
Chapter 1
Fixed Effects Models

László Balázsi, László Mátyás, and Tom Wansbeek

Abstract In recent years the massive emergence of multi-dimensional panels has led
to an increasing demand for more sophisticated model formulations with respect to
the well known two-dimensional ones to address properly the additional heterogeneity
in the data. This chapter deals with the most relevant three-dimensional fixed effects
model specifications and derives appropriate Least Squares Dummy Variables and
Within estimators for them. The main results of the chapter are also generalized
for unbalanced panels, cross-sectional dependence in the error terms, and higher
dimensional data. Some thoughts on models with varying slope coefficients are also
presented.

1.1 Introduction

Model formulations in which individual and/or time heterogeneity factors are con-
sidered fixed parameters, rather than random variables (see Chap. 2), are called
fixed effects models. In the basic, most frequently used models, these heterogenous
parameters are in fact splits of the regression constant. They can take different values
in different sub-spaces of the original data space, while the slope parameters remain
the same. This approach can then be extended to a varying coefficients framework,
where heterogeneity is not picked up by the constant term, but rather by the slope
coefficients.
The vast majority of the empirical studies conducted on multi-dimensional panels

involve fixed effects models of some form. Chapters 11–15 of this volume visit some
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Table 1.1: Examples of empirical studies for multi-dimensional fixed effects models,
as appearing in the empirical chapters of this volume

Study Topic Indices (𝑖- 𝑗-𝑡) Sample
Size

Fixed Effects Balanced

Chapter 11 – Trade

Glick and Rose (2002) Currency Union origin country - destina-
tion country - year

220 000 𝛾𝑖 𝑗 No

Head, Mayer and Ries (2010) Colonial Trade Linkages 618 000 𝛾𝑖 𝑗 No

S. Baier and Bergstrand (2002) Endogeneity of Trade
Flows

1 400 𝛼𝑖 + 𝛾 𝑗 No

S. L. Baier and Bergstrand (2009) Trade Agreements 19 000 𝛼𝑖 + 𝛾 𝑗 No

Egger and Pfaffermayr (2011) Path Dependence 57 000 𝛼𝑖 + 𝛾 𝑗 No

Egger, Larch, E. and Winkelmann
(2011)

Endogenous Trade Agree-
ments

16 000 𝛼𝑖 + 𝛾 𝑗 No

Matyas (1997) Gravity Model Spec. 1 700 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Egger (2000) Gravity Model Spec. 2 500 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Rose and van Wincoop (2001) Currency Union 31 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Magee (2003) Preferential Trade Agree-
ments

90 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Egger (2001) Exports and Outward FDI 1 000 𝛾𝑖 𝑗 +_𝑡 No

Bun and Klaassen (2002) Importance of Dynamics 10 000 𝛾𝑖 𝑗 +_𝑡 No

Cheng and Wall (2005) Trade Integration 3 200 𝛾𝑖 𝑗 +_𝑡 No

Shin and Serlenga (2007) Intra-EU Trade 3 800 𝛾𝑖 𝑗 +_𝑡 No

Martin, Mayer and Thoenig (2008) Military Conflicts and
Trade

225 000 𝛾𝑖 𝑗 +_𝑡 No

Egger and Pfaffermayr (2003) Gravity Model Spec. 2 000 𝛼𝑖 +𝛾 𝑗 +_𝑡 +
𝛾∗
𝑖 𝑗

No

Baldwin and Taglioni (2006) Gravity Model Spec. 2 500 𝛼𝑖 + 𝛾 𝑗 +
_𝑡 ;𝛾𝑖 𝑗 +_𝑡

No

Romalis (2007) NAFTA’s, CUSFTA’s Im-
pact

country - commodity -
year

1 116 000 𝛾𝑖 𝑗 +_𝑖𝑡 No

Olivero and Yotov (2012) Trade Agreements origin country - destina-
tion country - year

5 500 𝛼𝑖𝑡 + 𝛼∗
𝑗𝑡

No

Baltagi, Egger and Pfaffermayr
(2003)

Gravity Model Spec. 10 000 𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

S. L. Baier and Bergstrand (2007) Trade Agreements 36 000 𝛼𝑖𝑡 + 𝛼∗
𝑗𝑡
;

𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

Nuroglu and Kunst (2014) Factors Explaining Trade 150 000 𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

Bergstrand, Larch and Yotov (2015) Border Effects 24 000 𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

Chapter 12 – Housing and Prices

Fu, Zhu and Ren (2015) Housing Tenure Choices household - prefecture -
type

2 500 000 _𝑡 No

Syed, Hill and Melser (2008) House Prices Indices house - region - quarter 418 000 𝛼𝑗𝑡 No

Gayer, Hamilton and Viscusi (2000) Risks fromSuperfund Sites house - city - year 17 000 𝛾 𝑗 +_𝑡 No

Turnbull and van der Vlist (2015) Uninformed House Buyers house - block - year 115 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Bayer, McMillan, Murphy and Tim-
mins (2016)

Demand for Houses household - neighbour-
hood - time

1 000 000 𝛼𝑖 + 𝛼∗
𝑗𝑡

No

Baltagi, Bresson and Etienne (2015) Neighbor’s Prices year - ‘arrondissement’
- quartier - block - flat

157 000 𝛼𝑡𝑎 + 𝛾𝑡𝑎𝑞 +
_𝑡𝑎𝑞𝑖

No
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of the major fields in which multi-dimensional panels are used.1 Tables 1.1-1.2 collect
the fixed effects specifications relied upon in these empirical chapters. Just by itself,
Matyas’s (1997) seminal paper has a tremendous number of citations, which can
dramatically be expanded by considering other popular fixed effects formulations. A
representative selection of such publications, in addition to the ones in Tables 1.1-1.2,
is presented in Table 1.3. While these collections are far from being comprehensive
in terms of topics or even the kind of observations the data sets may comprise, it
gives a decent picture of how fruitfully fixed effects models can be applied.
A few regularities stand out from Tables 1.1-1.2 and 1.3. First, most models are not

too sophisticated from the point of view of the kind of fixed effects used (column 5);
in fact they can usually be traced back to two-dimensional (2D) models by replacing
pairs of indices with a single index. Second, as the estimation of models with a
complex fixed effects structure might be problematic on large data sets, more complex
models are usually applied on data with moderate sample sizes, spanning from a
few thousands to “only” tens of thousand of observations. More importantly, each
index also tends to be short: a few dozen countries, a handful of product categories,
or annual periods of ten-twenty years, etc. Third, almost all data sets collected
are unbalanced, some closer to a fully complete panel (flow-type data with a few
countries), some more heavily (employer-employee matched data). From these, it
seems clear that studies typically rely on simpler models, not particularly exploiting
the possible interaction effects and the higher-dimensionality of the data, especially
as larger data sets and more complicated models together come at the price of heavy
computational burdens. This chapter provides solutions to most of these issues by
proposing estimation techniques for various “truly” three-dimensional (3D) fixed
effects models, feasible even under unbalanced data sets of extreme sizes. The models
considered are exclusively static. Dynamic models are visited in Chap. 4.
In Sect. 1.2 we introduce the most relevant models in a three-dimensional panel

data setup. Section 1.3 deals with the Least Squares estimation of these models, while
Sect. 1.4 analyses the behaviour of this estimator for incomplete/unbalanced data.
Section 1.5 studies the properties of the so-calledWithin estimator. Section 1.6 extends
the original models to account for eventual heteroscedasticity and cross-correlation.
Section 1.7 generalizes the models presented to four and higher dimensional data
sets, while Sect. 1.8 deals with some varying coefficients specifications. Sections 1.2,
1.5 and 1.7 rely heavily on Balazsi, Matyas and Wansbeek (2015).

1.2 Models with Different Types of Heterogeneity

In three-dimensional panel data, the dependent variable of a model is observed
along three indices, such as 𝑦𝑖 𝑗𝑡 , 𝑖 = 1, . . . , 𝑁1, 𝑗 = 1, . . . , 𝑁2, and 𝑡 = 1, . . . ,𝑇 , and the
observations have the same ordering: index 𝑖 goes the slowest, then 𝑗 , and finally 𝑡

1 Further, see Koren and Hornok (2017) for a review on recent advances in trade and comprehensive
three-dimensional data sets.
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Table 1.2: Examples of empirical studies for multi-dimensional fixed effects models,
as appearing in the empirical chapters of this volume, cont.

Study Topic Indices (𝑖- 𝑗-𝑡) Sample
Size

Fixed Effects Balanced

Chapter 13 – Migration

Perkins and Neumayer (2014) International Student
Flows

origin country - destina-
tion country - year

85 000 _𝑡 No

Belot and Ederveen (2012) Cultural Barriers 2 700 𝛼𝑖 + 𝛾 𝑗 No

Czaika and Hobolth (2016) Asylum and Visa
Policies

9 000 𝛼𝑖 + 𝛾 𝑗 No

Beine and Parsons (2015) Climatic Factors 62 000 𝛼𝑖 + 𝛼∗
𝑗𝑡

No

Bertoli and Fernández-Huertas Mor-
aga (2013)

Multilateral Resistance origin country - quarter
- year

2 700 𝛾 𝑗 + 𝛼𝑖𝑡 No

Bertoli, Brücker and Fernández-
Huertas Moraga (2016)

European Crisis origin country - month -
year

2 200 𝛾𝑖 𝑗 +_𝑡 Yes

Echevarria and Gardeazabal (2016) Refugee Migration origin country - destina-
tion country - year

700 000 𝛾𝑖 𝑗 +_𝑡 No

Poot, Alimi, Cameron and Maré
(2016)

Intranational Migration origin region - destina-
tion region - year

1 200 𝛾𝑖 𝑗 +_𝑡 No

Eilat and Einav (2004) International Tourism origin country - destina-
tion country - year

5 500 𝛾𝑖 𝑗 + 𝛼𝑖 +
𝛾∗
𝑗
+_𝑡

No

Abbott and Silles (2016) International Student
Flows

2 200 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Adserà and Pytliková (2015) Language 95 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Figueiredo, Lima andOrefice (2016) Migration and Regional
Trade Agreements

63 000 𝛼𝑖𝑡 + 𝛼∗
𝑗𝑡
;

𝛼𝑖 + 𝛾 𝑗 +_𝑡
No

Llull (2016) Understanding Interna-
tional Migration

7 300 𝛼𝑖 + 𝛾 𝑗 + _𝑡 ;
𝛼𝑖𝑡 + 𝛾 𝑗 ;
𝛼𝑖 + 𝛼∗

𝑗𝑡
;

𝛾𝑖 𝑗 +_𝑡

No

Ortega and Peri (2013) Immigration Policies 40 000 𝛼𝑖 +𝛾 𝑗 +_𝑡 +
𝛼∗
𝑖𝑡
+ 𝛾∗

𝑖 𝑗

No

Barthel and Neumayer (2015) Asylum Migration 29 000 𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

Chapter 14 – Country-Industry
Productivity

R&D and Productivity country - industry - time 4 000 𝛼𝑖 + 𝛾 𝑗 + _𝑡 ;
𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

Non-Manufacturing
Regulations

4 000 𝛼𝑖 + 𝛾 𝑗 + _𝑡 ;
𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

No

Chapter 15 – Consumer Price Het-
erogeneity

Consumer Price Disper-
sion

product - store - whole-
saler - week

37 130 000 𝛾𝑖 𝑗 + 𝛼𝑖𝑠𝑡 No

Gorodnichenko, Sheremirov and Ta-
lavera (2014)

Price Setting in Online
Markets

good - seller - time 17 700 𝛼𝑖 + 𝛾 𝑗 No

Dubois and Perrone (2015) Price Dispersion product - store - year 445 000 𝛼𝑖 + _𝑡 ;𝛾 𝑗 +
_𝑡

No

Gorodnichenko and Talavera (2017) Price Setting in Online
Markets

good - country - time 21 700 𝛾 𝑗 +_𝑡 No

Biscourp, Boutin and Verge (2013) Retails Regulations product - type - fascia 42 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Borenstein and Rose (1994) US Airline Industry airport - airport - carrier 1 000 𝛾𝑖 𝑗 (FE) +
_𝑡 (RE)

No

Gerardi and Shapiro (2009) Price Dispersion carrier - route - time 27 000 𝛾𝑖 𝑗 +_𝑡 No
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Table 1.3: Further examples of empirical studies for multi-dimensional fixed effects
models, grouped by model complexity

Study Topic Indices (𝑖- 𝑗-𝑡) Sample
Size

Fixed Effects Balanced

Berthelemy (2006) Donor’s Assistance donor country - recipi-
ent country - year

36 000 𝛼𝑖 No

Thompson and Pendell (2016) Poultry Trade country pairs - poultry
product - year

2 200 𝛼𝑖 Yes

Hirsch (2013) Gender Wage Gap employee - employer -
year

1 200 000 𝛾 𝑗 ; 𝛾𝑖 𝑗 No

Hur, Alba and Park (2010) Trade Agreements origin country - destina-
tion country - year

56 000 𝛾𝑖 𝑗 No

Smith and Yetman (2007) Multivariate Forecasts forecaster - forecast ho-
rizon - quarter

