supermarkets. However, Carrefour is under-represented
among the supermarkets with price observations with respect to the total number of
Carrefours in France. Note also that, since click&collect are more frequently asso-
ciated with large rather than with medium size supermarkets, retail chains of large
supermarkets are over-represented with respect to those typically having smaller su-
permarkets. Indeed, about 40% of supermarkets for which we have price records
are large supermarkets. However, this proportion is close to their market share in
the French retail sector (see Anderton et al., 2011). The last column of Table 15.2
reports the retail chains’ market shares in 2012 as reported by Kantar Worldpanel-
LSA.

Table 15.2 Stores’ retail chain/group and market shares

Retail N.store % N.all stores % Mrkt shares
chain (w/prices) (med.-large) [Kantar]

Group AUCHAN: 92 5.9% 443 7.0% 14.5%
Auchan (large supermkts) 55 3.5% 139 1.8% 11.2%
Simply Market (medium) 37 2.4% 304 4.0% 3.3%

Group CARREFOUR: 286 18.2% 1733 27.7% 24.9%
Carrefour (large) 186 11.9% 226 3.0% 14.8%
Carrefour Market (large&med.) 100 6.4% 1507 19.8% 10.1%

Group CASINO: 126 8.0% 506 8.1% 6.7%
Geant Casino (large) 87 5.5% 150 2.0% 3.5%
Casino (large&medium) 39 2.5% 356 4.7% 3.2%

Group SYSTEME U: 468 29.8% 1033 16.5% 12.2%
Hyper U (large) 55 3.5% 64 0.8%
Marché U (medium) 7 0.5% 8 0.1%
Super U (large&medium) 390 24.8% 717 9.4%
U Express (medium) 16 1.0% 244 3.2%

Group LECLERC:
Leclerc (large) 222 14.1% 641 8.4% 24.8%

Group MOUSQUETAIRES:
Intermarché (large&medium) 377 24.0% 1837 24.1% 16.8 %

Total 1571 100% 7596 100% 100.0%

The supermarkets for which we have price records are a rather representative
sample in terms of their geographical distribution (see Fig. 15.11 in the Appendix as
compared to the universe of medium and large supermarkets in France represented
in Fig. 15.10). We also consider their location in smaller geographical areas or local
markets, which correspond to French “arrondissements” (which may roughly be
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translated into English as districts). Prices in our data set concern supermarkets
located in 286 local markets (out of 330 in mainland France). On average, there
are about 13 local markets per region and, in each local market, 6 supermarkets for
which we have price records.

15.3 Assessing Price Dispersion in the French Retail Sector

In this chapter, we define price dispersion as price differences within a quarter for
exactly the same product (i.e., barcode) sold in different supermarkets.13

In order to measure price dispersion, we first compute percentage price devia-
tions from a quarterly reference price for each product i. In particular, we define the
relative price of a product i in a quarter q as prel(iq)

ist = ln(pist)− ln(piq), where pist
is the price of a product i sold in supermarket s in week t and piq is the quarterly
average price of product i over supermarkets. Figure 15.1 shows the distribution of
the full set of relative prices in our data.

Fig. 15.1 Distribution of relative prices

Price dispersion can then be summarized in different ways. Among the possible
measures, there are

• the standard deviation of relative prices: σ(prel(iq)
ist ),

• the interquartile range of relative prices: IQ(prel(iq)
ist ) =Q3(prel(iq)

ist )−Q1(prel(iq)
ist ),

• the interdecile range of relative prices: ID(prel(iq)
ist )=P90(prel(iq)

ist )−P10(prel(iq)
ist ),

• the mean of absolute deviation : MAD(prel(iq)
ist ) = 1/4n∑

n
i=1 ∑

4
q=1 |p

rel(iq)
ist |.

13 Price dispersion may also be considered using less strict definitions of a product. Some stud-
ies, for instance, also look at price differences for the same product categories (e.g., Kaplan and
Menzio, 2015).
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Table 15.3 provides the standard deviation, interquartile range, interdecile range,
and the mean of absolute relative prices computed over all observations. The mean
absolute deviation of relative prices is about 5% in France and the interquartile
range 8 is percentage points, suggesting a non-trivial overall price dispersion. The
distribution of the mean absolute deviation of relative prices by product is shown in
Fig. 15.2.

Table 15.3 Different measures of price dispersion

Measures of price dispersion

Standard deviation of relative prices σ(prel(iq)
ist ) 0.07

Interquartile range of relative prices Q3(prel(iq)
ist )−Q1(prel(iq)

ist ) 0.08
Interdecile range of relative prices P90(prel(iq)

ist )−P10(prel(iq)
ist ) 0.17

Mean absolute deviation 1/4n∑
n
i=1 ∑

4
q=1 |p

rel(iq)
ist | 0.05

N.obs 37,130,909
N.products 1,000

Note: Statistics are computed at the barcode level and then averaged across barcodes.

Fig. 15.2 Distribution of MAD by products

For the sake of comparison, Table 15.4 reports several measures of price dis-
persion provided by other studies. The only assessment of price dispersion at the
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barcode level available for France is provided by Dubois and Perrone (2015). The
rest of Table 15.4 reports measures of price dispersion computed for the US, the
UK, and Canada (Kaplan and Menzio, 2015; Gorodnichenko et al., 2014; Gorod-
nichenko and Talavera, 2017). The last column corresponds to our calculation of the
same measures of price dispersion as in those studies, but based on our data set.

Table 15.4 Comparison with other measures of price dispersion in the retail sector

Dubois and Perrone (2015):
France; 1999-2001; 2 barcodes of beer, coffee, cola, whisky with our data:
Coefficient of variation of prices 0.11 0.08
Interquartile ratio of prices 1.14 1.09
95th/5th centile ratio of prices 1.37 1.26

Kaplan and Menzio (2015):
US; 2004-2009
Standard deviation of normalized prices 0.19 0.06
90th/10th centile ratio of normalized prices 1.72 1.13
90th/50th centile ratio of normalized prices 1.26 1.07
50th/10th centile ratio of normalized prices 1.35 1.06

Gorodnichenko et al. (2014):
US; May2010-Feb2012; goods sold on online shopping platforms
Standard deviation of log prices 0.24 0.07
Coefficient of variation of prices 0.22 0.07
Interquartile range of log prices 0.35 0.09

Gorodnichenko et al. (2014):
UK; May2010-Feb2012; goods sold on online shopping platforms
Standard deviation of log prices 0.23 0.07
Coefficient of variation of prices 0.19 0.07
Interquartile range of log prices 0.31 0.09

Gorodnichenko and Talavera (2017):
US; Nov2008-Sep2012; goods sold on online price comparators
Standard deviation of log prices 0.16 0.07
Interquartile range of log prices 0.17 0.09

Gorodnichenko and Talavera (2017):
Canada; Nov2008-Sep2012; goods sold on online price comparators
Standard deviation of log prices 0.13 0.07
Interquartile range of log prices 0.11 0.09

Note: Statistics are computed at the barcode level and then averaged across barcodes.

The first conclusion that can be drawn from Table 15.4 is that price dispersion in
our data is quite close to that obtained by Dubois and Perrone (2015). On average
across products, the 95th percentile of observed prices is 26% higher than the 5th
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(versus 37% computed by Dubois and Perrone, 2015). The interquartile ratios are
even closer to each other (1.09 in our data, versus 1.14). The second conclusion
emerging from comparing statistics of price dispersion computed for the US, the
UK and Canada with the same statistics computed on our data is that in France
prices appear to be less dispersed. In particular, the comparison with price dispersion
across brick-and-mortar stores measured by Kaplan and Menzio (2015) suggests
that US prices are at least 20 to 50% more dispersed than in France, depending on
the statistic considered.

Price dispersion may differ across many dimensions due to factors related to the
product, store or time. Among the dimensions that characterize a product i, there
are its brand b, its manufacturer p, and its product category (COICOP-level4) k.
A supermarket s can be characterized in terms of its regional branch/wholesaler,
denoted wholesaler w as a shortcut, and retail chain r, as well as by its location in
market m and region g.