15 000 𝛾𝑖 𝑗 ; 𝛼𝑖 + 𝛾 𝑗 ;
𝛼𝑖 ; 𝛾 𝑗

No

Horrace and Schnier (2010) Mobile Product Techno-
logies

vessel - spatial location
- year

1 500 𝛼𝑖𝑡 Yes

Parsley and Wei (1999) Border Effect traded goods - cities -
quarter

228 000 𝛼𝑖 + 𝛾 𝑗 Yes

Haller and Cotterill (1996) Share-Price Measures brand - market - quarter 3 500 𝛼𝑖 + 𝛾 𝑗 No

Crozet, Milet and Mirza (2016) Domestic Trade Regula-
tions

origin country - destina-
tion country - firm - time

115 000 𝛼𝑠 +_𝑡 ; 𝛼𝑠𝑡 No

Bussiere, Fidrmuc and Schnatz
(2005)

Trade Integration origin country - destina-
tion country - year

50 000 𝛾𝑖 𝑗 +_𝑡 No

Bellak, Leibrecht and Riedl (2008) Labour Costs and FDI
Flows

400 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Fourie and Santana-Gallego (2011) Tourist Flows 91 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Harris, Konya and Matyas (2000) Environmental Regula-
tions

3 800 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Heyman, Sjoholm and Tingvall
(2007)

Foreign Ownership
Wage Premium

employee - employer -
year

1 600 000 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Parsley (2003) Exchange Rate Pass
Through

import goods - import-
ing country - year

1 300 𝛼𝑖 + 𝛾 𝑗 +_𝑡 No

Melitz and Toubal (2012) Linguistic Factors of
Trade

origin country - destina-
tion country - year

209 000 𝛼𝑖𝑡 + 𝛼∗
𝑗𝑡

No

Aghion, Burgess, Redding and
Zilibotti (2008)

Indian Trade Liberaliza-
tion

industry - state - year 18 000 𝛾𝑖 𝑗 + 𝛼𝑖𝑡 +
𝛼∗

𝑗𝑡

Yes

the fastest,2 such as

(𝑦111, . . . , 𝑦11𝑇 , . . . , 𝑦1𝑁21, . . . , 𝑦1𝑁2𝑇 , . . . , 𝑦𝑁111, . . . , 𝑦𝑁11𝑇 , . . . , 𝑦𝑁1𝑁21, . . . , 𝑦𝑁1𝑁2𝑇 ) ′ .

We assume in general that the index sets 𝑖 ∈ {1, . . . , 𝑁1} and 𝑗 ∈ {1, . . . , 𝑁2} are
(completely or partially) different. When dealing with economic flows, such as trade,
capital, investment (FDI), etc., there is some kind of reciprocity, in such cases it is
assumed that 𝑁1 = 𝑁2 = 𝑁 . The main question is how to formalize the individual
and time heterogeneity – in our case, the fixed effects. In standard two-dimensional
panels, there are only two effects, individual and time, so in principle 22 model
specifications are possible (if we also count the model with no fixed effects). The

2 Note that the 𝑁1, 𝑁2 notation does not mean, by itself, that the data is unbalanced.
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situation is fundamentally different in three-dimensions. Strikingly, the 6 unique
fixed effects formulations enable a great variety, precisely 26, of possible model
specifications. Of course, only a subset of these are used, or make sense empirically,
so in this chapter we only consider the empirically most meaningful ones.
Throughout the chapter, we follow standard ANOVA notation, that is 𝐼 and 𝐽

denote the identity matrix, and the square matrix of ones respectively, with the size
indicated in the subscript, 𝐽 denotes the normalized 𝐽 (each element is divided by the
number in the subscript), and ] denotes the column vector of ones, with size in the
index. Furthermore, an average over an index for a variable is indicated by a bar on
the variable and a dot in the place of that index. When discussing unbalanced data, a
plus sign in the place of an index indicates summation over that index. The matrix 𝑀
with a subscript denotes projection orthogonal to the space spanned by the subscript.
The models can be expressed in the general form

𝑦 = 𝑋𝛽+𝐷𝜋 + Y (1.1)

with 𝑦 and 𝑋 being the vector and matrix of the dependent and explanatory variables
(covariates) respectively of size (𝑁1𝑁2𝑇 ×1) and (𝑁1𝑁2𝑇 ×𝐾), 𝛽 being the vector
of the slope parameters of size (𝐾 ×1), 𝜋 the composite fixed effects parameters, 𝐷
the matrix of dummy variables, and finally, Y the vector of the disturbance terms.
The first attempt to properly extend the standard fixed effects panel data model to a

multi-dimensional setup was proposed by Matyas (1997) (see for more, for example,
Baltagi, 2013 and Balestra & Krishnakumar, 2008). The specification of this model is

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 𝛽+𝛼𝑖 +𝛾 𝑗 +_𝑡 + Y𝑖 𝑗𝑡 , (1.2)

where the 𝛼𝑖 , 𝛾 𝑗 , and _𝑡 parameters are the individual and time-specific fixed
effects (picking up the notation of (1.1), 𝜋 = (𝛼′ 𝛾′ _′) ′ with 𝛼′ = (𝛼1, . . . , 𝛼𝑁1 ),
𝛾′ = (𝛾1, . . . , 𝛾𝑁2 ) and _′ = (_1, . . . ,_𝑇 )), and Y𝑖 𝑗𝑡 are the i.i.d. (0, 𝜎2

Y) idiosyncratic
disturbance terms. We also assume that the 𝑥𝑖 𝑗𝑡 covariates and the disturbance terms
are uncorrelated (this assumption is relaxed in Chap. 3). Equation (1.2) has been the
model applied in several studies in trade, migration, as well as in labour economics
(see e.g., Egger, 2000; Harris et al., 2000; Rose & van Wincoop, 2001; Magee, 2003;
Parsley, 2003; Heyman et al., 2007; Bellak et al., 2008; Fourie & Santana-Gallego,
2011; Ortega & Peri, 2013; Adserà & Pytliková, 2015; and Turnbull & van der Vlist,
2015).
A model has been proposed by Egger and Pfaffermayr (2003), popular in the trade

literature, forecasting and labour economics (see e.g., Glick & Rose, 2002; Smith &
Yetman, 2007; Head et al., 2010; Hur et al., 2010; and Hirsch, 2013), which takes
into account bilateral interaction effects. The model specification is

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 𝛽+𝛾𝑖 𝑗 + Y𝑖 𝑗𝑡 , (1.3)

where the 𝛾𝑖 𝑗 are the bilateral specific fixed effect.
A variant of model (1.3), proposed by Cheng and Wall (2005), used in empirical

studies (see also Egger, 2001, Bun & Klaassen, 2002, Eilat & Einav, 2004, Bussiere
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et al., 2005, Romalis, 2007, Shin & Serlenga, 2007; Martin et al., 2008; Bertoli et al.,
2016 or Bertoli & Fernández-Huertas Moraga, 2013; Beine & Parsons, 2015) is

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 𝛽+𝛾𝑖 𝑗 +_𝑡 + Y𝑖 𝑗𝑡 . (1.4)

It is worth noting that models (1.3) and (1.4) are in fact straight 2D panel data models,
where the individuals are now the (𝑖 𝑗) pairs.
Baltagi et al. (2003), Baldwin and Taglioni (2006) and S. L. Baier and Bergstrand

(2007) suggest other forms of fixed effects. A simpler model is

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 𝛽+𝛼 𝑗𝑡 + Y𝑖 𝑗𝑡 , (1.5)

where we allow the individual effect to vary over time (see e.g., Syed et al., 2008;
Horrace & Schnier, 2010; and (Crozet et al., 2016)). It is reasonable to present the
symmetric version of this model (with 𝛼𝑖𝑡 fixed effects); however, as it has exactly
the same properties, we consider the two models together.3
A variation of this model is

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 𝛽+𝛼𝑖𝑡 +𝛼∗𝑗𝑡 + Y𝑖 𝑗𝑡 , (1.6)

(Olivero & Yotov, 2012 and S. L. Baier & Bergstrand, 2007), whereas the model that
encompasses all the above effects is

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 𝛽+𝛾𝑖 𝑗 +𝛼𝑖𝑡 +𝛼∗𝑗𝑡 + Y𝑖 𝑗𝑡 , (1.7)

typically used in explaining trade flows (see e.g., Baltagi et al., 2003; S. L. Baier &
Bergstrand, 2007; Aghion et al., 2008; Melitz & Toubal, 2012; Nuroglu & Kunst,
2014; and Bergstrand et al., 2015). Each model with its specific 𝐷 matrix from
formulation (1.1) is summarized in Table 1.4.

Table 1.4:Model specific 𝐷 matrices

Model 𝐷

(1.2)
(
(𝐼𝑁1 ⊗ ]𝑁2𝑇 ) , ( ]𝑁1 ⊗ 𝐼𝑁2 ⊗ ]𝑇 ) , ( ]𝑁1𝑁2 ⊗ 𝐼𝑇 )

)
(1.3)

(
𝐼𝑁1𝑁2 ⊗ ]𝑇

)
(1.4)

(
(𝐼𝑁1𝑁2 ⊗ ]𝑇 ) , ( ]𝑁1𝑁2 ⊗ 𝐼𝑇 )

)
(1.5)

(
𝐼𝑁1 ⊗ ]𝑁2 ⊗ 𝐼𝑇

)
(1.6)

(
(𝐼𝑁1 ⊗ ]𝑁2 ⊗ 𝐼𝑇 ) , ( ]𝑁1 ⊗ 𝐼𝑁2𝑇 )

)
(1.7)

(
(𝐼𝑁1𝑁2 ⊗ ]𝑇 ) , (𝐼𝑁1 ⊗ ]𝑁2 ⊗ 𝐼𝑇 ) , ( ]𝑁1 ⊗ 𝐼𝑁2𝑇 )

)
3 Strictly speaking, models (1.3) and (1.5) are also the same from a mathematical point of view.
Nevertheless, as it is usually the case that 𝑖 and 𝑗 are entities and 𝑡 is time, it makes sense from an
economics point of view to distinguish (𝑖 𝑗) from ( 𝑗𝑡) , but to take (𝑖𝑡) and ( 𝑗𝑡) under one hat.
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It is interesting to see that our collection of models is exhaustive, apart from the
permutation of indices. This is summarized in Table (1.5). Out of the five distinct
models two are technically for 2D data (rows two and three), and only the rest are
truly three-dimensional.

Table 1.5: The exhaustive
grouping of indices

Indices Model

𝑖, 𝑗, 𝑡 (1.2)

(𝑖 𝑗) (1.3)/(1.5)

(𝑖 𝑗) , 𝑡 (1.4)

(𝑖𝑡) , ( 𝑗𝑡) (1.6)

(𝑖 𝑗) , (𝑖𝑡) , ( 𝑗𝑡) (1.7)

1.3 Least Squares Estimation of the Models

If the matrix (𝑋, 𝐷) has full column rank,4 the Ordinary Least Squares (OLS)
estimation of model (1.1), also called the Least Squares Dummy Variables (LSDV)
estimator ©«

𝛽

�̂�

ª®¬ = ©«
𝑋 ′𝑋 𝑋 ′𝐷

𝐷 ′𝑋 𝐷 ′𝐷

ª®¬
−1 ©«

𝑋 ′𝑦

𝐷 ′𝑦

ª®¬ ,
is the Best Linear Unbiased Estimator (BLUE). This joint estimator, however, in some
cases is cumbersome to implement, for example for model (1.3), as one has to invert
a matrix of order (𝐾 +𝑁1𝑁2), which can be quite difficult for large 𝑁1 and/or 𝑁2.
Nevertheless, following the Frisch–Waugh–Lovell theorem, or alternatively, applying
partial inverse methods, the estimators can be expressed as

𝛽 = (𝑋 ′𝑀𝐷𝑋)−1𝑋 ′𝑀𝐷𝑦 (1.8)
�̂� = (𝐷 ′𝐷)−1𝐷 ′(𝑦− 𝑋𝛽) , (1.9)

where the idempotent and symmetric matrix 𝑀𝐷 = 𝐼 −𝐷 (𝐷 ′𝐷)−1𝐷 ′ is the so-called
Within projector. This follows directly from

4 Since ]𝑁1𝑁2𝑇 is spanned by all given specifications for 𝐷, there is intercept in 𝑋.
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𝐷 ′𝐷�̂� +𝐷 ′𝑋𝛽 = 𝐷 ′𝑦 (1.10)
𝑋 ′𝐷�̂� + 𝑋 ′𝑋𝛽 = 𝑋 ′𝑦 . (1.11)

The first equation gives (1.9). 𝐷�̂� = (𝐼 −𝑀𝐷) (𝑦− 𝑋𝛽), a rearrangement, which in
turn can be substituted back to (1.11) gives (1.8)
In the usual panel data context, we call 𝛽 in (1.8) the optimal Within estimator

(due to its BLUE properties mentioned above). The LSDV estimator for each specific
model is then obtained by filling out the concrete form of 𝐷 and 𝑀𝐷 , specific to that
given model. Table 1.6 captures these different projection matrices for all models
discussed. Furthermore, it is important to define the actual degrees of freedom to
work with, so the third column of the table captures this. By using 𝑀𝐷 , instead of
possibly large matrices, we only have to invert a matrix of size (𝐾 ×𝐾) to get 𝛽.