In the product dimension, Fig. 15.3 suggests that price dispersion varies depend-
ing on the product’s brand and manufacturer. The distribution of the mean abso-
lute deviation is asymmetric, with a long right tail, indicating that products of some
brands (and manufacturers) are characterized by deviations from the product’s quar-
terly average price of an order of more than 10%. The extent of price dispersion
also differs across product categories. The upper panel of Fig. 15.4 shows that some
product categories at COICOP-level 4 are characterized by a larger price dispersion
than others. The lower panel of the same figure suggests that the median relative
price is below the mean for all wide product categories (i.e., COICOP level 1).

Regarding the store dimension, the upper panel of Fig. 15.5 shows that price
dispersion is quite heterogenous across supermarkets. The lower panel of the figure
suggests that the regional branch/wholesaler affiliation of supermarkets accounts for
a significant proportion of the observed price dispersion. Looking more specifically
at retail chains, each line in Fig. 15.6 represents the boxplot of relative prices for a
French retail chain. The average relative prices, as well as their dispersion, largely
vary across retail chains.

Another dimension characterizing stores is their location. The long right tail of
the upper panel of Fig. 15.7 suggests that some local markets are characterized by
rather large average price dispersion, and the lower panel shows that relative prices
are more dispersed in some regions, like for instance, in Île-de-France (region num-
ber 11, where Paris is), Corse (region number 94), or Provence-Alpes-Côte d’Azur
(region number 93), than in others.14

Finally, as far as time is concerned, a simple variance analysis of relative prices
entailing product, store and time fixed effects suggests that the most important fac-
tors relate to stores, followed by factors related to products, while week fixed effects

14 French regions’ code (till 2015) were: 11 Île-de-France, 21 Champagne-Ardenne, 22 Picardie,
23 Haute-Normandie, 24 Centre-Val de Loire, 25 Basse-Normandie, 26 Bourgogne, 31 Nord-
Pas-de-Calais, 41 Lorraine, 42 Alsace, 43 Franche-Comté, 52 Pays de la Loire, 53 Bretagne, 54
Poitou-Charentes, 72 Aquitaine, 73 Midi-Pyrénées, 74 Limousin, 82 Rhône-Alpes, 83 Auvergne,
91 Languedoc-Roussillon, 93 Provence-Alpes-Côte d’Azur, 94 Corse.
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Fig. 15.3 Distribution of MAD by products’ brand and manufacturer

basically do not explain the variance of deviations from the product quarterly aver-
age price.
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Fig. 15.4 Distribution of MAD by product category COICOP-level 4 and boxplot of
relative prices by product category COICOP-level 1

15.4 Disentangling the Sources of Price Dispersion

The descriptive analyses presented above may give us some indications about the
potential sources of price dispersion. However, a more structured analysis is needed
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Fig. 15.5 Distribution of average relative prices by stores and wholesalers

to properly assess their relative importance. In particular, this section provides an
answer to a highly debated issue in the theoretical literature on price dispersion: is
price dispersion spatial (i.e., some shops persistently sell at lower prices) or rather
transitory (i.e., each supermarket changes its prices over time, so that consumers
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Fig. 15.6 Boxplot of relative prices by retail chains

cannot learn by experience which shops provide the best price)? In order to disentan-
gle the two dimensions of price dispersion, we estimate for each product separately,
a fixed effect model including supermarket fixed effects, as well as fixed effects for
the combinations of weeks and regional branches. The former aim at capturing all
persistent characteristics of supermarkets determining price setting, while the lat-
ter account for temporary discounts. Indeed, in France bargaining with producers
is typically done by retail groups, while sales and promotions are chain or regional
branch-specific, and are thus implemented and advertised at the national or regional
level. We then estimate the following model, product by product

prel(iq)
ist = αis +αiwt + εiswt , (15.1)

where prel(iq)
ist is the percentage deviation from the product quarterly mean log price,

αis are supermarket s fixed effects, αiwt are combinations of week t and regional
branch w fixed effects, and εiswt are the error terms.

Figure 15.8 shows the distribution of the overall variance explained by the above
model by product. It suggests that store and temporary discount fixed effects suffice
to explain on average 90% of the observed dispersion of prices across stores and
time. The model explains 42% of price dispersion in the worst case, and up to more
than 98% in the case of the product with the best fit.

Moreover, Fig. 15.9 shows that the estimated variance of supermarket fixed ef-
fects αis represents by far the most important component of the total variance ex-
plained by the model. On average, the correlation between store fixed effects and
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Fig. 15.7 Distribution of relative prices by local markets and boxplot of relative prices
by region

relative prices is 0.84, ranging from 0.39 to more than 0.98. As far as temporary
discount fixed effects are concerned, on average, the correlation with the observed
relative prices is 0.26. This shows that temporary discounts happen on average more
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Fig. 15.8 Distribution of the overall variance explained by the model by product

frequently for products sold at a relatively high price. However, these correlations
range from −0.38 to 0.68, suggesting that discounts may nevertheless also concern
products sold at a relatively low price.

Fig. 15.9 Distribution of correlations between store fixed effects and relative prices by
product

Now that we have reached the conclusion that in France price dispersion is
mainly spatial, it is possible to go one step further and estimate a second stage
that investigates its determinants. In particular, it is important to understand the rel-
ative role played by retail chains at the national level and factors at the local level. It
seems likely that the urban density of the area where a supermarket is located may
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play a role and in particular the characteristics of local demand and competition.15

We approximate local demand by log per capita income and the population of the
district m. Competition in the local market is captured by two variables. The first is
the number of supermarkets selling product i in local market m. The second is the
distance (in kilometers) to the closest large supermarket, computed exploiting the
geo-localization of supermarkets and the exhaustive data base of all medium and
large supermarkets in France.16

We thus estimate the following models:

1. additive fixed effects model

αis = δi +δr + γ1 ·urban+ γ2 · income+ γ3 ·pop
+ γ4 · sameprod+ γ5 · closest+υis , (15.2)

2. multiplicative fixed effects model

αis = δi ·δr + γ1 ·urban+ γ2 · income+ γ3 ·pop
+ γ4 · sameprod+ γ5 · closest+υis , (15.3)

where αis are the product×supermarket fixed effects estimated in the first stage, δi
are product fixed effects, δr are fixed effects for (anonymized) retail chains to which
the supermarket belongs, urban is a 4-level categorical variable for urban density,
income and pop are respectively log per capita income and population of district
m (which approximates a local market), sameprod corresponds to the number of
supermarkets selling product i in the local market m and closest is the distance, in
kilometers, to the closest large supermarket.

Table 15.5 reports the estimated coefficients of the regressions (15.2) and (15.3).
The estimation results show that the multiplicative fixed effect model does a sig-
nificantly better job in fitting the data than the additive fixed effect model. The R
squared is almost doubled when considering multiplicative fixed effects. The com-
parison of the regressors’ contributions to the variance explained by the model re-
veals that retail chains are by far the most relevant factor. Conditionally on all other
regressors, retail chains account for 76% of the variance explained by the model in
the additive fixed effects model. The second most important factor is represented by
product fixed effects, which account for 8% of the variance explained by the model.
In the multiplicative effects model, retail chain and product fixed effects represent

15 Urban density categories are based on a combination of population density and absolute popu-
lation of INSEE “canton-ou-ville” (see Fig. 15.12 in the Appendix for details).
16 We follow the definition of competitors adopted by the French Competition Authority (2010) and
assume that large supermarkets are only in competition with other large ones, while medium size
supermarkets and discount stores also are also in competition with large supermarkets. Therefore,
not all supermarkets are competing with some medium size competitor, but for all supermarkets
we can compute the distance with respect to their closest large size competitor. Distances and
driving time to the closest competitor are calculated using two internet applications: GoogleMap
and YourNavigation. Since the computed distances are similar, in what follows, we only present
measures calculated from YourNavigation.
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Table 15.5 National and local determinants of spatial price dispersion