Table 1.6: Different forms of 𝑀𝐷 after simplification

Model 𝑀𝐷 Degrees of Freedom

(1.2) 𝐼 − (𝐼𝑁1 ⊗ 𝐽𝑁2𝑇 ) − (𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑇 ) − (𝐽𝑁1𝑁2 ⊗
𝐼𝑇 )
+2𝐽𝑁1𝑁2𝑇

𝑁1𝑁2𝑇 −𝑁1 −𝑁2 −𝑇 +1−𝐾

(1.3) 𝐼 − (𝐼𝑁1𝑁2 ⊗ 𝐽𝑇 ) 𝑁1𝑁2 (𝑇 −1) −𝐾
(1.4) 𝐼 − (𝐼𝑁1𝑁2 ⊗ 𝐽𝑇 ) − (𝐽𝑁1𝑁2 ⊗ 𝐼𝑇 ) + 𝐽𝑁1𝑁2𝑇 (𝑁1𝑁2 −1) (𝑇 −1) −𝐾
(1.5) 𝐼 − (𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐼𝑇 ) 𝑁1 (𝑁2 −1)𝑇 −𝐾
(1.6) 𝐼 − (𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐼𝑇 ) − (𝐽𝑁1 ⊗ 𝐼𝑁2𝑇 ) + (𝐽𝑁1𝑁2 ⊗ 𝐼𝑇 ) (𝑁1 −1) (𝑁2 −1)𝑇 −𝐾
(1.7) 𝐼 − (𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐼𝑇 ) − (𝐽𝑁1 ⊗ 𝐼𝑁2𝑇 ) − (𝐼𝑁1𝑁2 ⊗

𝐽𝑇 )
+ (𝐽𝑁1𝑁2 ⊗ 𝐼𝑇 ) + (𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑇 ) + (𝐼𝑁1 ⊗ 𝐽𝑁2𝑇 )
− 𝐽𝑁1𝑁2𝑇

(𝑁1 −1) (𝑁2 −1) (𝑇 −1) −𝐾

The estimation of the fixed effects parameters is captured by (1.9) if 𝐷 has full
column rank. This, however, only holds for models of one fixed effect, that is, for
(1.3) and (1.5). Estimation of 𝛽 is not affected since it is based on the projection
matrices 𝑀𝐷 . The estimators for the fixed effects read as

�̂� =
1
𝑇
(𝐼𝑁1𝑁2 ⊗ ]′𝑇 ) (𝑦− 𝑋𝛽)

for model (1.3), and
�̂� =

1
𝑁2

(𝐼𝑁1 ⊗ ]′𝑁2
⊗ 𝐼𝑇 ) (𝑦− 𝑋𝛽)

for model (1.5). For the other models, the fixed effects are not identified, since the 𝐷
matrix of such models has no full column rank. This is intuitive, as for example for
model (1.2) the sum of the 𝛼𝑖 , the sum of the 𝛾 𝑗 and the sum of the _𝑡 parameters
all give the general constant. To make them identified, we have to impose some



10 Balázsi at al.

restrictions on the fixed effects parameters. The two most widely used are either
to normalize the fixed effects, i.e., to set their average to zero, or to leave out the
parameters belonging to the last (or first) individual or time period. We will follow
this latter approach. Staying with the example of model (1.2), 𝐷 has a rank deficiency
of 2, but for the sake of symmetry, we leave out all three last fixed effects parameters,
𝛼𝑁1 , 𝛾𝑁2 , and _𝑇 from the model, and add back a general constant term 𝑐. That is,
for a given (𝑖 𝑗 𝑡) observation (𝑖, 𝑗 , 𝑡 ≠ 𝑁1, 𝑁2,𝑇), the intercept is 𝑐+𝛼𝑖 +𝛾 𝑗 +_𝑡 , but
for example for 𝑖 = 𝑁1, it is only 𝑐 +𝛾 𝑗 +_𝑡 . Let us denote this modified 𝐷 dummy
matrix by 𝐷∗ to stress that now it contains the restriction. As 𝐷∗ has full column
rank, estimator (1.8)-(1.9) works perfectly fine with 𝐷∗:

�̂�∗ = (𝐷∗′𝐷∗)−1𝐷∗′ (𝑦− 𝑋𝛽) ,

where now 𝜋∗ = (𝑐′, 𝛼′ 𝛾′ _′) ′.Wemay have a better understanding of these estimators
if we express them separately for each fixed effects parameter. This step, however,
requires the introduction of complex matrix forms, and nontrivial manipulations, but
as it turns out, using scalar notation, they can easily be represented. For model (1.2),
this is

𝑐 = ( �̄�𝑁1.. + �̄�.𝑁2. + �̄�..𝑇 −2�̄�...) − (𝑥 ′
𝑁1..

+ 𝑥 ′
.𝑁2.

+ 𝑥 ′
..𝑇

−2𝑥 ′...)𝛽

�̂�𝑖 = ( �̄�𝑖.. − �̄�𝑁1..) − (𝑥 ′
𝑖..
− 𝑥 ′

𝑁1..
)𝛽

�̂� 𝑗 = ( �̄�. 𝑗. − �̄�.𝑁2.) − (𝑥 ′
. 𝑗.

− 𝑥 ′
.𝑁2.

)𝛽

_̂𝑡 = ( �̄�..𝑡 − �̄�..𝑇 ) − (𝑥 ′..𝑡 − 𝑥 ′..𝑇 )𝛽 .

Notice that as we excluded 𝛼𝑁1 from the model, its estimator is indeed �̂�𝑁1 =

( �̄�𝑁1.. − �̄�𝑁1..) − (𝑥 ′
𝑁1..

− 𝑥 ′
𝑁1..

)𝛽 = 0, similarly for �̂�𝑁2 , and _̂𝑇 . For model (1.4),

𝑐 = ( �̄�𝑁1𝑁2. + �̄�..𝑇 − �̄�...) − (𝑥 ′
𝑁1𝑁2.

+ 𝑥 ′
..𝑇

− 𝑥 ′...)𝛽

�̂�𝑖 𝑗 = ( �̄�𝑖 𝑗. − �̄�𝑁1𝑁2.) − (𝑥 ′
𝑖 𝑗.

− 𝑥 ′
𝑁1𝑁2.

)𝛽

_̂𝑡 = ( �̄�..𝑡 − �̄�..𝑇 ) − (𝑥 ′..𝑡 − 𝑥 ′..𝑇 )𝛽 .

For model (1.6), and (1.7), the rank deficiency, however, is not 2 but 𝑇 , and
(𝑁1 +𝑁2 +𝑇 −1), respectively. This means that the restriction above can not be used.
Instead, let us leave out the 𝛼𝑖𝑡 parameters for 𝑖 = 𝑁1, that is, the last 𝑇 from model
(1.6). In this way, the estimators for the intercept parameters are

�̂�𝑖𝑡 = ( �̄�𝑖.𝑡 − �̄�𝑁1.𝑡 ) − (𝑥 ′
𝑖.𝑡
− 𝑥 ′

𝑁1.𝑡
)𝛽

�̂�∗
𝑗𝑡
= ( �̄�. 𝑗𝑡 + �̄�𝑁1.𝑇 − �̄�..𝑡 ) − (𝑥 ′

. 𝑗𝑡
+ 𝑥 ′

𝑁1.𝑇
− 𝑥 ′..𝑡 )𝛽 .

For model (1.7), we leave out 𝛾𝑖 𝑗 for 𝑖 = 𝑁1, 𝛼𝑖𝑡 for 𝑡 = 𝑇 , and 𝛼∗𝑗𝑡 for 𝑗 = 𝑁2, and add
back a general constant 𝑐. In this way, exactly 𝑁2 +𝑁1 +𝑇 −1 intercept parameters
are eliminated, so the dummy matrix 𝐷∗, has full rank. The estimators, with this 𝐷∗
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read in a scalar form

𝑐 = ( �̄�𝑁1𝑁2. + �̄�𝑁1.𝑇 + �̄�.𝑁2𝑇 − �̄�𝑁1.. − �̄�.𝑁2. − �̄�..𝑇 + �̄�...)

−(𝑥 ′
𝑁1𝑁2.

+ 𝑥 ′
𝑁1.𝑇

+ 𝑥 ′
.𝑁2𝑇

− 𝑥 ′
𝑁1..

− 𝑥 ′
.𝑁2.

− 𝑥 ′
..𝑇

+ 𝑥 ′...)𝛽

�̄�𝑖 𝑗 = ( �̄�𝑖 𝑗. − �̄�𝑁1 𝑗. + �̄�𝑖.𝑇 − �̄�𝑁1.𝑇 − �̄�𝑖.. + �̄�𝑁1..)

−(𝑥 ′
𝑖 𝑗.

− 𝑥 ′
𝑁1 𝑗.

+ 𝑥 ′
𝑖.𝑇

− 𝑥 ′
𝑁1.𝑇

− 𝑥 ′
𝑖..
+ 𝑥 ′

𝑁1..
)𝛽

�̄�𝑖𝑡 = ( �̄�𝑖.𝑡 − �̄�𝑖.𝑇 + �̄�.𝑁2𝑡 − �̄�.𝑁2𝑇 − �̄�..𝑡 + �̄�..𝑇 )

−(𝑥 ′
𝑖.𝑡
− 𝑥 ′

𝑖.𝑇
+ 𝑥 ′

.𝑁2𝑡
− 𝑥 ′

.𝑁2𝑇
− 𝑥 ′..𝑡 + 𝑥 ′..𝑇 )𝛽

�̄�∗
𝑗𝑡
= ( �̄�. 𝑗𝑡 − �̄�.𝑁2𝑡 + �̄�𝑁1 𝑗. − �̄�𝑁1𝑁2. − �̄�. 𝑗. + �̄�.𝑁2.)

−(𝑥 ′
. 𝑗𝑡

− 𝑥 ′
.𝑁2𝑡

+ 𝑥 ′
𝑁1 𝑗.

− 𝑥 ′
𝑁1𝑁2.

− 𝑥 ′
. 𝑗.

+ 𝑥 ′
.𝑁2.

)𝛽

Now that we have derived appropriate estimators for all models, it is time to assess
their properties. In finite samples, the OLS assumptions imposed guarantee that all
estimators derived above are BLUE, with finite sample variances

var (𝛽) = 𝜎2
Y (𝑋 ′𝑀𝐷𝑋)−1

with the appropriate 𝑀𝐷 , and

var (�̂�∗) = 𝜎2
Y (𝐷∗′𝐷∗)−1 + (𝐷∗′𝐷∗)−1𝐷∗′𝑋𝑉 (𝛽)𝑋 ′𝐷∗ (𝐷∗′𝐷∗)−1 .

As 𝜎2
Y is usually unknown, we have to replace 𝜎2

Y by its estimator

�̂�2
Y =

1
rank (𝑀𝐷) −𝐾

∑︁
𝑖, 𝑗 ,𝑡

ˆ̃Y2
𝑖 𝑗𝑡 ,

where
ˆ̃Y2
𝑖 𝑗𝑡 = ( �̃�𝑖 𝑗𝑡 − 𝑥 ′𝑖 𝑗𝑡 𝛽)2 (1.12)

is the transformed residual square, and (rank (𝑀𝐷) −𝐾) is collected in the last column
of Table 1.6 for all models.
As multi-dimensional panel data are usually large in one or more directions, it

is important to also have a closer look at the asymptotic properties. Unlike cross-
sectional or time series data, panels can grow in multiple dimensions at the same
time. As a matter of fact, three-way panel data may fall in one of the following seven
asymptotic cases:

• 𝑁1 →∞, 𝑁2,𝑇 fixed; 𝑁2 →∞, 𝑁1,𝑇 fixed; 𝑇 →∞, 𝑁1, 𝑁2 fixed
• 𝑁1, 𝑁2 →∞, 𝑇 fixed; 𝑁1,𝑇 →∞, 𝑁2 fixed; 𝑁2,𝑇 →∞, 𝑁1 fixed
• 𝑁1, 𝑁2,𝑇 →∞.

It can be shown that 𝛽 is consistent in all of the asymptotic cases for all models
(if some weak properties hold). In order to make the models feasible for inference
(i.e., for testing), we have to normalize the variances according to the asymptotics
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considered. When, for example, 𝑁1 goes to infinity, and 𝑁2 and 𝑇 are fixed, 𝑁1var (𝛽)
is finite in the limit, as

plim
𝑁1→∞

𝑁1var (𝛽) = 𝜎2
Y plim
𝑁1→∞

(
𝑋 ′𝑀𝐷𝑋

𝑁1

)−1
= 𝜎2

Y𝑄
−1
𝑋𝑀𝑋 ,

where 𝑄𝑋𝑀𝑋 is assumed to be a finite, positive semi-definite matrix, further, using
the central limit theorem,√︁

𝑁1 (𝛽− 𝛽)
𝑑→ 𝑁

(
0,𝜎2

Y𝑄
−1
𝑋𝑀𝑋

)
.