additive FE multiplicative FE
Regressor estimate SE estimate SE

retail chain 1 H −0.02∗∗∗ 0.0003
retail chain 1 S 0.04∗∗∗ 0.0004
retail chain 2 H −0.04∗∗∗ 0.0002
retail chain 2 S 0.00∗∗∗ 0.0002
retail chain 3 H 0.07∗∗∗ 0.0002
retail chain 3 S 0.10∗∗∗ 0.0004
retail chain 4 H −0.03∗∗∗ 0.0003
retail chain 4 S a 0.09∗∗∗ 0.0008
retail chain 4 S b −0.02∗∗∗ 0.0002
retail chain 4 S c 0.05∗∗∗ 0.0006
retail chain 5 H −0.06∗∗∗ 0.0002
retail chain 6 H −0.01∗∗∗ 0.0002
retail chain 6 S (ref) . .
rural −0.05∗∗∗ 0.0005 −0.05∗∗∗ 0.0004
semi-urban −0.05∗∗∗ 0.0004 −0.05∗∗∗ 0.0003
urban −0.04∗∗∗ 0.0004 −0.04∗∗∗ 0.0003
metropolitan (ref) . .
log local per capita income 0.01480∗∗∗ 0.0002 0.01461∗∗∗ 0.0002
log local population 0.00217∗∗∗ 0.0000 0.00222∗∗∗ 0.0000
n.stores selling product −0.00002∗∗∗ 0.0000 −0.00002∗∗∗ 0.0000
closest large supermkt 0.00030∗∗∗ 0.0000 0.00030∗∗∗ 0.0000
product FE yes no
product×retail chain FE no yes
R squared 0.34 0.58

Notes: ∗∗∗ means significant at 1%.

97% of the explained variance, suggesting that not all products exhibit the same
price dispersion across retail chains. Not surprisingly, retail chain fixed effects show
that prices in large supermarkets (denoted by the inclusion in the anonymized re-
tail chain name in Table 15.5 of an “H” for “Hypermarche” in French) tend to be
lower than those in medium-size supermarkets (denoted by an “S”).17 Regarding
the impact on local factors on prices, it is worth noticing that the estimates in the
additive and multiplicative effects model are very similar. First, urban density in-
creases price levels in supermarkets. Second, supermarkets facing favorable local
demand conditions in terms of a larger population and per capita income also ex-
hibit higher prices. Finally, stronger local competition tends to decrease price levels
in supermarkets. Indeed, the further away the nearest large supermarket is located,
the higher the prices. At the same time, if a product sold by a supermarket s is also
available in several other supermarkets located in the same local market, price lev-

17 The only exception is retail group 3, which has higher prices than some medium-sized super-
market retail chains. Note, however, that prices in its large supermarkets tend anyway to be lower
than in its own smaller supermarkets.
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els decrease. However, despite their statistical significance, these local factors have
a rather limited quantitative impact on prices.

The fact that in France centralized price setting strategies dominate local factors
in retail prices is the main message that can be drawn from our analysis of price dis-
persion. This finding is robust to alternative definitions of the level of centralization
in price setting determination. If we include retail group (instead of chain) dum-
mies in model 15.2, the R squared decreases only to 0.30 and, conditionally on all
other regressors, retail groups still account for 72% of the variance explained by the
model. These results suggest that a large chunk of price setting is actually already
determined at this level. Similarly, if we include regional branch/wholesaler dum-
mies in model 15.2, the R squared increases only to 0.37 and, conditionally on all
other regressors, regional branches account for 77% of the variance explained by the
model. Therefore, there seems to be an additional stage of price setting happening
at the regional level, but national price setting strategies are dominant.

15.5 Conclusion

Based on a large and original data set containing almost 40 million weekly price
records from more than 1500 medium and large size supermarkets in France from
October 2011 to September 2012, we characterize the overall shape and structure
of price dispersion in the French retail sector. We show that temporary sales and
promotions offer a limited explanation of the observed price dispersion, while the
permanent component of price dispersion largely dominates.