The estimator of a fixed effect is consistent only if at least one of the indexes with
which the fixed effect does not vary is growing. For example, for model (1.2), �̂�𝑖 is
consistent only if 𝑁2 and/or 𝑇 is going to infinity, and its variance is finite, and in
addition, if it is pre-multiplied by 𝑁2, in the case of 𝑁2 →∞, by 𝑇 , in the case of
𝑇 →∞, and by 𝑁2𝑇 , when 𝑁2,𝑇 →∞.
Testing for parameter values or restrictions is done in the usual way, using standard

𝑡-tests or 𝐹-tests. Typically, to test for 𝛽𝑘 = 0, the 𝑡-statistic is given in the usual form

𝛽𝑘/
√︃
v̂ar (𝛽𝑘)

where v̂ar (𝛽𝑘) is the 𝑘-th diagonal element of v̂ar (𝛽). The degrees of freedom has to
be adjusted accordingly, for each model, as Table 1.6 shows. In principle, it is possible,
but not typical to also test for the significance of some fixed effects parameters with
the usual 𝑡-tests, unless that individual plays some specific role in the model. Usually
we are more concerned with the joint existence of the individual parameters, in other
words, with testing for 𝛼1 = 𝛼2 = . . . = 𝛼𝑁1 . Using model (1.2) for illustration, the
statistic for the 𝐹-test (assuming normality) is obtained as in

𝐹 =
(𝑅2
U−𝑅

2
R)/(𝑁1 −1)

(1−𝑅2
U)/(𝑁1𝑁2𝑇 −𝑁1 −𝑁2 −𝑇 +1−𝐾)

where R2
U is the R

2 of the unrestricted model (that is the full model (1.2)), while
R2
R is the R

2 of the restricted model, that is model (1.2) without the 𝛼𝑖 individual
effects. The null hypothesis puts (𝑁1 −1) restrictions on the parameters, while the
degrees of freedom of the unrestricted model is simply (𝑁1𝑁2𝑇 −𝑁1−𝑁2−𝑇 +1−𝐾).
This statistic then has an 𝐹-distribution with (𝑁1 −1, 𝑁1𝑁2𝑇 −𝑁1 −𝑁2 −𝑇 +1−𝐾)
degrees of freedom.

1.4 Incomplete Panels

As in the case of the usual 2D panel data sets (see Wansbeek & Kapteyn, 1989 or
Baltagi, 2013, for example), just more frequently, one may be faced with situations in
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which the data at hand is unbalanced. In our framework of analysis, this means that
𝑡 ∈ 𝑇𝑖 𝑗 , for all (𝑖 𝑗) pairs, where 𝑇𝑖 𝑗 is a subset of the index set 𝑡 ∈ {1, . . . ,𝑇}, with 𝑇
being chronologically the last time period in which we have any (𝑖 𝑗) observations.
Note that two 𝑇𝑖 𝑗 and 𝑇𝑖′ 𝑗′ sets are usually different. A special case of incompleteness,
which typically characterizes flow-type data, is the so-called no self-flow. In such data
sets the individual index sets 𝑖 and 𝑗 are the same, so 𝑁1 = 𝑁2 = 𝑁 holds. Formally,
this means that, for all 𝑡, there are no observations when 𝑖 = 𝑗 , that is, we are missing
a total 𝑁𝑇 of data points. We are saving, however, the no self-flow issue to Sect. 1.5,
and consider the general form of incompleteness in this section.
In the case of incomplete data, the models can still be cast as in (1.1), but now 𝐷

cannot be represented nicely by kronecker products, as done in Table 1.4. However,
with the incompleteness adjusted dummy matrices, �̃� (which we obtain from 𝐷 by
leaving out the rows corresponding to missing observations), the LSDV estimator
of 𝛽 and the fixed effects can still be worked out, maintaining its BLUE properties,
following (1.8)-(1.9). There is, however, one practical obstacle in the way. Remember,
that to reach 𝛽 conveniently, we needed the exact form of 𝑀𝐷 , which we collected
for complete data in Table 1.6. As �̃� has a known form only if we know exactly
which observations are missing,𝑀�̃� = 𝐼− �̃� (�̃� ′�̃�)−�̃� ′ cannot be analytically defined
element-wise in general, where “−” stands for any generalized inverse. Instead, we
have to invert (�̃� ′�̃�) directly, or use partitioned matrix inversion. Either way, we
cannot usually avoid large computational burdens when carrying out (1.8)-(1.9) in
case of incompleteness (as opposed to no computational burden when the data is
complete).5 Nevertheless, the estimators and the covariance matrices are obtained
in the same way as for complete data (of course, after adjusting the matrices to
incompleteness), and the properties of the estimators are the same as in the complete
data case. Notice the crucial difference between �̃� and 𝐷∗: while �̃� usually has no
full column rank, as we left out some rows from 𝐷 (which also in general has no full
column rank), 𝐷∗ is simply designed to have full column rank (more precisely, to fix
the rank deficiency in 𝐷). This is why we have to turn to generalized inverses for the
former, but it is enough to work with “simple” inverses for the latter dummy matrices.
Incompleteness is less of an issue in the case of 2D models, where 𝑇 is usually

small, and 𝑁1 is large (so we only have to invert a (𝑇 ×𝑇) matrix (see Wansbeek
& Kapteyn, 1989), but is generally present in the case of 3D data, where typically
along with 𝑁1, 𝑁2 is also large. In practice, to alleviate the issue with the size of the
individual indexes, the best approach seems to be to turn to iterative solutions to find
the Least Squares estimators. One of the most widely used is based on the work of
Guimaraes and Portugal (2010) and Carneiro, Guimaraes and Portugal (2012). Let us
show the procedure on model (1.2), the rest is a direct analogy. Model (1.2) in matrix
form reads as

𝑦 = 𝑋𝛽+ �̃�1𝛼+ �̃�2𝛾 + �̃�3_+ Y , (1.13)

5 Actually, the sparsity of (�̃�′�̃�) can help to reduce the computation. The study of sparse matrices
has grown into a separate field in the past years offering numerous tools to go around (or at least
attenuate) the “curse of dimensionality”. This is a promising research topic, however, beyond the
scope of the text.
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where tildes indicate two things. First, the data is possibly incomplete: from the
original 𝐷1 = (𝐼𝑁1 ⊗ ]𝑁2𝑇 ), 𝐷2 = (]𝑁1 ⊗ 𝐼𝑁2 ⊗ ]𝑇 ), and 𝐷3 = (]𝑁1𝑇 ⊗ 𝐼𝑇 ), the rows
matching with the missing observations are deleted. Second, to make all model
parameters estimable, we leave out 𝛼𝑁1 and 𝛾𝑁2 from the model. The normal
equations from (1.13) are then

𝛽 = (𝑋 ′𝑋)−1𝑋 ′(𝑦− �̃�1𝛼− �̃�2𝛾− �̃�3_)

�̂� = (�̃� ′
1�̃�1)−1�̃� ′

1 (𝑦− 𝑋𝛽− �̃�2𝛾− �̃�3_)

�̂� = (�̃� ′
2�̃�2)−1�̃� ′

2 (𝑦− 𝑋𝛽− �̃�1𝛼− �̃�3_)

_̂ = (�̃� ′
3�̃�3)−1�̃� ′

3 (𝑦− 𝑋𝛽− �̃�1𝛼− �̃�2𝛾) ,

which suggests the Gauss-Seidel, or as often called, the “zigzag” algorithm. This
means that we alternate between the estimation of 𝛽, and the fixed effects parameters,
starting from some arbitrary initial values 𝛽0, and (𝛼0, 𝛾0,_0). The computational
improvement is clear: (�̃� ′

𝑘
�̃�𝑘)−�̃�𝑘 defines a simple group average (𝑘 = 1,2,3)

of the residuals, so the dimensionality issue is no longer a concern. Specifically,
(�̃� ′

1�̃�1)−�̃� ′
1 is translated into an average over ( 𝑗 𝑡), (�̃�

′
2�̃�2)−�̃� ′

2 an average over (𝑖𝑡),
and (�̃� ′

3�̃�3)−�̃� ′
3 an average over (𝑖 𝑗). Furthermore, �̃�1𝛼, etc. are just the columns

of the current estimates of 𝛼, etc. After the sufficient number of steps, the iterative
estimators all converge to the true LSDV.6

1.5 The Within Estimator

1.5.1 The Equivalence of the LSDV and the Within Estimator

As seen, LSDV estimates all parameters of the fixed effects models in one step. There
is, however, another appealing way to approach the estimation problem. The idea
is that by using orthogonal projections, the slope parameters (and if needed the
fixed effects) are estimated separately. First, with a projection orthogonal to 𝐷, we
transform the model, in fact 𝑦 and 𝑋 , in such a way that clears the fixed effects. Then,
we carry out an OLS estimation on the transformed variables �̃� and �̃� . We have to
point out, however, that unlike in the case of 2D models, there are usually multiple
such Within transformations, which eliminate the fixed effects. Nevertheless, only
the Within estimator based on the Within transformation originating from the LSDV
conserves the BLUE properties, and therefore is called the optimal one. To show this,
note that as 𝑀𝐷 is idempotent, (1.8) is equivalent to performing an OLS on

6 The STATA program command reg2hdfe implements these results and is found in the STATA
Documentation. The code is designed to tackle two fixed effects, however, it can be improved to
treat three, or even more fixed effects at the same time.

reg2hdfe
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𝑀𝐷𝑦 = 𝑀𝐷𝑋𝛽+𝑀𝐷𝐷︸︷︷︸
0

𝜋 +𝑀𝐷Y ,

where 𝑀𝐷 = 𝐼 −𝐷 (𝐷 ′𝐷)−𝐷 ′, as before. In the case of complete data, 𝑀𝐷 can be
translated into scalar notation, so we can fully avoid the dimensionality issue. Let us
now go through all the models, and present the scalar form of the optimal Within
transformation 𝑀𝐷𝑦.
For model (1.2), the optimal transformation is

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − �̄�𝑖.. − �̄�. 𝑗. − �̄�..𝑡 +2�̄�... . (1.14)

As mentioned above, the uniqueness of the Within transformation is not guaranteed:
for example transformation

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − �̄�𝑖 𝑗. − �̄�..𝑡 + �̄�... (1.15)

also eliminates the fixed effects from model (1.2). For model (1.3), the transformation
is simply

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − �̄�𝑖 𝑗. . (1.16)

For model (1.4), the optimal Within transformation is in fact (1.15). Note that model
(1.2) is a special case of model (1.4) (with the restriction 𝛾𝑖 𝑗 = 𝛼𝑖 + 𝛾 𝑗), so while
transformation (1.15) is optimal for (1.4), it is clear why it is not for the former: it
“over-clears” the fixed effects by not using the extra piece of information.
For model (1.5), the transformation is

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − �̄�. 𝑗𝑡 , (1.17)

while for models (1.6) and (1.7), they are

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − �̄�. 𝑗𝑡 − �̄�𝑖.𝑡 + �̄�..𝑡 , (1.18)

and
�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − �̄�𝑖 𝑗. − �̄�. 𝑗𝑡 − �̄�𝑖.𝑡 + �̄�..𝑡 + �̄�. 𝑗. + �̄�𝑖.. − �̄�... , (1.19)

respectively.
It can be seen that theWithin transformation works perfectly in wiping out the fixed

effects. However, frequently in empirical applications, some explanatory variables,
(i.e., some elements of the vector 𝑥 ′

𝑖 𝑗𝑡
) do not span the whole (𝑖 𝑗 𝑡) data space, that is,

they have some kind of “index deficiency”. This means that sometimes one (or more)
of the regressors are perfectly collinear with one of the fixed effects. In such cases,
we can consider the regressor as fixed, as it is wiped out along with the fixed effects.
For example, for model (1.3), if we put an individual’s gender among the regressors,
𝑥𝑖 𝑗𝑡 ≡ 𝑥𝑖 holds, and so is eliminated by the Within transformation (1.14). Clearly,
parameters associated with such regressors then cannot be estimated. This is most
visible for model (1.7), as in this case all regressors fixed at least in one dimension
are excluded from the model automatically after the Within transformation (1.19).
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1.5.2 Incomplete Panels and the Within Estimator

We have briefly covered incompleteness in Sect. 1.3 already, but the Within estimators
and the underlying transformations, open a new way to deal with it.

1.5.2.1 No Self-flow Data

Let us start with the no self-flow data, and for a short time, assume that the index sets
𝑖 and 𝑗 are the same, and so 𝑁1 = 𝑁2 = 𝑁 .
In terms of the models from Sect. 1.2, the scalar transformations introduced there

can no longer be applied. Fortunately, the pattern of the missing observations is
highly structured, allowing for the derivation of optimal transformations that are still
quite simple and maintain the BLUE properties of the Within estimators based on
them. Following the derivations of Balazsi et al. (2015), the transformation for the
models are the following:

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − 𝑁−1
𝑁 (𝑁−2)𝑇 (𝑦𝑖++ + 𝑦+ 𝑗+) −

1
𝑁 (𝑁−2)𝑇 (𝑦 𝑗++ + 𝑦+𝑖+)

− 1
𝑁 (𝑁−1) 𝑦++𝑡 +

2
𝑁 (𝑁−2)𝑇 𝑦+++

(1.20)

for model (1.2), and
�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 −

1
𝑇
𝑦𝑖 𝑗+ (1.21)

for model (1.3). For models (1.4), and (1.5) the no self-flow transformations are

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 −
1
𝑇
𝑦𝑖 𝑗+−

1
𝑁 (𝑁 −1) 𝑦++𝑡 +

1
𝑇𝑁 (𝑁 −1) 𝑦+++ , (1.22)

and
�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 −

1
𝑁 −1

𝑦+ 𝑗𝑡 , (1.23)

while for models (1.6), and (1.7), they are

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − 𝑁−1
𝑁 (𝑁−2)

(
𝑦𝑖+𝑡 + 𝑦+ 𝑗𝑡

)
− 1
𝑁 (𝑁−2)

(
𝑦+𝑖𝑡 + 𝑦 𝑗+𝑡

)
+ 1

(𝑁−1) (𝑁−2) 𝑦++𝑡 ,
(1.24)

and

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 − 𝑁−3
𝑁 (𝑁−2) (𝑦𝑖+𝑡 + 𝑦+ 𝑗𝑡 ) +

𝑁−3
𝑁 (𝑁−2)𝑇 (𝑦𝑖++ + 𝑦+ 𝑗+) −

1
𝑇
𝑦𝑖 𝑗+

+ 1
𝑁 (𝑁−2) (𝑦+𝑖𝑡 + 𝑦 𝑗+𝑡 ) −

1
𝑁 (𝑁−2)𝑇 (𝑦+𝑖+ + 𝑦 𝑗++)

+ 𝑁2−6𝑁+4
𝑁2 (𝑁−1) (𝑁−2) (𝑦++𝑡 − 𝑦+++) ,

(1.25)
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respectively. So overall, the no self-flow data problem can be overcome by using an
appropriate Within transformation. Optimality of the estimators is preserved, as the
transformations are derived from the Frisch–Waugh–Lovell theorem.

1.5.2.2 General Incompleteness

Next we work out suitable Within transformations for any general form of incom-
pleteness. Now we are back in the case when 𝑖 and 𝑗 are different index sets. As
the expressions below are all derived from the Frisch–Waugh–Lovell theorem, the
transformations are optimal, and the estimators are BLUE. Remember that 𝑡 ∈ 𝑇𝑖 𝑗 , and
let 𝑅 =

∑
𝑖 𝑗 |𝑇𝑖 𝑗 | denote the total number of observations, where |𝑇𝑖 𝑗 | is the cardinality

of the set 𝑇𝑖 𝑗 (the number of observations in the given set).
For models (1.3) and (1.5), the unbalanced nature of the data does not cause

any problem (since in fact they can be represented as 2D models with one fixed
effect), the Within transformations can be used, and they have exactly the same
properties as in the balanced case. However, for models (1.2), (1.4), (1.6), and (1.7),
we face some problems. As the Within transformations fail to fully eliminate the fixed
effects for these models (somewhat similarly to the no self-flow case), the resulting
Within estimators suffer from (potentially severe) biases. However, the Wansbeek
and Kapteyn (1989) approach can be extended to these four cases.
Let us start with model (1.2). The dummy variable matrix 𝐷 has to be modified

to reflect the unbalanced nature of the data. Let the 𝑈𝑡 and 𝑉𝑡 (𝑡 = 1 . . .𝑇) be the
sequence of (𝐼𝑁1 ⊗ ]𝑁2 ) and (]𝑁1 ⊗ 𝐼𝑁2 ) matrices, respectively, in which the following
adjustments are made: for each (𝑖 𝑗) observation, we leave the row (representing
(𝑖 𝑗)) in𝑈𝑡 and 𝑉𝑡 matrices untouched where 𝑡 ∈ 𝑇𝑖 𝑗 , but delete it from the remaining
𝑇 − |𝑇𝑖 𝑗 | matrices. In this way, we end up with the following dummy variable setup

𝐷𝑎1 =
(
𝑈 ′

1,𝑈
′
2, . . . ,𝑈

′
𝑇

) ′ of size (𝑅×𝑁1) ,

𝐷𝑎2 =
(
𝑉 ′

1,𝑉
′
2, . . . ,𝑉

′
𝑇

) ′ of size (𝑅×𝑁2) , and

𝐷𝑎3 = diag
{
𝑉1 · ]𝑁1 ,𝑉2·, ]𝑁1 . . . ,𝑉𝑇 · ]𝑁1

}
of size (𝑅×𝑇) .

The complete dummy variable structure is now 𝐷𝑎 = (𝐷𝑎1 , 𝐷
𝑎
2 , 𝐷

𝑎
3 ). In this case, let

us note here that, just as in Wansbeek and Kapteyn (1989), index 𝑡 goes “slowly” and
𝑖 𝑗 goes “fast". Using this modified dummy variable structure, the optimal projection
removing the fixed effects can be obtained in three steps:

𝑀
(1)
𝐷𝑎

= 𝐼𝑅 −𝐷𝑎1 (𝐷
𝑎′

1 𝐷
𝑎
1 )

−1𝐷𝑎
′

1 ,

𝑀
(2)
𝐷𝑎

= 𝑀
(1)
𝐷𝑎

−𝑀 (1)
𝐷𝑎
𝐷𝑎2 (𝐷

𝑎′

2 𝑀
(1)
𝐷𝑎
𝐷𝑎2 )

−𝐷𝑎
′

2 𝑀
(1)
𝐷𝑎

,

and finally

𝑀𝐷𝑎
= 𝑀

(3)
𝐷𝑎

= 𝑀
(2)
𝐷𝑎

−𝑀 (2)
𝐷𝑎
𝐷𝑎3 (𝐷

𝑎′

3 𝑀
(2)
𝐷𝑎
𝐷𝑎3 )

−𝐷𝑎
′

3 𝑀
(2)
𝐷𝑎

. (1.26)
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It is easy to see that in fact 𝑀𝐷𝑎
𝐷𝑎 = 0 projects out all three dummy matrices. Note

that the first inverse calculation of this repetitive process is always easy, as (𝐷𝑎′1 𝐷
𝑎
1 )

is diagonal. It is recommended then to order the fixed effects in such a way that
the largest of the three comes at the beginning. With this in mind, we only have to
calculate two inverses instead of three, (𝐷𝑎′2 𝑀

(1)
𝐷𝑎
𝐷𝑎2 )

−, and (𝐷𝑎′3 𝑀
(2)
𝐷𝑎
𝐷𝑎3 )

−, with
respective sizes (𝑁2 ×𝑁2) and (𝑇 ×𝑇). This is feasible for reasonable sample sizes.
For model (1.4), the job is essentially the same. Let the 𝑊𝑡 (𝑡 = 1 . . .𝑇) be the

sequence of (𝐼𝑁1𝑁2 ⊗ 𝐼𝑁1𝑁2 ) matrices, where again for each (𝑖 𝑗), we remove the rows
corresponding to observation (𝑖 𝑗) in those𝑊𝑡 , where 𝑡 ∉ 𝑇𝑖 𝑗 . In this way,

𝐷𝑏1 =
(
𝑊 ′

1,𝑊
′
2, . . . ,𝑊

′
𝑇

) ′ of size (𝑅×𝑁1𝑁2) ,

𝐷𝑏2 = 𝐷𝑎3 of size (𝑅×𝑇) .

The first step in the projection is now

𝑀
(1)
𝐷𝑏

= 𝐼𝑅 −𝐷𝑏1 (𝐷
𝑏′

1 𝐷
𝑏
1 )

−1𝐷𝑏
′

1 ,

so the optimal projection orthogonal to 𝐷𝑏 = (𝐷𝑏1 , 𝐷
𝑏
2 ) is simply

𝑀𝐷𝑏
= 𝑀

(2)
𝐷𝑏

= 𝑀
(1)
𝐷𝑏

−𝑀 (1)
𝐷𝑏
𝐷𝑏2 (𝐷

𝑏′

2 𝑀
(1)
𝐷𝑏
𝐷𝑏2 )

−𝐷𝑏
′

2 𝑀
(1)
𝐷𝑏

. (1.27)

As (𝐷𝑏′1 𝐷
𝑏
1 ) is diagonal again, we only have to calculate the inverse of a (𝑇 ×𝑇)

matrix, 𝐷𝑏′2 𝑀
(1)
𝐷𝑏
𝐷𝑏2 , which is easily doable. Further, as discussed above, given that

model (1.2) is nested in (1.4), transformation (1.27) is in fact also valid for model
(1.2).
Let us move on to model (1.6). Now, after the same adjustments as before,

𝐷𝑐1 = diag{𝑈1,𝑈2, . . . ,𝑈𝑇 } of size (𝑅×𝑁1𝑇) and

𝐷𝑐2 = diag{𝑉1,𝑉2, . . . ,𝑉𝑇 } of size (𝑅×𝑁2𝑇) ,

so the stepwise projection, removing 𝐷𝑐 = (𝐷𝑐1 , 𝐷
𝑐
2), is

𝑀
(1)
𝐷𝑐

= 𝐼𝑅 −𝐷𝑐1 (𝐷
𝑐′

1 𝐷
𝑐
1)

−1𝐷𝑐
′

1 ,

leading to

𝑀𝐷𝑐
= 𝑀

(2)
𝐷𝑐

= 𝑀
(1)
𝐷𝑐

−𝑀 (1)
𝐷𝑐
𝐷𝑐2 (𝐷

𝑐′

2 𝑀
(1)
𝐷𝑐
𝐷𝑐2)

−𝐷𝑐
′

2 𝑀
(1)
𝐷𝑐

. (1.28)

Note that for 𝑀𝐷𝑐
, we have to invert an order min{𝑁1𝑇,𝑁2𝑇} matrix, which can be

computationally difficult.
The last model to deal with is model (1.7). Let 𝐷𝑑 = (𝐷𝑑1 , 𝐷

𝑑
2 , 𝐷

𝑑
3 ), where the

adjusted dummy matrices are all defined above:
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𝐷𝑑1 = 𝐷𝑏1 of size (𝑅×𝑁1𝑁2) ,

𝐷𝑑2 = 𝐷𝑐1 of size (𝑅×𝑁1𝑇) ,

𝐷𝑑3 = 𝐷𝑐2 of size (𝑅×𝑁2𝑇) .

Defining the partial projector matrices 𝑀 (1)
𝐷𝑑
and 𝑀 (2)

𝐷𝑑
as

𝑀
(1)
𝐷𝑑

= 𝐼𝑅 −𝐷𝑑1 (𝐷
𝑑′

1 𝐷
𝑑
1 )

−1𝐷𝑑
′

1 and

𝑀
(2)
𝐷𝑑

= 𝑀
(1)
𝐷𝑑

−𝑀 (1)
𝐷𝑑
𝐷𝑑

′

2 (𝐷𝑑′2 𝑀
(1)
𝐷𝑑
𝐷𝑑2 )

−𝐷𝑑
′

2 𝑀
(1)
𝐷𝑑

,

the appropriate transformation for model (1.7) is now

𝑀𝐷𝑑
= 𝑀

(3)
𝐷𝑑

= 𝑀
(2)
𝐷𝑑

−𝑀 (2)
𝐷𝑑
𝐷𝑑

′

3 (𝐷𝑑′3 𝑀
(2)
𝐷𝑑
𝐷𝑑3 )

−𝐷𝑑
′

3 𝑀
(2)
𝐷𝑑

. (1.29)

It can be easily verified that𝑀𝐷𝑑
is idempotent and𝑀𝐷𝑑

𝐷𝑑 = 0, so all the fixed effects
are indeed eliminated.7 As model (1.6) is covered by model (1.7), projection (1.29)
also eliminates the fixed effects from that model. Moreover, as all three-way fixed
effects models are in fact nested into model (1.7), it is intuitive that transformation
(1.29) clears the fixed effects in all model formulations. Using (1.7) is not always
advantageous though, as (i) the transformation involves the inversion of potentially
large matrices (of order 𝑁1𝑇 , and 𝑁2𝑇) and (ii) the underlying estimator is no
longer BLUE. In the case of most models studied, we can find suitable unbalanced
transformations at the cost of only inverting (𝑇 ×𝑇) matrices; or in some cases, we can
even derive scalar transformations. It is good to know, however, that there is a general
projection that is universally applicable to all three-way models in the presence of all
kinds of data issues. Table 1.7 collects the orders of the largest matrices to be inverted
for all model specifications considered. In the table, we assume that 𝑁1 >> 𝑇 and
𝑁2 >> 𝑇 holds, and that 𝑁1 and 𝑁2 are of similar magnitudes.
It is worth noting that transformations (1.26), (1.27), (1.28), and (1.29) are all

dealing in a natural way with the no self-flow problem, as only the rows corresponding
to the 𝑖 = 𝑗 observations need to be deleted from the corresponding dummy variable
matrices.
All transformations detailed above can also be rewritten in a semi-scalar form.

Let us show here how this idea works on transformation (1.29), as all subsequent
transformations can be dealt with in the same way. Let

𝜙 = 𝐶−�̄� ′𝑦 and 𝜔 = �̃�− (𝑀 (2)
𝐷𝑑
𝐷𝑑3 )

′𝑦 b = 𝐶−�̄� ′𝐷𝑑3𝜔 ,

where

𝐶 =

(
𝐷𝑑2

) ′
�̄� , �̄� =

(
𝐼𝑅 −𝐷𝑑1 (𝐷

𝑑′

1 𝐷
𝑑
1 )

−1𝐷𝑑
′

1

)
𝐷𝑑2 , and �̃� = 𝐷𝑑

′

3 𝑀
(2)
𝐷𝑑
𝐷𝑑3 .