In fact, in France price dispersion across stores is essentially the result of persis-
tent heterogeneity in retail chains’ national pricing. First, retail groups bargain with
producers and the market share of the corresponding retail groups is likely to affect
their bargaining power. Second, retail groups set national prices at the retail chain
level (i.e., retail groups owning more than one retail chain set different prices across
them) or at the regional branch level. Within a retail group, for instance, prices are
lower in chains characterized by larger stores. More generally, the average level of
prices depends on the positioning and the customers’ target of the retail chain. De-
spite this rather centralized price-setting behavior, we show that local conditions
regarding demand or local competition between supermarkets also contribute to ex-
plaining the observed prices in local markets, though to a much lower extent.
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Appendix

Fig. 15.10 Geographical distribution by region of stores. Note: Darker colored regions
correspond to larger number of stores
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Fig. 15.11 Geographical distribution by department of stores for which price data are
available. Note: Darker colored regions correspond to larger number of stores

Fig. 15.12 Criteria defining urban density
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pooled local linear estimator

197, 199, 222, 228
prediction with spatial models

263, 280

price
dispersion 428, 433, 438
spells 430

price index
Laspeyres 358
regional 358
spatial 357, 358
temporal 357, 358

Probit 155, 169
pseudo-panel 354, 356, 359

Q

quality 351, 352, 357, 360, 370
change 352

Quantile Regression (QR) 239, 359
Quasi-Maximum Likelihood (QML)

273, 283, 284
Quasi-Monte Carlo 365

R

R&D and productivity 400
random

coefficients 125, 351, 363, 364
effects 36–

39, 57, 75, 195, 205, 213, 252,
305, 356, 357, 362

utility 350, 360, 364
Random Effects Quantile Regression

(RE-QR) 240, 252
Random Utility Maximization

(RUM) model 378
real

estate 352, 353, 366, 369
option theory 369

reciprocity 109, 114, 117
refugees 390
regulatory impact (REG) 411
repeated sales 359
resale housing market 366
residential

choice 351, 363
location

352, 363, 364, 366, 369, 371
mobility 349, 350, 360–363, 366
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Restricted Maximum Likelihood
(REML) 138, 158

ripple effect 366
Root Mean Square Error (RMSE)

157

S

selection bias 178
semi-parametric estimation

369, 370
serial correlation 104
shadow price 357
shocks globally 268
shocks locally 268
simulation-based estimator 351
smoothed Fixed Effects Quantile

Regression (smoothed FE-QR)
248

sorting 351, 369, 371
spatial

autocorrelation
264, 266, 268, 277, 280, 281,
284, 285

data 333
dependence 353, 357, 387
Durbin model 368
effect 350, 352, 353
error 368
heterogeneity

265, 268, 269, 350, 353
lag 265–268, 273, 278–

280, 282, 285,
353–357, 366

matrix 265, 266
nested random effects model

356
time-varying weight 354, 355
weight 353, 355, 356, 358, 368

Spatial AutoRegressive (SAR)
117, 265, 266, 268, 270–
273, 277, 281, 356, 358, 368

Spatial Moving Average (SMA)
265, 268, 271, 272, 278, 279

spatio-temporal 350, 367, 368
specification tests 139

spectral decomposition
20, 39, 52, 135

spillover effects 356, 388
structural gravity 325
subprime crisis 359

T

temporary migration 381
testing for model selection 60
three-dimensional models

350, 352, 353, 357,
368, 369, 371

time heterogeneity 268, 269
time-space 284
time-varying coefficients 353
Two-Stage Least Squares (2SLS)

78
two-step estimator 205, 207

U

U.S. Census 351
unobserved heterogeneous global

factors 297

V

variance components estimation
21, 22, 44, 46, 54, 57, 130, 137

variance term 199, 217, 221, 228
variational Bayesian approximations

371
varying coefficient models 27, 299
visa policies 386

W

Weibull distribution 361
weighted local linear estimator

204, 206
willingness

to accept 352, 366
to pay 352, 366, 370

Wishart distribution 140
Within



456 INDEX

estimator
13, 15, 25, 43, 49, 110, 294

projector 8, 16, 25, 44, 169
transformation

14, 15, 25, 44, 295, 310

Woodbury identity 146

Z

zero values 383