7 A STATA program code for transformation (1.29) with a user-friendly detailed explanation is avail-
able at http://www.personal.ceu.hu/staff/repec/pdf/stata-program_document-dofile.pdf. Estimation
of model (1.7) is then easily done for any kind of incompleteness.

http://www.personal.ceu.hu/staff/repec/pdf/stata-program_document-dofile.pdf.
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Table 1.7: Orders of the
largest matrix to be inverted

Model Order

(1.2) min{𝑁1, 𝑁2 }
(1.3) 𝐾

(1.4) 𝑇

(1.5) 𝐾

(1.6) min{𝑁1𝑇, 𝑁2𝑇 }
(1.7) max{𝑁1𝑇, 𝑁2𝑇 }

Now the scalar representation of transformation (1.29) is[
𝑀𝐷𝑑

𝑦
]
𝑖 𝑗𝑡

= 𝑦𝑖 𝑗𝑡 − 1
|𝑇𝑖 𝑗 |

∑
𝑡 ∈𝑇𝑖 𝑗 𝑦𝑖 𝑗𝑡 +

1
|𝑇𝑖 𝑗 | 𝑎

′
𝑖 𝑗
𝜙−𝜙𝑖𝑡

−𝜔 𝑗𝑡 + 1
|𝑇𝑖 𝑗 | �̃�

′
𝑖 𝑗
𝜔+ b𝑖𝑡 − 1

|𝑇𝑖 𝑗 |

(
𝑎𝑏
𝑖 𝑗

) ′
b ,

where 𝑎𝑖 𝑗 and �̃�𝑖 𝑗 are the column vectors corresponding to observations (𝑖, 𝑗) from
matrices 𝐴 = 𝐷𝑑

′

2 𝐷
𝑑
1 and �̃� = 𝐷𝑑

′

3 𝐷
𝑑
1 , respectively; 𝜙𝑖𝑡 is the (𝑖, 𝑡)-th element of the

(𝑁1𝑇 × 1) column vector 𝜙; 𝜔 𝑗𝑡 is the ( 𝑗 , 𝑡)-th element of the (𝑁2𝑇 × 1) column
vector 𝜔; and finally, b𝑖𝑡 is the element corresponding to the (𝑖, 𝑡)-th observation from
the (𝑁1𝑇 ×1) column vector, b. From a computational point of view, the calculation
of matrix 𝑀𝐷𝑑

is by far the most resource requiring as we have to invert (𝑁1𝑇 ×𝑁1𝑇),
and (𝑁2𝑇 ×𝑁2𝑇) size matrices. Simplifications related to this can dramatically reduce
CPU and storage requirements. This topic, however, is well beyond the scope of this
chapter.

1.6 Heteroscedasticity and Cross-correlation

We have assumed so far throughout the chapter that the idiosyncratic disturbance terms
in Y are in fact well-behaved white noises, that is, all heterogeneity is introduced into
the model through the fixed effects. Conditioning on the individual dummy variables
is, however, not always enough to address the dependence between individual units.
In the presence of such remaining dependences, the white noise assumption of the
disturbances results in spurious inferences. To handle this, we introduce a simple form
of cross-correlation and heteroscedasticity among the disturbance terms and see how
this influences the estimation methods introduced earlier. So far the approach has been
to perform directly LSDV on the models, or alternatively, to transform the models in
such a way that the fixed effects drop out, and then estimate the transformed models
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with OLS. Now, however, in order to use all available information in an optimal
way, the structure of the disturbances has to be taken into account for the estimation,
promoting Feasible GLS (FGLS) instead of OLS on the fixed effects model. From
the joint FGLS estimator of the parameters, we can express 𝛽 by partialling out the
fixed effects parameters as a second step.

1.6.1 The New Covariance Matrices and the GLS Estimator

The initial assumptions about the disturbance terms are now replaced by

exp
(
Y𝑖 𝑗𝑡Y𝑘𝑙𝑠

)
=


𝜎2
𝑖 𝑗
if 𝑖 = 𝑘, 𝑗 = 𝑙, 𝑡 = 𝑠

𝜌1 if 𝑖 = 𝑘, 𝑗 ≠ 𝑙,∀𝑡, 𝑠
𝜌2 if 𝑖 ≠ 𝑘, 𝑗 = 𝑙,∀𝑡, 𝑠
0 otherwise ,

which allows for a general form of cross-dependence and heteroscedasticity. Then the
variance-covariance matrix of all models introduced in Sect. 1.2 takes the form

exp (YY′) = Ω = (Υ⊗ 𝐼𝑇 ) + 𝜌1 (𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐽𝑇 ) + 𝜌2 (𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑇 ), (1.30)

where

Υ =

©«

𝜎2
11 − 𝜌1 − 𝜌2 0 · · · 0

0 𝜎2
12 − 𝜌1 − 𝜌2 · · · 0

...
...

. . .
...

0 0 · · · 𝜎2
𝑁1𝑁2

− 𝜌1 − 𝜌2

ª®®®®®®®¬
is an (𝑁1𝑁2 ×𝑁1𝑁2) diagonal matrix. Invoking the form of the general fixed effects
model (1.1), and collecting 𝑋 and 𝐷 in 𝑍 and 𝛽 and 𝜋 in 𝛿, gives

𝑦 = 𝑍𝛿+ Y .

The GLS estimator then reads as

𝛿 =

(
𝑍 ′Ω−1𝑍

)−1
𝑍 ′Ω−1𝑦 . (1.31)

As much as (1.31) is simple theoretically, it is as forbidding practically: to carry
out the estimation, we have to compute Ω−1 first, to get 𝛿, then (𝐷 ′Ω−1𝐷)−1, to
express 𝛽 from the joint estimator. With a decomposition of Ω (exact derivations are
omitted), the largest matrix to be inverted is of order min{𝑁1, 𝑁2} when computing
Ω−1, however there is no clear way to reduce the computation of (𝐷 ′Ω−1𝐷)−1.
The situation is fundamentally different if, along with cross-correlations, homos-

cedasticity is assumed. In this case, Ω is simplified to
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Ω = (𝜎2
Y − 𝜌1 − 𝜌2)𝐼𝑁1𝑁2𝑇 + 𝜌1 (𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐽𝑇 ) + 𝜌2 (𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑇 ) ,

with only three variance components, and its inverse is easily obtained with a
decomposition similar to Wansbeek and Kapteyn (1982),

Ω−1 = 𝐼𝑁1𝑁2𝑇 + \1 (𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐽𝑇 ) + \2 (𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑇 ) + \3 (𝐽𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐽𝑇 )

with

\1 = − 𝑁2𝑇𝜌1
(𝑁2𝑇−1)𝜌1−𝜌2+𝜎2

Y
, \2 = − 𝑁1𝑇𝜌2

(𝑁1𝑇−1)𝜌2−𝜌1+𝜎2
Y
and

\3 =

(
𝑁2𝑇𝜌1

(𝑁2𝑇−1)𝜌1−𝜌2+𝜎2
Y
+ 𝑁1𝑇𝜌2

(𝑁1𝑇−1)𝜌2−𝜌1+𝜎2
Y
− 𝑁1𝑇𝜌2+𝑁2𝑇𝜌1

(𝑁1𝑇−1)𝜌2+(𝑁2𝑇−1)𝜌1+𝜎2
Y

)
.

As now we have the exact form of Ω−1, estimation (1.31) can be performed, and the
(BLUE) 𝛿 GLS estimators collected. Note that this GLS estimation is equivalent to a
two-step procedure, where we first transform 𝑦, 𝑋 and 𝐷 according to

�̃�𝑖 𝑗𝑡 = 𝑦𝑖 𝑗𝑡 −
(
1−

√
\1 +1

)
�̄�𝑖.. −

(
1−

√
\2 +1

)
�̄�. 𝑗.

+
(
1−

√
\1 +1−

√
\2 +1+

√
\1 + \2 + \3 +1

)
�̄�... ,

which is proportional to the scalar representation ofΩ− 1
2 𝑦, then perform anOLS on the

transformed model. To obtain an estimator of 𝛽, we invoke the Frisch–Waugh–Lovell
theorem again, and premultiply the transformed variables with the projector

𝑀
Ω
− 1

2 𝐷
= 𝐼 −Ω− 1

2 𝐷

(
𝐷 ′Ω−1𝐷

)−
𝐷 ′Ω− 1

2 ,

which are then estimated with OLS. As it turns out, the two consecutive transform-
ations, Ω− 1

2 and 𝑀
Ω
− 1

2 𝐷
, together are identical to the Within transformation for

all models except for (1.5), with 𝛼 𝑗𝑡 fixed effects. In other words, the GLS equals
the OLS as long as the effects are symmetrical in 𝑖 and 𝑗 , as, quite intuitively, the
Within transformation for those models eliminates the cross-correlations from the
disturbance terms along with the fixed effects.

1.6.2 Estimation of the Variance Components and the Cross
Correlations

What now remains to be done is to estimate the variance components in order to
make the GLS feasible. In principle, the job is to find a set of identifying equations
from which the variance components can be expressed. Remember that during the
estimation we have transformed the models and performed an OLS on them. However,
in the case of somemodels, this significantly limits the number of identifying equations
available for the variance components. For some models, this even means that the
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variance components are non-estimable without further restrictions on the structure
of the disturbances (for example, 𝜌1 = 𝜌2, or an even stronger one, 𝜌1 = 𝜌2 = 0). This
would certainly impede our cause, so let us take another track. Along with the OLS
residuals from the transformed models, we can produce another type of residual: the
one from the LSDV estimation. As we will see, we can estimate all the variance
components from the LSDV residuals, and at the same time we can obtain these
residuals without directly estimating the possibly numerous fixed effects.
As Sect. 1.3 suggests, whenever the 𝐷 dummy coefficient matrix has no full

column rank, the composite fixed effects parameters, 𝜋 cannot be identified (and of
course, estimated). However, this is not the case for 𝐷𝜋, which is given by

𝐷�̂� = 𝐷 (𝐷 ′𝐷)−𝐷 ′(𝑦− 𝑋𝛽) = (𝐼 −𝑀𝐷) (𝑦− 𝑋𝛽) .

following (1.10). The LSDV residuals are

Ŷ = 𝑦− 𝑋𝛽−𝐷�̂� = (𝐼 − (𝐼 −𝑀𝐷)) (𝑦− 𝑋𝛽) = 𝑀𝐷 (𝑦− 𝑋𝛽) = �̃�− �̃� 𝛽 (1.32)

where “∼” denotes the appropriate Within transformation.
With the residuals in hand, the variance components can be expressed from the

same identifying conditions regardless of the model specification:

exp
(
Y2
𝑖 𝑗𝑡

)
= 𝜎2

𝑖 𝑗

exp
(
Ȳ2
. 𝑗𝑡

)
= 1
𝑁2

1

(∑
𝑖𝜎

2
𝑖 𝑗
+𝑁1 (𝑁1 −1)𝜌2

)
exp

(
Ȳ2
𝑖.𝑡

)
= 1
𝑁2

2

(∑
𝑗 𝜎

2
𝑖 𝑗
+𝑁2 (𝑁2 −1)𝜌1

)
.

The last step is to “estimate” the identifying conditions by replacing expectations
with sample means, and the disturbances with the residuals. That is,

�̂�2
𝑖 𝑗
= 1
𝑇

∑
𝑡 Ŷ

2
𝑖 𝑗𝑡

�̂�2 = 1
𝑁1 (𝑁1−1)

(
1
𝑁2𝑇

∑
𝑗𝑡

(∑
𝑖 Ŷ𝑖 𝑗𝑡

)2 −∑
𝑖 �̂�

2
𝑖 𝑗

)
�̂�1 = 1

𝑁2 (𝑁2−1)

(
1
𝑁1𝑇

∑
𝑖𝑡

(∑
𝑗 Ŷ𝑖 𝑗𝑡

)2
−∑

𝑗 �̂�
2
𝑖 𝑗

)
.

(1.33)

Equation (1.33) gives consistent estimators of the variance components, as long as
𝑇 →∞, as the number of heteroscedastic variances grows along with 𝑁1 and 𝑁2.
Inserting these estimated variance components into (1.31) gives the FGLS estimator,
which handles the new and more flexible correlation structure.
When homoscedasticity is assumed along with the cross-correlations, the vari-

ance-components estimators become
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�̂�2
Y = 1

𝑁1𝑁2𝑇

∑
𝑖 𝑗𝑡 Ŷ

2
𝑖 𝑗𝑡

�̂�2 = 1
𝑁1−1

(
1

𝑁1𝑁2𝑇

∑
𝑗𝑡

(∑
𝑖 Ŷ𝑖 𝑗𝑡

)2 − �̂�2
Y

)
�̂�1 = 1

𝑁2−1

(
1

𝑁1𝑁2𝑇

∑
𝑖𝑡

(∑
𝑗 Ŷ𝑖 𝑗𝑡

)2
− �̂�2

Y

)
,

(1.34)

and 𝑇-asymptotics is no longer necessary (𝑁1 →∞ or 𝑁2 →∞ is enough) to make
the estimators consistent.
When the data is incomplete, the derived FGLS estimator for the model with

homoscedasticity and cross-correlations is not appropriate as the decomposition
of Ω can no longer be represented with Kronecker products, and so the linear
transformations presented to be employed on the data are incorrect. As the full
analysis of such incomplete estimator would certainly be lengthy, we only provide
some guidance on how to carry out the estimation. First, we leave out those rows from
𝐷 (as we did in Sect. 1.5.2) and rows and columns from Ω that correspond to missing
observations. Then we proceed by performing a GLS with the adjusted covariance
matrix, but to get its inverse, we now have to use partial inverse methods, to at least
partially avoid the dimensionality issue. The last step is to estimate the variance
components, for which we only have to adjust (1.33) (or (1.34)) to the incomplete
sample sizes.
Remember that the FGLS estimator in the presence of heteroscedasticity is

consistent only for long panels (when 𝑇 →∞). So how should we proceed when
the data is small in the time dimension? Let us consider that disturbances are
heteroscedastic only, and the cross correlations are set to null (𝜌1 = 𝜌2 = 0). This
special case can be estimated in two ways. First, we can transform the model according
to the optimal Within transformation as before, then carry out an FGLS with the
heteroscedastic covariance matrix

Ωℎ = diag
{
𝜎2

11𝐼 |𝑇11 | , 𝜎
2
12𝐼 |𝑇12 | , . . . , 𝜎

2
𝑛𝑚𝐼 |𝑇𝑁1𝑁2 |

}
,

which is diagonal regardless of the potential data issues. The variance components
are then estimated from

�̂�2
𝑖 𝑗 =

1
|𝑇𝑖 𝑗 |

∑︁
𝑡

Ŷ2
𝑖 𝑗𝑡 ,

like before, with the Ŷ𝑖 𝑗𝑡 being the LSDV residuals. However, this FGLS, as before,
is still only 𝑇 consistent. When the data is short in time, it is better to estimate the
transformed model with OLS, which is still an unbiased and consistent estimator of 𝛽
in all the asymptotic cases studied before, and use heteroscedasticity robust White
covariance matrix to estimate var (𝛽). Then we get

var (𝛽) = ( �̃� ′�̃�)−1 �̃� ′Ω̂ℎ �̃� ( �̃� ′�̃�)−1

=

(∑
𝑖 𝑗𝑡 𝑥𝑖 𝑗𝑡𝑥

′
𝑖 𝑗𝑡

)−1 (∑
𝑖 𝑗𝑡 𝑥𝑖 𝑗𝑡𝑥

′
−𝑖 𝑗𝑡

1
|𝑇𝑖 𝑗 |

∑
𝑡 Ŷ

2
𝑖 𝑗𝑡

) (∑
𝑖 𝑗𝑡 𝑥𝑖 𝑗𝑡𝑥

′
𝑖 𝑗𝑡

)−1
,
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where “∼” indicates that the variables are transformed. Notice again that only the
data 𝑋 has to be transformed, but conveniently not Ωℎ, due to the idempotent nature
of the projection matrix. This conjecture can be easily proven, by showing that the
equivalence[

(𝑍 ′𝑍)−1𝑍 ′Ωℎ𝑍 (𝑍 ′𝑍)−1]
1,1 = (𝑋 ′𝑀𝐷𝑋)−1𝑋 ′𝑀𝐷Ωℎ𝑀𝐷𝑋 (𝑋 ′𝑀𝐷𝑋)−1 (1.35)

in fact holds with 𝑍 = (𝑋,𝐷). Applying the partitioned inverse formula for block
matrices gives the upper block of the (2×1) block matrix (𝑍 ′𝑍)−1𝑍 ′ as[

(𝑍 ′𝑍)−1𝑍 ′]
1 =

(
(𝑋 ′𝑀𝐷𝑋)−1,−(𝑋 ′𝑀𝐷𝑋)−1𝑋 ′𝐷 (𝐷 ′𝐷)−1) · (𝑋,𝐷) ′

= (𝑋 ′𝑀𝐷𝑋)−1𝑋 ′− (𝑋 ′𝑀𝐷𝑋)−1𝑋 ′𝐷 (𝐷 ′𝐷)−1𝐷 ′

= (𝑋 ′𝑀𝐷𝑋)−1𝑋 ′𝑀𝐷 ,

which is used directly to construct the right hand side of (1.35).

1.7 Extensions to Higher Dimensions

In four and higher dimensions the number of specific effects, and therefore models,
available is staggering. As a consequence, we have to somehow restrict the model
formulations taken into account. The restriction used in this chapter is to allow for
pairwise interaction effects only. Without attempting to be comprehensive, the most
relevant four dimensional models are introduced in this section. Then, on a kind of
benchmark model, we show intuitively how to estimate them for complete data, and
also in the case of the same data problems brought up in Sects. 1.4 and 1.5. This is
carried out in a way that gives indications on how to proceed beyond four dimensions.

1.7.1 Different Forms of Heterogeneity

The dependent variable is now observed along four indexes, such as 𝑖 𝑗 𝑠𝑡. The
generalization of model (1.4) (and also that of the 2D fixed effects model with both
individual and time effects) is

𝑦𝑖 𝑗𝑠𝑡 = 𝑥
′
𝑖 𝑗𝑠𝑡 𝛽+𝛾𝑖 𝑗𝑠 +_𝑡 + Y𝑖 𝑗𝑠𝑡 ,

or alternatively, a more restrictive formulation is

𝑦𝑖 𝑗𝑠𝑡 = 𝑥
′
𝑖 𝑗𝑠𝑡 𝛽+𝛼𝑖 +𝛼∗𝑗 +𝛾𝑠 +_𝑡 + Y𝑖 𝑗𝑠𝑡 .

As in the case of 3D models, we can benefit from the multi-dimensional nature of the
data, and let the fixed effects be time dependent
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𝑦𝑖 𝑗𝑠𝑡 = 𝑥
′
𝑖 𝑗𝑠𝑡 𝛽+𝛼𝑖𝑡 +𝛾 𝑗𝑡 + 𝛿𝑠𝑡 + Y𝑖 𝑗𝑠𝑡

that is we can also allow all individual heterogeneity to vary over. Finally, let us take
the four-dimensional extension of the all-encompassing model (1.7), with pair-wise
interaction effects:

𝑦𝑖 𝑗𝑠𝑡 = 𝑥
′
𝑖 𝑗𝑠𝑡 𝛽+𝛾0

𝑖 𝑗𝑠 +𝛾1
𝑖 𝑗𝑡 +𝛾2

𝑗𝑠𝑡 +𝛾3
𝑖𝑠𝑡 + Y𝑖 𝑗𝑠𝑡 , (1.36)

with 𝑖 = 1 . . . 𝑁1, 𝑗 = 1 . . . 𝑁2, 𝑠 = 1 . . . 𝑁3, and 𝑡 = 1 . . .𝑇 . This is what we consider
from now on as the benchmark model, and show step-by-step how to estimate it.

1.7.2 Least Squares and the Within Estimators

If we keep maintaining the standard OLS assumptions lined up in Sect. 1.2, the LSDV
estimator of model (1.36), following (1.8)-(1.9), is BLUE. In addition, if we define
the Within projector 𝑀𝐷 , to get 𝛽, the maximum matrix size to be worked with is
still (𝐾 ×𝐾). For model (1.36), the composite dummy matrix 𝐷 is

𝐷 =
(
(𝐼𝑁1𝑁2𝑁3 ⊗ ]𝑇 ), (𝐼𝑁1𝑁2 ⊗ ]𝑁3 ⊗ 𝐼𝑇 ), (]𝑁1 ⊗ 𝐼𝑁1𝑁3𝑇 ), (𝐼𝑁1 ⊗ ]𝑁2 ⊗ 𝐼𝑁3𝑇 )

)
with size (𝑁1𝑁2𝑁3𝑇 × (𝑁1𝑁2𝑁3 + 𝑁1𝑁2𝑇 + 𝑁2𝑁3𝑇 + 𝑁1𝑁3𝑇)) and column rank
(𝑁1𝑁2𝑁3𝑇 − (𝑁1 −1) (𝑁2 −1) (𝑁3 −1) (𝑇 −1)), leading to

𝑀𝐷 = 𝐼𝑁1𝑁2𝑁3𝑇 −
(
𝐽𝑁1 ⊗ 𝐼𝑁2𝑁3𝑇

)
−
(
𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐼𝑁3𝑇

)
−
(
𝐼𝑁1𝑁2 ⊗ 𝐽𝑁3 ⊗ 𝐼𝑇

)
−
(
𝐼𝑁1𝑁2𝑁3 ⊗ 𝐽𝑇

)
+
(
𝐽𝑁1𝑁2 ⊗ 𝐼𝑁3𝑇

)
+
(
𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑁3 ⊗ 𝐼𝑇

)
+
(
𝐽𝑁1 ⊗ 𝐼𝑁2𝑁3 ⊗ 𝐽𝑇

)
+
(
𝐼𝑁1 ⊗ 𝐽𝑁2𝑁3 ⊗ 𝐼𝑇

)
+
(
𝐼𝑁1 ⊗ 𝐽𝑁2 ⊗ 𝐼𝑁3 ⊗ 𝐽𝑇

)
+
(
𝐼𝑁1𝑁2 ⊗ 𝐽𝑁3𝑇

)
−
(
𝐽𝑁1𝑁2𝑁3 ⊗ 𝐼𝑇

)
−
(
𝐽𝑁1𝑁2 ⊗ 𝐼𝑁3 ⊗ 𝐽𝑇

)
−
(
𝐽𝑁1 ⊗ 𝐼𝑁2 ⊗ 𝐽𝑁3𝑇

)
−
(
𝐼𝑁1 ⊗ 𝐽𝑁2𝑁3𝑇

)
+ 𝐽𝑁1𝑁2𝑁3𝑇 .

Just as before, 𝑀𝐷 defines the optimal Within transformation to be performed on
the data, so we can avoid matrix manipulations. That is, the LSDV estimator of 𝛽 is
analogous to the optimal Within estimator, which is obtained by first transforming
the data according to

�̃�𝑖 𝑗𝑠𝑡 = 𝑦𝑖 𝑗𝑠𝑡 − �̄�. 𝑗𝑠𝑡 − �̄�𝑖.𝑠𝑡 − �̄�𝑖 𝑗.𝑡 − �̄�𝑖 𝑗𝑠. + �̄�..𝑠𝑡 + �̄�. 𝑗.𝑡 + �̄�. 𝑗𝑠.
+ �̄�𝑖..𝑡 + �̄�𝑖.𝑠. + �̄�𝑖 𝑗.. − �̄�...𝑡 − �̄�..𝑠. − �̄�. 𝑗.. − �̄�𝑖... + �̄�....

(1.37)

(which eliminates (𝛾0
𝑖 𝑗𝑠
, 𝛾1

𝑖 𝑗𝑡
, 𝛾2

𝑗𝑠𝑡
, 𝛾3

𝑖𝑠𝑡
)), then running an OLS on the transformed

variables �̃�𝑖 𝑗𝑠𝑡 , 𝑥 ′𝑖 𝑗𝑠𝑡 .
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The properties of these estimators are identical to those of the three-way models,
with the only modification that now even more asymptotic cases can be considered. In
general, the estimator of a fixed effects parameter is consistent if an index with which
the effect is fixed goes to infinity. The resulting variances of any of the estimators
should be normalized with the sample sizes which grow, and further, the degrees of
freedom should be corrected to reflect the column rank deficiency in 𝐷. For example,
for model (1.36), the correct degrees of freedom (coming from the rank of 𝑀𝐷) is
(𝑁1 −1) (𝑁2 −1) (𝑁3 −1) (𝑇 −1) −𝐾 .

1.7.3 Incomplete Panels

In theory, the missing data problem is corrected for by leaving out those rows from 𝐷
which correspond to missing observations. LSDV estimation should then be done
with the modified �̃�, or alternatively, with 𝑀�̃� = 𝐼 − �̃� (�̃� ′�̃�)−�̃� ′. Unfortunately,
as now 𝑀𝐷 has no clear structure, the resulting LSDV estimator cannot be reached
at reasonable cost when the data is large. However, the optimal Within estimator
offers a better way to tackle this problem. Just like in Sect. 1.5, we have to come up
with adjusted transformations, that clear out the fixed effects in the case of missing
data. The no self-flow and unbalanced transformations in Sect. 1.5 can be easily
generalized to any higher dimensions. For model (1.36), assuming that 𝑁1 = 𝑁2 = 𝑁 ,
the no self-flow transformation can be represented in a smart scalar form using group
averages, and reads as

�̃�𝑖 𝑗𝑠𝑡 = 𝑦𝑖 𝑗𝑠𝑡 − 1
𝑁−1 𝑦+ 𝑗𝑠𝑡 −

1
𝑁−1 𝑦𝑖+𝑠𝑡 −

1
𝑁3
𝑦𝑖 𝑗+𝑡 − 1

𝑇
𝑦𝑖 𝑗𝑠+ + 1

(𝑁−1)2 𝑦++𝑠𝑡

+ 1
(𝑁−1)𝑁3

𝑦+ 𝑗+𝑡 + 1
(𝑁−1)𝑇 𝑦+ 𝑗𝑠+ +

1
(𝑁−1)𝑁𝑠

𝑦𝑖++𝑡 + 1
(𝑁−1)𝑇 𝑦𝑖+𝑠+

+ 1
𝑁3𝑇

𝑦𝑖 𝑗++− 1
(𝑁−1)2𝑁3

𝑦+++𝑡 − 1
(𝑁−1)2𝑇

𝑦++𝑠+− 1
(𝑁−1)𝑁3𝑇

𝑦+ 𝑗++

− 1
(𝑁−1)𝑁3𝑇

𝑦𝑖+++ + 1
(𝑁−1)2𝑁3𝑇

𝑦++++− 1
(𝑁−1)𝑁3𝑇

𝑦 𝑗𝑖++

+ 1
(𝑁−1)𝑇 𝑦 𝑗𝑖𝑠+ +

1
(𝑁−1)𝑁3

𝑦 𝑗𝑖+𝑡 − 1
𝑁−1 𝑦 𝑗𝑖𝑠𝑡 ,

(1.38)

fully eliminating any computational burden.
General incomplete data can also be handled quite flexibly in the case of four-

dimensional models. Remember that the key (iterative) unbalanced-robust transform-
ation in Sect. 1.5 was (1.29), which can be generalized simply into a four dimensional
setup. Let the dummy variables matrices for the four fixed effects in (1.36) be denoted
by 𝐷𝑒 = (𝐷𝑒1 , 𝐷

𝑒
2 , 𝐷

𝑒
3 , 𝐷

𝑒
4) and let𝑀

(𝑘)
𝐷𝑒
be the transformation that clears out the first 𝑘

fixed effects; namely, 𝑀 (𝑘)
𝐷𝑒

·
(
𝐷𝑒1 , . . . , 𝐷

𝑒
𝑘

)
= (0, . . . ,0) for 𝑘 = 1 . . .4. The appropriate

Within transformation to clear out the first 𝑘 fixed effects is then

𝑀
(𝑘)
𝐷𝑒

= 𝑀
(𝑘−1)
𝐷𝑒

−
(
𝑀

(𝑘−1)
𝐷𝑒

𝐷𝑒𝑘

) [(
𝑀

(𝑘−1)
𝐷𝑒

𝐷𝑒𝑘

) ′ (
𝑀

(𝑘−1)
𝐷𝑒

𝐷𝑒𝑘

)]− (
𝑀

(𝑘−1)
𝐷𝑒

𝐷𝑒𝑘

) ′
,

(1.39)
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where the first step in the iteration is

𝑀
(1)
𝐷𝑒

= 𝐼 −𝐷𝑒1
( (
𝐷𝑒1

) ′
𝐷𝑒1

)−1 (𝐷𝑒1)
′ ,

and the iteration should be processed until 𝑘 = 4. Note that none of this hinges
on the model specification and can be done to any other multi-dimensional fixed
effects model. The drawback, which cannot be addressed at this point, is again the
increasing size of the matrices involved in the calculations. If this is the case, direct
inverse calculations are feasible only up to some point, and further tricks (parallel
computations, iterative inverting methods) should be used. However, this is beyond
the scope of this chapter.

1.8 Varying Coefficients Models

So far we have assumed that the slope coefficients of the models considered are
constant. This in fact meant that the heterogeneity was captured through the regression
constant only, i.e., via the shifts of this term for different individuals and time points.
One of the most important statistical features of multidimensional data sets, however,
is that heterogeneity is likely to take more complicated forms, which begs for more
complex econometric models. One such approach with a more sophisticated form of
heterogeneity is the varying coefficients model, where, along with the fixed effects,
we allow the slope coefficients to also vary.
The most general model we can imagine within this framework is

𝑦𝑖 𝑗𝑡 = 𝑧
′
𝑖 𝑗𝑡𝛿𝑖 𝑗𝑡 + Y𝑖 𝑗𝑡 (1.40)

where we force some structure on 𝛿𝑖 𝑗𝑡 .8 Note, that this is the general form of any
standard multi-dimensional fixed effects model if we assume that 𝑧′

𝑖 𝑗𝑡
= (𝑥 ′

𝑖 𝑗𝑡
, 1), and

that 𝛿𝑖 𝑗𝑡 = (𝛽′, 𝜋′
𝑖 𝑗𝑡
) ′, with 𝜋𝑖 𝑗𝑡 being the composite fixed effect parameters.

The benchmark model we are focusing on, however, follows the spirit of Balestra
and Krishnakumar (2008) (pp. 40–43) and Hsiao (2015) (chapter 6), and takes the
form

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 (𝛽+𝛾𝑖 𝑗 +_𝑡 ) + Y𝑖 𝑗𝑡 (1.41)

or similarly,
𝑦 = 𝑋1𝛽+ 𝑋2𝛾 + 𝑋3_+ Y

with
𝑋1 ≡ Δ(]𝑁1𝑁2𝑇 ⊗ 𝐼𝐾 ) (𝑁1𝑁2𝑇 ×𝐾)

𝑋2 ≡ Δ(𝐼𝑁1𝑁2 ⊗ ]𝑇 ⊗ 𝐼𝐾 ) (𝑁1𝑁2𝑇 ×𝑁1𝑁2𝐾)

𝑋3 ≡ Δ(]𝑁1𝑁2 ⊗ 𝐼𝑇 ⊗ 𝐼𝐾 ) (𝑁1𝑁2𝑇 ×𝑇𝐾)

8 In this section, we assume that 𝛿𝑖 𝑗𝑡 is a fixed, unknown coefficient. Random coefficients models,
positing distributional assumptions on 𝛿𝑖 𝑗𝑡 are visited in Chap. 5.
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where

Δ =

©«

𝑥 ′111

𝑥 ′112
. . .

𝑥 ′
𝑁1𝑁2𝑇

ª®®®®®®®¬
(𝑁1𝑁2𝑇 ×𝑁1𝑁2𝑇𝐾)

is the diagonally arranged data matrix. Intuitively, this model suggests that the
explanatory variables have an effect on 𝑦 through a common parameter 𝛽, but also
through 𝛾𝑖 𝑗 and _𝑡 , which varies over individual pairs, and time periods. Note that
𝑋 = (𝑋1, 𝑋2, 𝑋3) has no full column rank; in fact it has a rank deficiency of 2𝐾.
Therefore, for identification 2𝐾 restrictions have to be imposed on the model. We
can proceed by simply leaving out for example 𝛾𝑁1𝑁2 and _𝑇 . A more symmetric
way, suggested by Hsiao (2015), is to normalize the average of the heterogeneous
parameters: ∑︁

𝑖 𝑗

𝛾𝑖 𝑗 = 0 ;
∑︁
𝑡

_𝑡 = 0 . (1.42)

Then �̃� = (𝑋1, �̃�2, �̃�3) has full column rank, where �̃�1, �̃�2, �̃�3 denote 𝑋1, 𝑋2, 𝑋3 after
imposing the proper restrictions. To proceed, the adjusted model can be estimated
with straight Least Squares optimally, to get(

𝛽′ �̂�′ _̂′
) ′
=
(
�̃� ′�̃�

)−1
�̃� 𝑦

or alternatively, partialling out 𝛾 and _, and so expressing for 𝛽,

𝛽 =

(
𝑋 ′

1𝑀�̃�2�̃�3
𝑋1

)−1
𝑋 ′

1𝑀�̃�2�̃�3
𝑦

with 𝑀�̃�2�̃�3
being the projector matrix orthogonal to ( �̃�2, �̃�3). The problem is that to

get 𝑀�̃�2�̃�3
, we are faced with inverting (𝐾𝑁1𝑁2 ×𝐾𝑁1𝑁2) matrices, which becomes

quickly computationally forbidding. One could try to figure out what this projection
(with a set of non-trivial matrices) does to a typical 𝑥 ′

𝑖 𝑗𝑡
, but the algebra soon becomes

complex. Even if the above estimators can be computed for small samples, we still
have the inconvenience of incorporating the restrictions first. Having said this, if
we are uncertain about what the proper set of restriction would be, or simply there
is scope for experimenting with different restrictions, we would have to redo the
estimation each time.
There is, however, a more general, and useful approach to be used to derive

estimators for 𝛽, and for the heterogeneous parameters as well. For this, we have to
apply the theory of Least Squares of incomplete rank detailed in (Searle, 1971, p. 9).
Searle shows that all least squares estimators are given by
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𝛿 =

©«
�̂�

_̂

𝛽

ª®®®®¬
= (𝑋 ′𝑋)− 𝑋 ′𝑦 +𝐻Z = 𝛿0 +𝐻Z , (1.43)

with 𝛿0 being the generalized solution, 𝑋 = (𝑋2, 𝑋3, 𝑋1), 𝐻 being its null-space (for
which 𝑋𝐻 = 0 holds), and Z being an arbitrary vector.9We want to pick a solution
from the set of the infinitely many solutions, which satisfies some conditions. An
attractive, natural way to do so is to assume that∑︁

𝑖 𝑗

�̂�𝑖 𝑗 = 0 ;
∑︁
𝑡

_̂𝑡 = 0 . (1.44)

This can be represented by
𝑅′𝛿 = 0 ,

when

𝑅 =

©«
0 0

]𝑁1𝑁2 0

0 ]𝑇

ª®®®®¬
⊗ 𝐼𝐾 .

As
𝑅′𝛿 = 𝑅′𝛿0 +𝑅′𝐻Z = 0

holds because of (1.44),
Z = −(𝑅′𝐻)−1𝑅′𝛿0

must also hold. As now we have a Z vector defined explicitly, estimator (1.43) of the
parameters becomes

𝛿 = (𝐼 −𝐻 (𝑅′𝐻)−1𝑅′)𝛿0 . (1.45)

As we know that

𝐻 =

©«
1 1

−]𝑁1𝑁2 0

0 −]𝑇

ª®®®®¬
⊗ 𝐼𝐾 ,

the only step remaining to be taken is to find generalized solutions for the parameters.
First, we set 𝛽 = 0, so 𝑋1 drops out. This leaves us in (𝑋2, 𝑋3) with a rank deficiency
of 𝐾 , which we handle through a generalized inverse. From the Frisch–Waugh–Lovell
theorem (with a minor adaptation to handle the singularity) and adding the “estimator”
for 𝛽 we get in the first round, the generalized solutions read as

9 The reason for placing 𝑋2 to the front of 𝑋 is that 𝑋′
2𝑋2 is the largest matrix, yet block-diagonal.

As its inverse is the inverses of its blocks, it is easily computed.
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𝛿0 =

©«
𝛽0

𝛾0

_0

ª®®®®¬
=

©«
0

(𝑋 ′
2𝑋2)−1𝑋 ′

2 (𝑦− 𝑋3_
0)

(𝑋 ′
3𝑀𝑋2𝑋3)−𝑋 ′

3𝑀𝑋2 𝑦

ª®®®®¬
, (1.46)

with 𝑀𝑋2 being the projection orthogonal to 𝑋2. Putting (1.46) and the definitions of
𝑅 and 𝐻 into (1.45) gives the unique estimators

𝛽 = 1
𝑁1𝑁2

∑︁
𝑖 𝑗

𝛾0
𝑖 𝑗 +

1
𝑇

∑︁
𝑡

_0
𝑡

�̂�𝑖 𝑗 = 𝛾
0
𝑖 𝑗
− 1
𝑁1𝑁2

∑︁
𝑖 𝑗

𝛾0
𝑖 𝑗 (𝑖, 𝑗 = 1 . . . 𝑁1, 𝑁2)

_̂𝑡 = _0
𝑡 − 1

𝑇

∑︁
𝑡

_0
𝑡 (𝑡 = 1 . . .𝑇)

(1.47)

Fortunately, unbalanced data does not complicate our cause substantially, as the
estimators are formulation-wise equivalent to (1.47). Specifically, after we have found
the general solutions 𝛽0, 𝛾0 and _0 (in incomplete data), they can be used as in (1.47)
to derive estimators.
As seen, this section only considered one specific model. Of course, there is

substantial space for experimenting with other possible three-way specifications. For
example, models

𝑦𝑖 𝑗𝑡 = 𝑥
′
𝑖 𝑗𝑡 (𝛽+𝛼𝑖𝑡 +𝛼∗𝑗𝑡 ) + Y

and
𝑦𝑖 𝑗𝑡 = 𝑥

′
𝑖 𝑗𝑡 (𝛽+𝛾𝑖 𝑗 +𝛼𝑖𝑡 +𝛼∗𝑗𝑡 ) + Y

can also be considered, and can be estimated with the same steps and with slightly
modified identifying restrictions as model (1.41). We must keep track, however, of the
total number of parameters to be estimated. For the last model considered, this number
is (1+𝑁1𝑁2 +𝑁1𝑇 +𝑁2𝑇)𝐾 which can either be a classic case of over-specification,
or in worse cases, can exceed the number of observations. This is the main reason
why this section focused on simpler models, like (1.41).
Naturally, nothing stops us from generalizing the above models to four, or even to

higher dimensions, but computational requirements frequently limit the practical use
of such formulations. The estimation of model

𝑦𝑖 𝑗𝑠𝑡 = 𝑥
′
𝑖 𝑗𝑠𝑡 (𝛽+𝛾𝑖 𝑗𝑠 +_𝑡 ) + Y𝑖 𝑗𝑠𝑡

has the same light computational requirement as model (1.41) (inverting a matrix of
order 𝑇), but, for example, the estimation of

𝑦𝑖 𝑗𝑠𝑡 = 𝑥
′
𝑖 𝑗𝑠𝑡 (𝛽+𝛾0

𝑖 𝑗𝑠 +𝛾1
𝑖 𝑗𝑡 +𝛾2

𝑗𝑠𝑡 +𝛾3
𝑖𝑠𝑡 ) + Y𝑖 𝑗𝑠𝑡

involves matrices of order 𝑁1𝑁2𝑇 , 𝑁2𝑁3𝑇 , and 𝑁1𝑁3𝑇 , which is forbidding even for
moderate sample sizes.
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